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Cytokinins are plant hormones known for their role in mediating plant growth. First 
discovered for their ability to promote cell division, this class of hormones is now associated 
with many other cellular and physiological functions. One of these functions is the regulation 
of source-sink relationships, a tightly controlled process that is essential for proper plant 
growth and development. As discovered more recently, cytokinins are also important for 
the interaction of plants with pathogens, beneficial microbes and insects. Here, we review 
the importance of cytokinins in source-sink relationships in plants, with relation to both 
carbohydrates and amino acids, and highlight a possible function for this regulation in the 
context of plant biotic interactions.

Keywords: cytokinins, source-sink relationships, plant growth, plant yield, plant-pathogen interactions, carbon 
allocation, amino acid translocation

INTRODUCTION

Cytokinins are a group of plant hormones derived from adenine, classified by the presence 
of an isoprenoid or an aromatic chain at the N6 position of their adenine moieties (Mok and 
Mok, 2001). Although different compounds with cytokinin activity have been shown to regulate 
various physiological processes in plants, cytokinins are broadly described as growth promoting 
plant hormones. The first cytokinin discovered by Miller and Skoog in the 1950s, kinetin, 
was defined as a plant-derived chemical that could promote cell division (Miller et  al., 1956). 
In a following study, it was demonstrated that kinetin, in combination with auxin, was responsible 
for promoting cell division and organ development from undifferentiated cells in culture (Skoog 
and Miller, 1957). While the study of cytokinins began in the middle of the 1900s, they are 
in fact an ancient hormone, being one of the first four hormones to emerge in photosynthetically 
capable organisms (Wang et  al., 2015). Evolutionary studies indicate that the common ancestor 
of all land plants, charophytes, contains the genetic sequences of orthologs to known members 
the cytokinin signaling pathway (Wang et  al., 2015). These data suggest that cytokinins had 
a role in plants as early as 450 million years ago. Today, cytokinins are known for their broad 
role in plant growth (Kieber and Schaller, 2018), and also roles in preventing senescence, as 
well regulation of biotic and abiotic stress tolerance (Argueso et al., 2009; Cortleven et al., 2019).

One important physiological response that has been classically associated with cytokinins 
is the regulation of source-sink relationships and nutrient allocation in plants. Shortly after 
cytokinins were discovered to have a role in cell division, a study in 1961  in Nicotiana rustica 
demonstrated that exogenous application of kinetin to leaves led to increased accumulation 
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of the amino acid glycine to the area of hormone application 
(Mothes and Engelbrecht, 1961). Similarly, kinetin application 
to leaves of fava bean plants that had been unrooted was also 
shown to correlate with the movement of the amino acid 
alanine to the site of hormone application, which the researchers 
termed “mobilization” (Mothes and Engelbrecht, 1963). These 
early reports indicated that cytokinins could have a pivotal 
role in the allocation of amino acids in plants, with important 
consequences for plant growth.

In this review, we start by providing readers with an overview 
of the process of source-sink relationships in plants, and then 
proceed to highlight the evidence for a regulatory role for 
cytokinins in this important physiological process, starting with 
their first initial association and finishing with the most recent 
evidence. We conclude by pointing out some emerging evidence 
of the importance of this plant hormone as a regulator of 
nutrient availability in plant biotic interactions during disease 
susceptibility and promotion of plant immunity.

OVERVIEW OF SOURCE-SINK 
RELATIONSHIPS IN PLANTS

Photosynthesis leads to the production of reduced carbon 
products, also known as photoassimilates. Photoassimilates 
generated in the mesophyll cells, such as sucrose, oligosaccharides, 
and amino acids, are transported to other parts of the plant 
to maintain plant growth. Generally, the rate of photosynthetic 
activity and the accumulation of photoassimilates can be  used 
to classify organs as sinks or sources. Sources are defined as 
photosynthetically active leaves that export photoassimilates to 
heterotrophic sink tissues that are dependent on imported 
sugars and amino acids for growth and development. Fully 
mature source leaves export as much as 80%  of photoassimilate 
to sink tissues (Kalt-Torres et  al., 1987). Sinks are defined as 
the opposite: an organ that is dependent on sugar and amino 
acid import to support growth and development. Sinks include 
young leaves, reproductive organs, and roots. Photosynthetic 
activity changes during the course of leaf development. Young 
leaves are sink organs that need to import photoassimilates 
from mature leaves to support growth and development (Geiger 
and Sheigh, 1993). As the immature leaf grows, it becomes 
photosynthetically active and eventually becomes an exporter 
of photoassimilates, through a process known as the sink-
source transition (Turgeon, 1989). The relationship between 
source and sink organs has been the focus of intensive research 
because of its impact on plant growth and yield (White et  al., 
2016) and its potential for using transgenic approaches for 
modifying yield and/or nutritional quality (Yadav at al., 2015).

Sucrose is the end product of photosynthesis, and the primary 
sugar transported within plants. In source leaves, sucrose 
produced, from photosynthesis during the day or starch 
degradation occurring at night, is loaded into the phloem for 
transport to sinks (Figure  1A). Although this review focuses 
mostly on sucrose, as it is present in the phloem sap of all 
plant species, it should be  noted that the phloem sap of some 
plant species also contains sugar alcohols and/or oligosaccharides 

from the raffinose family (Zimmermann and Ziegler, 1975; 
Noiraud et al., 2001). Depending on the anatomical connections 
of the plant species, loading of sucrose into the phloem can 
be achieved by three different loading mechanisms: symplastic, 
apoplastic, and polymer trapping (Braun et  al., 2014). For the 
purposes of this review, we will focus on the apoplastic loading 
pathway, which is the predominant pathway used in most plant 
species, including the model plant species Arabidopsis thaliana 
(hereafter, Arabidopsis).

Apoplastic phloem loading in the leaf is mediated by a 
proton-sucrose symporter (Bush, 1993). Sucrose is transported 
out of mesophyll cells into the intercellular space by sucrose 
transporters known as SUGARS WILL EVENTUALLY 
BE  EXPORTED TRANSPORTERS (SWEETs) (Chen et  al., 
2012). Once in the intercellular space, sucrose is then actively 
loaded into the phloem cells against a significant concentration 
gradient by proton-sucrose symporters, named SUCROSE 
TRANSPORTERS/CARRIERS (SUTs/SUCs) (Reinders et  al., 
2012; Zhang and Turgeon, 2018). Sucrose accumulates to molar 
levels in the leaf phloem thereby creating a high osmotic 
potential that draws in water. Since the phloem cells are 
surrounded by an inelastic cell wall, this creates high hydrostatic 
pressure that drives mass flow of solution to sink tissues where 
sucrose is released and used for growth, development or 
carbohydrate storage (Bush, 2020). There are two main 
mechanisms by which sucrose is moved into sink cells (Braun 
et  al., 2014): (i) it is released into the intracellular space by 
SWEETs and then transported into the sink tissue by SUTs/
SUCs (Weber et al., 1997) or (ii) it is released into intracellular 
space by SWEETs and then hydrolyzed into glucose and fructose 
by extracellular invertases (Ruan et al., 2010) followed by import 
into sink cells by proton/hexose symporters (HXTs) (Zhang 
et  al., 2006; Hayes et  al., 2007). Due to sucrose being the 
major form of carbon being translocated from source to sink 
(Fife et  al., 1962; Turgeon, 1989), and starch being the main 
storage form of sucrose, the homeostasis of these two 
carbohydrates is essential for the regulation of their metabolism 
and allocation in plants (Smith and Stitt, 2007).

The production, storage, and movement of amino acids can 
also define organs as sinks or sources (Figure  1A) (Bush, 
1999). Roots are the site of uptake of inorganic nitrogen (N) 
from the soil, in the form of nitrate or ammonium, a process 
regulated by transporters located in root epidermal hairs and 
root cortical and endodermal cells (Tegeder, 2014). However, 
some plant species are also able to take up organic N in the 
form of amino acids, depending on environmental and soil 
conditions (Nasholm et  al., 2009; Tegeder and Rentsch, 2010; 
Bloom, 2015). The location of N assimilation, or the conversion 
of inorganic N into amino acids, varies among plant species 
(Masclaux-Daubresse et  al., 2010). Nitrate taken up by the 
roots is primarily transported to the shoot prior to assimilation, 
while ammonium, due its toxic nature, is assimilated after 
uptake in the roots (Tegeder and Masclaux-Daubresse, 2018).

Transport of amino acids from the roots to the above ground 
areas of the plant occurs through the xylem, while translocation 
between source and sink organs occurs via the phloem (Tegeder 
and Masclaux-Daubresse, 2018) (Figure  1A). Once formed in 
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source leaves or in roots, amino acids are loaded into the 
phloem and then unloaded into sinks tissues by amino acid 
transporters (Okumoto et al., 2004; Tegeder and Hammes, 2018). 
Also relevant to amino acid allocation is the process of plant 
senescence. During senescence leaf proteins are degraded, 
providing a large quantity of amino acids that is used for growth 
in other organs, a process known as amino acid remobilization. 
Amino acid remobilization also occurs through the action of 
amino acid transporters. In both Arabidopsis and Brassica napus, 
it has been shown through 15N tracing that senescing leaves 
are the primary source of N provided to sink tissues during 
the late vegetative phase or to flowers and seeds during the 
reproductive phase (Malagoli et  al., 2005; Diaz et  al., 2008; 
Lemaitre et  al., 2008).

CYTOKININ REGULATION OF SOURCE-
SINK RELATIONSHIPS: EFFECT ON 
PHOTOSYNTHESES AND SUCROSE 
TRANSPORT

In many plant species, cytokinins positively affect photosynthetic 
rates (reviewed in Cherniad’ev, 2000). This effect is associated 
with increases in stomatal conductance and gas exchange, 
leading to higher photosynthetic rates and sucrose production 
(Ahanger et  al., 2018, 2020). Cytokinins have also long been 

associated with an increase in chloroplast number per cell 
(Boasson and Laetsch, 1969), a process that has been coupled 
to the anti-senescence activity of this hormone. In Arabidopsis, 
this increase in chloroplast number per cell is facilitated by 
the transcriptional regulation of components of the chloroplast 
division machinery, which is mediated by the cytokinin-regulated 
transcription factor CYTOKININ RESPONSE FACTOR 2 (CRF2) 
(Okazaki et  al., 2009). Because the number of chloroplasts 
within a cell can affect overall photosynthetic rates (Austin II 
and Webber, 2005; Xiong et  al., 2017), cytokinin regulation 
of chloroplast number and their development may have a role 
in regulating source activity and strength and the availability 
of photoassimilates.

The photosynthetic activity of source tissues also changes, 
depending on the demand for photoassimilates by sinks (Paul 
and Foyer, 2001; Sonnewald and Fernie, 2018). When source 
leaves are shaded or removed by defoliation, the remaining 
source leaves display an increase in their rate of photosynthesis, 
compensating for the removed/shaded source leaves, responding 
to the rate of utilization of carbohydrates in sinks (Thorne 
and Koller, 1974; Peet and Kramer, 1980; McCormick et  al., 
2006). A study in tomato provided evidence that endogenous 
cytokinin levels could be  responsible for altering the response 
of source leaves following defoliation. After defoliation, the 
increased photosynthesis levels observed in the remaining source 
leaves were positively correlated not only to increased levels 
of the cytokinin trans-zeatin riboside, but also to increased 

A B

FIGURE 1 | Source-Sink Relationships in Plants. (A) Whole plant movement of nitrogen containing compounds (N, orange arrows) and sugars (yellow arrows) 
between source and sink tissues. (B) Regulation by cytokinin of specific enzymes, transporters, and processes involved in source-sink relationships. Blue and red 
symbolize positive or negative regulation by cytokinin, respectively. Green symbolizes both a positive and negative regulation by cytokinin. Numbers correspond to 
references. References: 1. Harms et al., 1994; 2. Ninan et al., 2019; 3. Song et al., 2015; 4. Ehness and Roitsch, 1997; 5. Godt and Roitsch, 1997; 6. Yang et al., 
2014; 7. Chernyad’ev, 2000; 8. Ahanger et al., 2018; 9. Boasson and Laetsch, 1969; 10. Okazaki et al., 2009; 11. Brenner et al., 2005; 12. Lee et al., 2007; 13. 
Kiba et al., 2011; 14. Kiba et al., 2005; 15. Yokoyama et al., 2007; and 16. Jian et al., 2016.
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leaf expansion and decreased levels of sugar export. This study 
suggests that the increased cytokinin concentration in the source 
leaves caused higher photosynthetic activity, resulting in sugar 
production that was used for leaf expansion, instead of transport 
to sinks, which ultimately increased the strength of the source 
tissue (Glanz-Idan et  al., 2020).

As previously mentioned, one method of sugar uptake in 
sinks following unloading from the phloem is through the 
activity of extracellular invertases, located within the cell wall. 
Extracellular invertases catalyze the hydrolysis of sucrose into 
glucose and fructose (Ruan, 2014), a process that can influence 
the sink strength (Ho, 1988; Herbers and Sonnewald, 1998; 
Sturm and Tang, 1999; Lemoine et  al., 2013). This process 
seems to be  regulated by cytokinins: Exogenous application 
of the cytokinin trans-zeatin can increase the expression of 
extracellular invertases (Godt and Roitsch, 1997; Lara et  al., 
2004) and in a detached leaf assay, cytokinins can prevent 
senescence and maintain sink strength through regulation of 
the activity of extracellular invertases (Lara et  al., 2004).

Cytokinins may also have a role in sucrose transport from 
source to sink organs by regulating the expression of SWEET 
and SUT/SUC transporters (Table  1). In potato, expression of 
the sucrose transporter StSUT1 was shown to be  induced in 
mature leaves following exogenous treatment with the cytokinin 
benzyladenine (BA) (Harms et al., 1994) and in Brassica napus 
expression of BnSUTs and BnSWEETs was increased after 
exogenous application of BA to leaves (Jian et  al., 2016). 
Endogenous levels of cytokinins also regulate SUC/SUT/SWEET 
expression. In peas, the content of several cytokinin species 
in source leaves is correlated with the increase in expression 
of genes encoding SWEETs and SUTs (Ninan et  al., 2019). 
Developing fruits and seeds are considered major sink tissues. 
As seeds develop, the walls of siliques in B. napus show an 
increase in expression of BnSUTs, which is also correlated 
with an increased expression in genes responsible for cytokinin 
biosynthesis (Song et  al., 2015). Although the correlation in 
the expression of sugar transporters and cytokinin content is 
not necessarily causative, evidence exists for a functional role 
of this regulation in sugar transport: Application of the cytokinins 
BA, kinetin, or trans-zeatin to Chenopodium rubrum suspension 
cells did not only lead to increased expression of the hexose 
transporter genes CST2 and CST3, but also to increased uptake 
of 14C-labeled glucose from the cell suspension media as 
compared to untreated cells (Ehness and Roitsch, 1997).

CYTOKININ REGULATION OF SOURCE-
SINK RELATIONSHIPS: EFFECT ON 
AMINO ACID TRANSPORT

The first evidence of a potential role for cytokinins in source-
sink relationships came from studies on the movement of 
amino acids in response to kinetin application to plants. Mothes 
and Engelbrecht showed that when kinetin was applied to 
detached leaves of Nicotiana rustica, 14C-labeled glycine migrated 
to the site of kinetin application (Mothes and Engelbrecht, 1961). 

A similar experiment in unrooted seedlings of fava beans also 
showed translocation of 14C-labeled alanine to sites of kinetin 
application. However, if plants were rooted, 14C-labeled alanine 
migration to sites of cytokinin application was diminished, 
with more 14C-labeled alanine being mobilized to roots (Mothes 
and Engelbrecht, 1963). Given that roots are sites of cytokinin 
biosynthesis (Miyawaki et al., 2004), these experiments showed 
a direct link between amino acid mobilization and cytokinin 
content. A similar effect of cytokinin on amino acid mobilization 
was shown in other plant species, including monocot species, 
such as oats (Gunning and Barkley, 1963), as well as beans 
and maize plants (Leopold and Kawase, 1964). Importantly, 
non-proteinogenic amino acids, such as α-aminoisobutyric acid, 
are also mobilized to sites of cytokinin application, indicating 
that the effect of cytokinin is not due to an increased need 
of amino acids for protein synthesis, but on amino acid 
translocation per se (Mothes and Engelbrecht, 1961).

The relationship between cytokinin and amino transporters 
has been examined mostly at the level of regulation of gene 
expression of amino acid transporter genes, such as those from 

TABLE 1 | Transcriptional regulation by cytokinins of genes encoding invertases, 
sugar, and amino acid transporters in various plant species.

Species Gene Gene description CK 
regulation

Carbohydrate-related

  Zea mays IVR1 Vacuolar invertase +
IVR2 Vacuolar invertase +

Chenopodium rubrum 
Solanum lycopersicum

CIN1 Extracellular invertase +
LIN6 Extracellular invertase +

Sucrose transport

  Arabidopsis thaliana CST2 Hexose transporter +
CST3 Hexose transporter +

  Pisum sativum PsSW12 Sucrose transporter −
PsSUT1 Sucrose transporter −
PsSUT2 Sucrose transporter −

Solanum tuberosum StSUT1 Sucrose transporter +
  Brassica napus BnSUT1 Sucrose transporter +

BnSUT2 Sucrose transporter +
BnSUT3 Sucrose transporter +
BnSUT4 Sucrose transporter +

Amino acid transporter

  Arabidopsis thaliana AAP2 Amino acid transporter −
AAP3 Amino acid transporter +
AAP5 Amino acid transporter −
CAT1 Amino acid transporter +
CAT6 Amino acid transporter +
LHT1 Amino acid transporter −

  Brassica napus BnAAP1 Amino acid transporter −
BnAAP2 Amino acid transporter −
BnAAP4 Amino acid transporter −
BnAAP5 Amino acid transporter −
BnAAP6 Amino acid transporter −
BnAAP7 Amino acid transporter −
BnAAP8 Amino acid transporter −

  Pisum sativum PsAAP3 Amino acid transporter −
PsAAP6a Amino acid transporter −
PsAAP7b Amino acid transporter −

  Oryza sativa OsAAP1 Amino acid transporter +
OsLHT1 Amino acid transporter +
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the family amino acid permeases (AAP), lysine and histidine 
transporters (LHT), and cationic amino acid transporters (CAT). 
Application of cytokinin increases the expression of AAP3 
(Brenner et  al., 2005; Kiba et  al., 2005), CAT1 (Kiba et  al., 
2005), and CAT6 (Brenner et  al., 2005; Kiba et  al., 2005; 
Yokoyama et  al., 2007), and decreases expression of AAP2, 
AAP5, and LHT1 (Brenner et  al., 2005; Kiba et  al., 2011; 
Figure 1B and Table 1). Further, transgenic plants with reduced 
cytokinin signaling display decreased expression of CAT1 and 
AAP3 (Lee et  al., 2007).

The different effects that cytokinins have on the levels of 
expression of genes encoding amino acids transporters are 
likely explained by the differences in the ability of these 
transporters in facilitating the movement of specific amino 
acids, as well as their distinct expression patterns in different 
tissues within plants. In general, those that are upregulated 
by cytokinin tend to be  expressed in sink organs, such as 
roots and flowers (Okumoto et al., 2004; Su et al., 2004; Tegeder 
et  al., 2011), and some of them, such as CAT6, which is 
expressed in root tips, have been shown genetically to function 
in supplying sink cells with amino acids (Hammes et al., 2006). 
AAP2, AAP5, and LHT1, on the other hand, are downregulated 
by cytokinins, and their function and expression patterns seem 
to be associated with phloem loading in sources. aap2 mutants 
display reduced amino acid content in the phloem, thus 
suggesting a function in phloem loading (Zhang et  al., 2010). 
AAP5 expression is observed in source leaves, but not sink 
leaves (Fischer et  al., 1995, 2002). Similarly, LHT1 expression 
is observed mostly in source organs and is likely involved in 
the transport of amino acids between mesophyll cells and the 
xylem (Ehness and Roitsch, 1997; Hirner et  al., 2006). 
Experiments outside of the model plant species Arabidopsis 
have also provided evidence of the association between cytokinins 
and regulation of the expression of genes involved in amino 
acid transport (Song et  al., 2015; Ninan et  al., 2019; Zhu 
et al., 2020). In addition to these observed changes in expression 
of amino acid transporter genes in response to cytokinins, 
corresponding changes in amino acid translocation are also 
observed. A study in wheat showed that application of the 
cytokinin BA to source leaves dramatically decreases the content 
of amino acids present in the phloem, thus suggesting a function 
in decreasing phloem loading (Criado et  al., 2009).

Finally, amino acid and sugar metabolism are connected 
in several ways, including through the non-proteinogenic amino 
acid γ-amino butyric acid (GABA). GABA is synthesized through 
the GABA shunt pathway, named as such because it bypasses 
two steps of the tricarboxylic acid (TCA) cycle that is essential 
to the catabolism of sugars for cellular respiration (Bouche 
and Fromm, 2004). GABA production through the GABA shunt 
results from the decarboxylation of the amino acid glutamate, 
and GABA catabolism leads to the production of succinate 
that then enters the TCA cycle. Thus, GABA connects amino 
acid production and sugar utilization. Cytokinins have not 
been directly associated with GABA production, but plants 
with increased levels of the cytokinin trans-zeatin accumulate 
GABA at higher levels and that are correlated to increased 
drought tolerance (Merewitz et  al., 2012).

CYTOKININS AND SOURCE-SINK 
RELATIONSHIPS IN THE OUTCOME 
OF PLANT BIOTIC INTERACTIONS

Although cytokinins are broadly known as plant hormones 
involved in the regulation of plant growth, in the last few 
decades, their involvement in plant-pathogen interactions has 
become evident (reviewed in Albrecht and Argueso 2017; 
Akhtar et  al., 2020). Similarly, a growing body of evidence 
has accumulated that indicates an important role for nutrient 
partitioning in creating metabolic conditions that favor or 
restrict pathogen growth in plant hosts. In the paragraphs that 
follow, we highlight a role for source-sink relationships in plant 
biotic interactions, with emphasis on plant-pathogen interactions, 
and suggest a function for the plant hormone cytokinin in 
the regulation of this process.

MAY I  OFFER YOU  SOMETHING TO 
EAT? CYTOKININS AND SOURCE-SINK 
RELATIONSHIPS IN DISEASE 
SUSCEPTIBILITY

After successful invasion of the host, plant pathogens use 
effectors (secreted proteins, secondary metabolites, or nucleic 
acids of pathogen origin) to colonize the host and create host 
metabolic conditions that are favorable for pathogens, leading 
to plant susceptibility. Such metabolic conditions include the 
manipulation of plant metabolism to feed the growing number 
of pathogens that starts to multiply on the infected plant tissue. 
While some examples exist of studies on the importance of 
source-sink relationships in the association of plants with 
necrotrophic pathogens (Lemonnier et  al., 2014; Veillet et  al., 
2016), which are those that kill plant host cells for their 
nutrition, the majority of studies has focused on the association 
of plants with biotrophic pathogens, given the dependency of 
such pathogens on living plant cells as their source of nutrients.

The role of cytokinins in increasing plant susceptibility to 
pathogen attack has been well documented. This effect is most 
commonly seen when lower concentrations of cytokinins are 
applied to plants prior to pathogen infection (Babosha, 2009; 
Argueso et  al., 2012; Hann et  al., 2014). However, in addition 
to plants, several other organisms can also produce cytokinins 
or manipulate cytokinin metabolism and/or signaling in plants, 
including parasitic plants, insects, and plant-associated microbes 
(reviewed in Spallek et  al., 2018). Such microbes include plant 
pathogenic microbes, able to cause disease on plants, and also 
beneficial ones, whose association with plants results in enhanced 
plant growth and protection from disease. By manipulating 
cytokinin metabolism and/or signaling in plants, such organisms 
can also potentially regulate plant susceptibility, through 
manipulation of host physiology.

For the most part, the majority of interactions involving 
cytokinin production or manipulation by pathogens involves 
the creation of sink tissues for pathogen nutrition, accompanied 
by plant developmental changes, such as galls, tumors, and 
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knots, which are usually noted as disease symptoms. Such 
developmental changes are associated with one of the primary 
functions of cytokinins, namely, cell division. However, as a 
secondary effect, these regions of cell proliferation and growth 
in fact create new sink tissues and thus alter the balance of 
source-sink relationships within the plant. A classic example 
of a plant pathogen that utilizes biosynthesis of cytokinins to 
create new sink tissues is Agrobacterium tumefaciens, the causal 
agent of crown gall disease. Agrobacterium cells carry a Tumor-
inducing (Ti) plasmid containing the cytokinin biosynthesis 
gene trans-zeatin synthesizing (tzs), which is inserted into the 
plant genome to lead to cytokinin biosynthesis in plant cells 
(Liu and Kado, 1979; Akiyoshi et  al., 1984, 1987; Kutáček and 
Rovenská, 1991; Lee et  al., 2009; Hwang et  al., 2010). Along 
with bacterial-induced auxin biosynthesis, the induction of 
cytokinin biosynthesis by Agrobacterium results in cell 
proliferation and the formation of galls. Metabolites needed 
for gall tumor growth are then rerouted from host plant source 
leaves to the crown gall tumor, which becomes a strong sink 
(reviewed in Gohlke and Deeken, 2014).

Another root gall-forming plant pathogen, the obligate 
biotroph Plasmodiophora brassicae, causes clubroot disease in 
cruciferous plants. The genome of P. brassicae contains two 
cytokinin biosynthesis genes (Schwelm et  al., 2015) that were 
shown to contribute, albeit in a small manner, to the overall 
cytokinin content in infected tissue (Malinowski et  al., 2016). 
Infection of Arabidopsis by P. brassicae alters carbohydrate 
metabolism of the host, resulting in increased sugar and starch 
content at the site of infection (Williams et  al., 1968; Evans 
and Scholes, 1995; Brodmann et  al., 2002). This carbohydrate 
mobilization was suggested to be  due to high localized 
concentrations of cytokinins, which create a carbohydrate sink 
(Dekhuijzen, 1980) mediated by the sugar transporters SWEET11 
and SWEET12 (Walerowski et  al., 2018). However, decreased 
disease symptoms were seen after P. brassicae infection of the 
cytokinin biosynthesis mutant ipt1;3;5;7 indicating that the 
pathogen-derived cytokinins are not sufficient to create a sink 
(Malinowski et al., 2016). The gall-forming bacteria, Rhodococcus 
fascians, is also known to produce cytokinins as part of its 
virulence strategy (Stes et  al., 2013). Pea plants infected with 
R. fascians show an increase in chlorophyll content, bacterial 
produced cytokinins, and endogenous plant-derived cytokinins 
in infected cotyledons (Depuydt et al., 2008; Dhandapani et al., 
2017). Moreover, this is accompanied by an increase in expression 
of PsCWINV, PsSUT, and PsSW (SWEET) sugar transporter 
genes (Dhandapani et al., 2017), suggesting that during infection 
cytokinins may play a role in creating and maintaining infection 
sites as sinks tissues. A similar relationship is seen between 
Arabidopsis and the cyst nematode Heterodera schachtii. Upon 
invading plant roots, this species of nematode induces the 
formation of specialized structures named syncytia. H. schachtii 
was shown to produce and secrete cytokinins during infection 
of plant cells, and silencing of the HsIPT gene encoding the 
nematode cytokinin biosynthetic enzyme led to decreased 
syncytia size and decreased nematode size (Siddique et  al., 
2015). Given that syncytia are essential sites for juvenile feeding, 
these results implicate cytokinin as a nematode factor that is 

necessary to establish nematode feeding sites as sinks, promoting 
pathogen growth. Further, Arabidopsis amino acid transporters 
AAP3 and AAP6, which belong to a class of amino acid 
transporters known to be transcriptionally regulated by cytokinins 
(Brenner et  al., 2005; Kiba et  al., 2005; Lee et  al., 2007), are 
necessary for infection of Arabidopsis plants by the root-knot 
nematode Meloidogyne incognita, indicating that successful 
colonization is dependent on amino acid transport to the sites 
of infection (Marella et  al., 2013), in a process that may 
be  mediated by cytokinins.

Plant-pathogen associations involving cytokinins can also 
contribute to changes in source-sink relationships without the 
activation of cell division to create sinks. Such an effect of 
cytokinins can be seen in the formation of green islands, small 
areas of live and green leaf tissue surrounded by yellow, senescing 
tissue, in plants infected with biotrophic fungi (Bushnell, 1967). 
Green islands have an increased cytokinin content within the 
green areas (López-Carbonell et  al., 1998), which also display 
increased rates of photosynthesis in comparison with the 
surrounding senescing tissue (Walters et  al., 2008), as well as 
increased levels of amino acids, sugars, and starch (Raggi, 
1974, 1976; Angra and Mandahar, 1991; Angra-Sharma and 
Mandahar, 1993). These physiological changes in green islands 
are reminiscent of cytokinin-mediated changes in source-sink 
relationships mediated by cell wall invertases (Lara et al., 2004), 
and likely function to maintain these sites as sinks suitable 
for biotrophic pathogen growth. Magnaporthe oryzae, the rice 
blast fungus, also has the ability to produce cytokinin (Chanclud 
et  al., 2016). M. oryzae mutants in the cytokinin biosynthetic 
gene CKS1 have reduced virulence and are impaired in their 
ability to multiply in planta, but not in vitro, implicating 
pathogen nutrition through host-derived mechanisms in the 
reduced virulence phenotype of the mutant (Chanclud et  al., 
2016). This cytokinin-dependent virulence was associated with 
the allocation of sugars and amino acids (namely, aspartate 
and glutamate) to the sites of infection (Chanclud et al., 2016), 
thus suggesting a function for cytokinin in acting to change 
source-sink relationships and nutrient allocation in sites of 
infection, promoting conditions for pathogen multiplication 
(Figure  2).

On a final note, it is important to mention that beneficial 
microbes also utilize cytokinins in their association with plants 
to manipulate source-sink relationships and plant growth. In 
one of the most well-studied examples, cytokinins are essential 
for nodule formation during the interaction between Rhizobia 
bacteria and legume plants. In such interactions, plants redirect 
photoassimilates, mainly in the form of sucrose, to the bacteria, 
in exchange for organic nitrogen (Kennedy, 1966; Bergersen 
and Turner, 1967; Kouchi and Yoneyama, 1984). Root nodules 
can then be  classified as sink organs, which require cytokinin 
for their formation. In Medicago truncatula, this requirement 
for cytokinins is mediated by the ABC transporter ABCG56, 
which functions as a cytokinin exporter and is required for 
nodule formation (Jarzyniak et al., 2021). In addition, plant-
derived cytokinins are also needed for the activity of certain 
volatile organic compounds produced by beneficial rhizobacteria, 
which induce plant growth. This cytokinin-dependent, 
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rhizobacteria-mediated plant growth is associated with increased 
photosynthesis and nutrient acquisition, thus linking it to 
source-sink relationships (Ryu et  al., 2003; Zhang et  al., 2008; 
Gutiérez-Luna et  al., 2010; Vacheron et  al., 2013; Ditengou 
et  al., 2015; Cordovez et  al., 2018).

STARVING THE ATTACKER AND 
SOUNDING THE ALARM: CYTOKININS 
AND SOURCE-SINK RELATIONSHIPS IN 
DEFENSE RESPONSES

In addition to a role in creating sink tissues for pathogen 
nutrition, accumulating evidence also exists for a role of source-
sink relationships in defense responses as well. In Arabidopsis, 
regulation of the sugar transporter STP13 leads to altered 
susceptibility to pathogens (Yamada et  al., 2016). STP13 is 
expressed in leaf tissues after infection with the bacterial 
pathogen Pseudomonas syringae pv. tomato. Its transport activity 
was shown to be  suppressed via phosphorylation by a protein 
complex composed of the extracellular immune receptor FLS2 
(FLAGELLIN SENSITIVE 2) and its associated kinase BIK1 
(BRASSINOSTEROID INSENSITIVE 1). Thus, upon perception 
of pathogen presence by the FLS2/BIK1 complex, plants diminish 
STP13 activity, effectively halting sugar transport to the apoplast 
and preventing pathogen feeding and multiplication (Yamada 
et  al., 2016). STP13 is also important for resistance to the 
necrotrophic pathogen Botrytis cinerea, although it is unknown 
whether the regulatory mechanisms cited above also apply 
(Lemonnier et  al., 2014).

Other examples of source-sink relationships being modified 
for defense responses to pathogens, rather than pathogen feeding, 
include the genes encoding proteinaceous invertase inhibitors. 
Proteinaceous invertase inhibitors are endogenous plant signals 
for invertase regulation in plants. In response to Pseudomonas 
syringae pv. tomato DC3000 infection, the expression of genes 
encoding these invertase inhibitors in Arabidopsis is 
downregulated, a fact that has always been interpreted as 
manipulation of plant metabolism by the pathogen to increase 
glucose and fructose availability for pathogen nutrition 

(Bonfig et  al., 2006). However, the activity of these invertase 
inhibitors has been shown to in fact increase in infected resistant 
plants, thus functioning as a defense mechanism to prevent 
the pathogen from cleaving sucrose for its nutritional needs 
(Bonfig et  al., 2010). Finally, the sugar transporters SUT1 and 
SUT2 in tomato have also been connected to defense responses 
in plants. SUT1 and SUT2 expression are downregulated during 
the infection of tomato plants with Candidatus Phytoplasma 
solani, an obligate biotrophic bacterial pathogen that inhabits 
host phloem cells (De Marco et  al., 2021). Antisense analyses 
of SUT1 and SUT2 genes in tomato showed that absence of 
SUT1 and SUT2 function decreases susceptibility of tomato 
plants to this pathogen, without compromising plant growth, 
and at the same time increasing the expression of defense 
genes (De Marco et  al., 2021), thus connecting source-sink 
relationships to defense activation. While a function for cytokinins 
in the control of source-sink relationships for pathogen nutritional 
deprivation has not yet been demonstrated, the general 
importance of this plant hormone in the physiological processes 
cited above makes it a likely candidate for such regulatory action.

In further agreement with a general role for source-sink 
relationships in defense is the fact that not only changes in 
sugar allocation, but also changes in amino acid allocation, 
lead to altered susceptibility to pathogens. Mutations or 
overexpression of genes encoding amino acid transporters can 
also lead to decreased susceptibility to pathogens. This is the 
case, for example, of the cytokinin-regulated amino acid 
transporter gene LHT1. lth1 mutants display decreased 
susceptibility to Pseudomonas syringae p.v. tomato, as well the 
hemibiotrophic fungus Colletotrichum higginsianum and the 
biotrophic fungus Golovinomyces cichoracearum (Liu et  al., 
2010). Overexpression of the gene encoding the amino acid 
transporter CAT1, whose expression is also transcriptionally 
regulated by cytokinins (Kiba et  al., 2005), leads to a decrease 
in susceptibility to Pseudomonas syringae p.v. tomato (Yang 
et  al., 2014). Most recently, a mutation in the gene encoding 
the amino acid transporter USUALLY MULTIPLE ACIDS MOVE 
IN AND OUT 36 (UMAMIT 36) was shown to confer resistance 
to the oomycete Phytophthora parasitica (Pan et  al., 2016), 
and overexpression of UMAMIT 14 was shown to decrease 

FIGURE 2 | Summary of the proposed effect of cytokinins, through their role in the regulation of source-sink relationships, on the outcome plant-pathogen 
interactions. Chemical structure created using http://chem-space.com.
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susceptibility of Arabidopsis to another oomycete, 
Hyaloperonospora arabidopsidis (Besnard et  al., 2021). What is 
interesting about the examples cited above is that the decreased 
susceptibility phenotypes of the lines with altered amino acid 
transporter genes are also accompanied by an increase in the 
endogenous levels of the defense hormone salicylic acid (SA), 
and elevated basal levels of the known SA defense marker 
gene PATHOGENESIS-RELATED-1 (PR-1). Thus, the decrease 
in pathogen susceptibility is likely not due to altered amino 
acid transport leading to nutritional deprivation but is in fact 
due to activation of plant defense pathways and responses.

Amino acids are directly linked to the production of secondary 
metabolites with important roles in defense, such as glucosinolates 
and camalexins (derived from tryptophan), SA biosynthesis 
(derived from phenylalanine), and the biosynthesis of a primer 
of defense responses, pipecolic acid (derived from lysine). 
Therefore, it would be reasonable to conclude that these genetic 
alterations on amino acid transporter genes lead to changes 
in the cellular amino acid pool, with consequences to the 
biosynthesis of defense compounds and defense activation. 
Counterarguments to this amino acid pool hypothesis are several: 
(i) the fact that the amino acid transporter genes linked to 
altered pathogen responses are not directly linked to transport 
of the particular amino acids necessary for the corresponding 
defense compounds; (ii) that the resistance observed seems to 
be  broad spectrum, and not associated with the effect of a 
particular defense compound; (iii) that increased levels of GABA, 
the non-proteinogenic amino acid involved in connecting N 
and C metabolism, are also associated with abiotic stress tolerance 
and resistance to pests (Seifikalhor et  al., 2019; Tarkowiski 
et  al., 2020); and (iv) and most importantly, that alterations 
in sugar transport and signaling also seem to activate defense 
responses in a similar manner to changes in amino acid 
homeostasis (Gebauer et  al., 2017; De Marco et  al., 2021). 
Such counterarguments favor another hypothesis, where cellular 
metabolic alterations may lead to the activation of defense 
responses, through a mechanism similar to metabolic priming. 
Priming is an activated state where plants are able to deploy 
stronger and faster defenses, resulting in enhanced pathogen 
protection (reviewed in Mauch-Mani et al., 2017), and the idea 
of metabolic priming for defense responses has recently been 
further investigated (Liu et al., 2010; Schwachtje et al., 2018, 2019).

The concept of metabolic priming shares remarkable 
similarities with the effect of cytokinins on plants. When applied 
in high concentrations to plants cytokinins can also lead to 
reduced susceptibility to a broad spectrum of pathogens (reviewed 
in Akhtar et  al., 2020). This is accompanied by the increased 
production of antimicrobial compounds, such as phytoalexins 
(Ko et al., 2010; Grosskinsky et al., 2011), and also the production 
of reactive oxygen species (ROS) and increased defense gene 
expression, in a manner that is dependent on the defense 
hormones SA (Choi et  al., 2010; Argueso et  al., 2012; Naseem 
et  al., 2012) and jasmonic acid (Gupta et  al., 2020). Of note, 
similarly to what happens in defense priming, these responses 
to cytokinin only happen after pathogen detection. Therefore, 
cytokinins do not directly activate responses; rather, they trigger 
physiological conditions that potentiate defense.

The two hypotheses mentioned above, namely, changes in 
photoassimilate availability altering production of defense 
compounds or changes in photoassimilate availability altering 
cellular metabolic stress leading to priming, are not mutually 
exclusive. Both hypotheses could be  parts of an integrated 
plant defense response involving the regulation of source-sink 
relationships, coordinated by the plant growth hormone cytokinin 
(Figure  2). In this context, cytokinin levels, through their 
general effect on source-sink relationships, would serve as a 
signal for changes in cellular and organismal metabolism that 
would activate defense. Such a mechanism would likely 
be  beneficial to plants, as it would provide a way to connect 
defense activation to photoassimilate production, depending 
on fluctuating environmental conditions.

CONCLUSIONS AND PERSPECTIVES

Because plants are sessile organisms, their ability to effectively 
respond to environmental change is vital to their survival. To 
maintain proper growth and development, plants have adapted 
response mechanisms to regulate photosynthetic ability and 
photoassimilate partitioning, depending on environmental 
conditions, such as light intensity, temperature, and water 
availability. Just like other plant hormones that act on the 
regulation of cell expansion or cell division, cytokinins have 
long been associated with promotion of plant growth. In the 
case of cytokinins, the ability to promote greening and increasing 
photosynthesis rates is likely also involved in its stimulation of 
plant growth and yield, as this is centrally linked to the generation 
of more photoassimilates for plant growth. Further, how these 
photoassimilates are distributed in the plant are just as important 
for plant growth and yield, and it is in this aspect that the 
regulation by cytokinins of source-sink relationships plays a 
significant role, so much so that genes involved in aspects of 
cytokinin metabolism and signaling have been a frequent target 
of crop breeding programs centered on yield improvement (White 
et  al., 2016). Because breeding programs target increased yields 
in different parts of the plant (seed, fruits, and vegetative organs) 
depending on the crop, the role of cytokinins in regulating 
sugar and amino acid transporters with tissue-specific patterns 
of expression may be  of particular interest and importance.

Similarly, response to pathogen attack also requires complex 
responses by plants. To do so, plants have evolved sophisticated 
perception and signaling strategies, often mediated by plant 
hormones, including cytokinins. Timing and degree of defense 
activation must be  tightly controlled, as insufficient defense 
responses could lead to host death, whereas excessive defense 
may result in inhibition of plant growth (reviewed in Albrecht 
and Argueso, 2017). Maintenance of balanced source-sink 
relationships is therefore vital to sustain growth while ensuring 
proper defense response against the pathogen. Evidence for 
the importance of this balanced response comes from the fact 
that pathogens have developed mechanisms of manipulation 
of source-sink relationships, in order to obtain nutrients for 
growth and multiplication. As it is common in the always 
evolving arms race between plants and pathogens, plants have 
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also evolved ways to manipulate these source-sink relationships 
for defense purposes, and there is evidence that both processes 
may be partly regulated by cytokinins. Given the negative effect 
of plant pathogens on plant growth and yield, and the importance 
of photoassimilate partitioning to plant susceptibility and 
resistance, investigating the role of cytokinin-mediated source-
sink relationships in the context of plant-pathogen interactions 
may provide new avenues not only for yield improvement, 
but also for pathogen resistance.
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