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Polyploidization can have a significant ecological and evolutionary impact by providing

substantially more genetic material that may result in novel phenotypes upon

which selection may act. While the effects of polyploidization are broadly reviewed

across the plant tree of life, the reproducibility of these effects within naturally

occurring, independently formed polyploids is poorly characterized. The flowering

plant genus Tragopogon (Asteraceae) offers a rare glimpse into the intricacies of

repeated allopolyploid formation with both nascent (< 90 years old) and more ancient

(mesopolyploids) formations. Neo- and mesopolyploids in Tragopogon have formed

repeatedly and have extant diploid progenitors that facilitate the comparison of

genome evolution after polyploidization across a broad span of evolutionary time. Here,

we examine four independently formed lineages of the mesopolyploid Tragopogon

castellanus for homoeolog expression changes and fractionation after polyploidization.

We show that expression changes are remarkably similar among these independently

formed polyploid populations with large convergence among expressed loci, moderate

convergence among loci lost, and stochastic silencing. We further compare and contrast

these results for T. castellanus with two nascent Tragopogon allopolyploids. While

homoeolog expression bias was balanced in both nascent polyploids and T. castellanus,

the degree of additive expression was significantly different, with the mesopolyploid

populations demonstrating more non-additive expression. We suggest that gene dosage

and expression noise minimization may play a prominent role in regulating gene

expression patterns immediately after allopolyploidization as well as deeper into time,

and these patterns are conserved across independent polyploid lineages.
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1. INTRODUCTION

The consequences of plant polyploidization have been a subject
of intense interest for several decades (reviewed in Wendel,
2000, 2015; Doyle et al., 2008; Leitch and Leitch, 2008; Van de
Peer et al., 2009; Barker et al., 2012; Soltis et al., 2016).
Polyploidization results in broad-scale genomic changes that
serve as potentially novel avenues upon which evolution may
act (reviewed in Otto and Whitton, 2000; Flagel and Wendel,
2009). Many changes occur in the generations immediately after
polyploidization including changes in genome size (reviewed in
Soltis et al., 2003; Leitch et al., 2008; Leitch and Leitch, 2013)
spanning the extremes in both gain (e.g., Paris japonica Pellicer
et al., 2010) and loss (e.g., Utricularia gibba Ibarra-Laclette
et al., 2013), expression (Chen and Pikaard, 1997; reviewed in
Adams and Wendel, 2005b; Chaudhary et al., 2009; Hu et al.,
2015), epigenetic modifications (Shaked et al., 2001; Salmon
et al., 2005; reviewed in Chen, 2007; Madlung and Wendel,
2013; Cheng et al., 2016), transposon activity (reviewed in
Woodhouse et al., 2014; Vicient and Casacuberta, 2017; Wendel
et al., 2018) as well as changes in protein folding and dosage
(reviewed in Birchler and Veitia, 2010, 2012; Pires and Conant,
2016). These changes are variable across lineages (Anssour
and Baldwin, 2010; reviewed in Soltis et al., 2016) and may
occur in repeated cycles (Soltis and Soltis, 1999; Buggs et al.,
2012; reviewed in Wendel, 2015; Soltis et al., 2016). In some
paleopolyploids, these changes appear to largely converge over
time, at least within closely related lineages (Blanc and Wolfe,
2004; reviewed in Barker et al., 2008; Edger and Pires, 2009;
Freeling, 2009).

Polyploids are categorized as either autopolyploids, which are
formed from a whole-genome duplication within a single species
(reviewed in Otto and Whitton, 2000; Spoelhof et al., 2017),
or allopolyploids, which are generated by the combination of
entire genomes from two different species (Kihara and Ono,
1926). However, these definitions represent an oversimplification
of the dynamic range of variability that polyploids may cover
(reviewed in Stebbins, 1947; Ramsey and Schemske, 1998) and
the various mechanisms by which they are formed (reviewed
in Mason and Pires, 2015). Allopolyploid formation results in
duplicated gene copies originating from each parent known
as homoeologs. Immediately after polyploidization, homoeologs
are expected to be functionally redundant and as such, one
copy may be altered without deleterious effect or conserved in
duplicate (reviewed in Conant et al., 2014; Pires and Conant,
2016). Whole-genome duplication in an organism can impose
unfavorable dosage effects upon cellular functions unless gene
balance is maintained (Freeling, 2009; Birchler and Veitia, 2010,
2012). These dosage effects likely represent one aspect of a larger
framework that directs genome evolution after polyploidization
(Conant et al., 2014). As such, duplicate loci in allopolyploidsmay
experience a number of possible fates. Genomes may experience
silencing or loss of one homoeologous copy via fractionation
over time. Homoeolog functions may diverge from the parentally
inherited state such that functions are partitioned between
homoeologs (subfunctionalization), or copies may develop novel
functionality (neofunctionalization) (reviewed in Edger and

Pires, 2009; Freeling, 2009). Homoeologs may also interact via
convergent evolution, homoeologous recombination or gene
conversion (Langham et al., 2004; Doyle et al., 2008).

Expression patterns may also vary in the polyploid such
that loci demonstrate spatiotemporally divergent expression
from the progenitors (Pires et al., 2004b; Wang et al., 2006a;
Buggs et al., 2010b; Baldauf et al., 2016), homoeolog-specific
expression (HSE) (Buggs et al., 2010a; reviewed in Grover
et al., 2012; Yoo et al., 2013; Woodhouse et al., 2014) or
additive expression (Guo et al., 2006; Stupar and Springer, 2006;
Wang et al., 2006b; reviewed in Yoo et al., 2014). HSE occurs
when the polyploid expresses one parental homoeolog over
the other (Woodhouse et al., 2014; Boatwright et al., 2018).
HSE is similar to allele-specific expression in that both refer
to expression differences that are caused by cis- and trans-
regulatory variation (Bell et al., 2013), and each has been a
topic of interest in hybrid and polyploid studies (Wright et al.,
1998; Adams and Wendel, 2005a; Aguilar-Rangel et al., 2017).
HSE differs from allele-specific expression in that HSE examines
expression across homoeologous chromosomes in contrast to
allele-specific expression, which examines expression between
homologous chromosomes. Homoeolog expression may also
diverge in an additive manner where expression in the polyploid
is the arithmetic mean of the two diploid progenitors (reviewed
in Yoo et al., 2014).

It is worth noting that the degree of similarity/dissimilarity
in expression between parents of a polyploid and the polyploid
itself, also known as parental legacy (Buggs et al., 2014),
may have a significant effect upon the fate of homoeolog
expression in the polyploid (Conant et al., 2014). Similarly,
differences among polyploids and their diploid progenitors may
derive from numerous processes such as divergent evolution
of the lineages after polyploidization, effects of whole-genome
duplication (i.e., larger cells and stomata, higher photosynthetic
rates and gas exchange, and different stress tolerance) (Hegarty
et al., 2006; Sémon and Wolfe, 2007; De Smet and Van de
Peer, 2012), or hybridization (resulting in heterosis, increased
genetic variation and additive expression) (Mallet, 2007; Bell
et al., 2013; Soltis et al., 2016). While the fates of homoeologs
after polyploidization are convergent within some lineages (Blanc
andWolfe, 2004; reviewed in Edger and Pires, 2009; and Freeling,
2009), establishing a paradigm has proved elusive (reviewed in
Soltis et al., 2016).

The evolutionary model organism Tragopogon serves
as a prominent example of repeated, naturally occurring
allopolyploidization. The Tragopogon system includes synthetic
lines, nascent (< 90 years) and meso- (∼2.6 million years)
polyploids (Mavrodiev et al., 2015; Soltis et al., 2016). While
most species of Tragopogon have chromosome numbers of 2n
= 12, there are several well-studied allopolyploids (2n = 24),
Tragopogon mirus, T. miscellus, and T. castellanus. Both T.
mirus and T. miscellus represent neoallotetraploids that formed
recently in the northwestern United States after their three
diploid progenitors (T. dubius-T. porrifolius and T. dubius-T.
pratensis, respectively) were introduced from Europe in the early
1900s (Ownbey, 1950; Soltis et al., 2004). These allopolyploids
never formed in Europe due to their geographic isolation but
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have formed repeatedly in the USA since the diploids were
brought into close proximity. These polyploids are estimated
to be approximately 45 generations old (80–90 years for these
biennials) (Soltis et al., 1995; Symonds et al., 2010).

Similarly, T. castellanus has formed multiple times from
independent allopolyploidization events (Mavrodiev et al., 2015).
Tragopogon castellanus is endemic to Spain and occurs only
along the northern half of the Iberian Peninsula (Blanca and
de la Guardia, 1996). Morphological, cytological, and molecular
phylogenetic analyses support T. lamottei and T. crocifolius
as putative parents. Tragopogon castellanus is morphologically
variable and somewhat similar to parental T. crocifolius; as
a result T. castellanus was once considered a subspecies of
T. crocifolius (Willkomm, 1893; de la Guardia Guerrero and
López, 1989). The parentage of T. castellanus was validated using
phylogenetic analyses of external transcribed spacers, internal
transcribed spacers, Adh, and plastid datasets, fluorescence in
situ hybridization, and genome in situ hybridization (Mavrodiev
et al., 2008, 2015). Tragopogon castellanus may have formed
before the last glacial maximum that would date the formation
of this polyploid species to perhaps as long ago as 2.6 million
years (Mavrodiev et al., 2015). As such, the multiple, independent
occurrences of Tragopogon allopolyploid formation in young US
species and the older T. castellanus permits the assessment of the
fate of homoeologs in both neo- and mesopolyploids.

Previous studies have demonstrated that duplicate gene
fates after polyploidization are non-random within the newly
formed allopolyploid species of Tragopogon. That is, many gene
loss and expression changes were repeated across polyploid
populations of independent origins (Buggs et al., 2012; Soltis
et al., 2012). However, these studies were primarily small-scale
and the fates of duplicated gene copies do not generalize across
all polyploid plants (reviewed in Soltis et al., 2016). Here,
we examine multiple, independently formed allopolyploid T.
castellanus lineages estimated to have formed as long as 2.6 mya
(Mavrodiev et al., 2015). We show that not only are expression
patterns similar, but duplicate loss is largely convergent across
independent lineages of T. castellanus. We further compare
duplicate fates in populations of this mesopolyploid from Spain
to the neopolyploids from the US, T. mirus and T. miscellus
(based on earlier studies; Buggs et al., 2010a,b, 2012; Boatwright
et al., 2018) in which identical methods were used so that we may
examine changes due to natural allopolyploidization over a large
evolutionary time scale of perhaps several million years.

2. MATERIALS AND METHODS

2.1. Sample Processing
Leaf tissue was collected from plants grown in controlled
conditions as described by Tate et al. (2006), and RNA was
extracted as described in Tate et al. (2006). Three individuals
of the diploid T. crocifolius were sampled from the P-B lineage
along with five individuals of diploid T. lamottei composed
of two and three individuals/lineages from lineage P-I and P-
II lineages, respectively (Mavrodiev et al., 2015). Both parental
species are phylogenetically distinct and appeared as members
of two distinct clades based on ITS phylogeny as estimated

in Mavrodiev et al. (2005); namely, clade Majores s. l. [incl.
clade Hebecarpus] (T. crocifolius) and clade Tragopogon (T.
lamottei) (Mavrodiev et al., 2008). Sample localities and voucher
information for all samples are given in Supplementary Table 1.
Additional information is provided in Mavrodiev et al.
(2015) and vouchers are deposited at the University of
Florida herbarium (FLAS). We sequenced 12 allotetraploid T.
castellanus individuals representing three bioreplicates for four
independent polyploidization events (Supplementary Figure 1

and Supplementary Table 1). RNA-Seq samples were bar-coded
and processed using the Illumina TruSeq kit.

2.2. Sequencing, Assembly and Annotation
Samples were sequenced using the Illumina MiSeq
sequencing platform resulting in 2 X 300 paired-end reads
(Supplementary Table 2). Adapters were removed using
CutAdapt (Martin, 2011), and sequences were trimmed using
Trimmomatic (Bolger et al., 2014). RNA reads were pooled from
all individuals of each diploid species and assembled using the
Trinity de novo assembler (Grabherr et al., 2011), resulting in one
assembly per species. Redundant isoforms were removed from
our assemblies using a previously described pipeline (Boatwright
et al., 2018). The final assemblies were annotated using Trinotate
(Altschul et al., 1990; Ashburner et al., 2000; Krogh et al., 2001;
Lagesen et al., 2007; Finn et al., 2011; Grabherr et al., 2011;
Kanehisa et al., 2011; Petersen et al., 2011; Powell et al., 2011;
Punta et al., 2011) with default parameters (https://github.com/
jlboat/Tragopogon_castellanus).

2.3. Ortholog Identification and Common
Orthologous Regions
Putative orthologs were identified between the T. crocifolius
and T. lamottei assemblies using a reciprocal best-
hit approach (Moreno-Hagelsieb and Latimer, 2008)
as described in Boatwright et al. (2018). Common
Orthologous REgions (COREs) were identified between
orthologous pairs using the local alignment provided by
WU-BLAST (Gish, 2005) and a custom CPython script
(https://github.com/BBarbazukLab/papers/). This resulted in
BED files containing COREs that were used to filter BAM files
after aligning reads to complete assemblies (Boatwright et al.,
2018).

2.4. Poisson-Gamma Model
As in Boatwright et al. (2018), parental RNA-Seq reads were
mapped to both complete, diploid references independently
using Bowtie v0.12.9, -m1,-v 3] (Langmead et al., 2009) and
Last [v531, -l 25] (Frith et al., 2010; Graze et al., 2012; Munger
et al., 2014). The BED files containing COREs were used to
filter the resulting SAM files for respective references. Parental
reads that mapped uniquely within COREs were isolated, and
the reads were subsequently identified as mapping equally well
to both references or better to one of the two parents. A
Bayesian Poisson-Gamma model (León-Novelo et al., 2014),
which provides conservative estimates of the type I error (Fear
et al., 2016), was used to identify COREs biasedly mapping reads
from the alternative parent. COREs demonstrated expression
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bias if the credible interval did not overlap 0.5 for all priors
(0.4, 0.5, 0.6). Polyploid reads were mapped following the same
procedure, and the biased COREs—as determined by diploid
read mapping—were filtered out after processing, leaving the
remaining set of unbiased COREs for inference. Within the set
of unbiased COREs, remaining expression bias corresponded
to loci demonstrating HSE. Overlapping gene sets were visually
displayed using UpSet plots generated using R (Team, 2014) and
the UpSetR package (Lex et al., 2014).

2.5. Additively Expressed Genes
Reads mapping to both references within COREs were used to
generate an expression matrix for diploids and all independent
polyploids. Loci were filtered from the expression matrix that
did not contain at least 10 counts-per-million based upon the
average library size in 11 samples. Differentially expressed genes
were identified in R (Team, 2014) using the empirical Bayesian
analysis pipeline within the limma package (Ritchie et al., 2015)
after using voom (Law et al., 2014) to apply precision weights
to account for the mean-variance trend. Loci were considered
differentially expressed at a false discovery rate of 0.05 (Benjamini
and Hochberg, 1995). Contrasts were performed between T.
lamottei and T. crocifolius to determine when parental expression
was the same or different. To test for additivity, contrasts
were performed between each population of the polyploid T.
castellanus and its two parents where polyploid expression is
expected to be the arithmetic mean of the two parental expression
levels. Overlapping gene sets were visually displayed using UpSet
plots generated using R (Team, 2014) and the UpSetR package
(Lex et al., 2014).

2.6. Homoeolog Loss and Silencing
Orthologs were used to design probes for NimbleGen sequence
capture to isolate genomic reads from allopolyploid T. castellanus
individuals. Each probe was designed to target unique regions
of each contig with 1-3 probes along each contig. These
probes were used to isolate genomic DNA corresponding to
expressed transcripts (Supplementary Table 3). Polyploid DNA
reads obtained from sequence capture were aligned to diploid
references in the same manner as polyploid RNA reads, and
homoeolog loss and silencing were assessed within COREs using
the unbiased homoeolog set. Homoeologs with mapped DNA
and mapped RNA reads represent genes that are both present
and expressed. Homoeologs with DNA reads and no RNA reads
represent putative silencing events. Homoeologs with RNA reads
but no DNA reads likely represent a failed capture or mismapped
reads. Homoeologs with neither DNA nor RNA reads represent
putative loss. Overlapping gene sets were visually displayed using
UpSet plots generated using R (Team, 2014) and the UpSetR
package (Lex et al., 2014).

2.7. Functional Protein Association
Network and GO Enrichment
Loci common to all independently formed polyploid populations
that were lost, exhibited additive or non-additive expression
as well as loci that demonstrated HSE were individually
tested for interaction enrichment. Arabidopsis thaliana orthologs

were identified for Tragopogon contigs using WU-BLAST
blastx with an A. thaliana protein database. The E-value
cutoff was set at 1E-75, and the high-scoring segment pair
had to represent 70% of either the total query or subject
length. The resulting lists of A. thaliana genes were used
to construct functional protein association networks using
STRING10 (Szklarczyk et al., 2014). The resulting networks
used only high-confidence, experimentally validated protein-
protein interactions with disconnected nodes in the networks
hidden, and the edge thickness represented confidence of data
supporting interaction. Protein-protein interaction enrichment
p-values were FDR corrected (Benjamini and Hochberg, 1995).
All gene sets were further checked for GO enrichment using
GOSeq (Young et al., 2012). The background for HSE and
lost loci was the set of unbiased COREs. The background for
additively expressed genes included all loci tested for additivity.
Functional network details and GO annotations are available at
(https://github.com/jlboat/Tragopogon_castellanus).

3. RESULTS

3.1. Assembly, Annotation and Ortholog
Identification
The assemblies of the diploids, T. crocifolius and T. lamottei,
contained 113,865 and 155,600 contigs, respectively. Assemblies
were annotated using Trinotate, and putative orthologs and
domains were identified. For each of the diploid species,
over 7,000 entries hit Arabidopsis thaliana sequences, and
approximately 500 of the remainder hitOryza sativa ssp. japonica
using NCBI-BLAST against the SwissProt database. We also
identified approximately 4,800 unique eggNOG hits for each
diploid, where eggNOG hits represent hierarchical orthologous
groups and provide functional annotations for homologous
sequences. We identified 14,388 orthologs between the diploid
genomes and delimited COREs for downstream processing
(Gish, 2005; Moreno-Hagelsieb and Latimer, 2008). COREs
were assessed for similarity in both length and GC content
(Supplementary Figures 1, 2) and were found to be highly
similar between the two species, with length differences never
exceeding 16 bases and GC content differences primarily falling
under 2%.

3.2. Additive Expression
Additivity was assessed by first performing a contrast between
diploid parents to identify loci where parental expression
deviated or was the same (Table 1 and Supplementary Figure 4).
The matrix of counts used to estimate additive expression was
subjected to multi-dimensional scaling, where samples that lie
in close proximity exhibit more similar expression patterns, and
plotted. The clustering of T. castellanus individuals is consistent
with the known lineages as samples for Cast_2 and Cast_10
both come from lineage I and cluster together (Figures 1, 2, and
Supplementary Figure 1). Similarly, the T. lamottei individuals
Lam_1 and Lam_2 come from the same lineage, P-I, and are
adjacent. Of the 5,806 loci remaining after filtering, parental
expression was the same at 4,533 loci and different at 1,273. We
found that polyploid expression is primarily non-additive where
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TABLE 1 | Test for additivity in polyploid expression.

Not additive Consistent with additive

Cast_2

Parents same 2,762 (50.6%) 1,516 (27.8%)∗

Parents different 787 (14.4%) 391 (7.2%)∗∗

Cast_10

Parents same 2612 (47.9%) 1,666 (30.5%)∗

Parents different 757 (13.9%) 421 (7.7%)∗∗

Cast_13

Parents same 2,515 (46.1%) 1,763 (32.3%)∗

Parents different 710 (13.0%) 468 (8.6%)∗∗

Cast_13

Parents same 2,466 (45.2%) 1,812 (33.2%)∗

Parents different 744 (13.6%) 434 (8.0%)∗∗

Counts represent loci where parental expression is not significantly different or is

significantly different and polyploid expression is either additive or non-additive in the T.

castellanus individuals of independent origin. Percentages are based on per-individual

totals such that the expression categories of each individual sum to 100%. * These loci are

not strictly additive as T. castellanus expression could deviate from mid-parent expression

and yet be consistent with additive when parental expression is the same. ** These loci

have power issues because the hybrid mean expression falls within the diploid mean

expression levels.

FIGURE 1 | Relationships among the Tragopogon diploids and polyploids. US

species are left of the chromosome counts and Spanish species are on the

right. Diploids are aligned along the top row and polyploid offspring are along

the bottom row. Colored lines indicate whether the diploid serves as the

maternal or paternal parent for the corresponding polyploid, where blue is

paternal and red is maternal.

additivity was examined with respect to parental expression
(Table 1), and overlap of each additive/non-additive category was
assessed (Figure 3). Approximately 65% (2,155) of the loci were
not additive in all four of the independent polyploids, whereas
only 43% (909) of the loci consistently exhibited additivity over
the four polyploids. There was no significant (FDR < 0.05) GO
enrichment for shared additively expressed loci.

3.3. Homoeolog-Specific Expression
HSE was assessed using the PG model and, similar to
the additivity assessment, was examined in light of parental
expression using unbiased COREs (Table 2). The number of
polyploid loci exhibiting homoeolog expression bias toward each
parent was similar, with a moderate, consistent bias toward
T. crocifolius of about 50 loci, which accounts for ∼7% of

FIGURE 2 | MDS plot of the additive expression matrix for T. castellanus and

its diploid progenitors. Lam represents T. lamottei, Croc represents T.

crocifolius, and Cast represents T. castellanus.

loci in which parental gene expression is the same but ∼23%
of loci which exhibit significantly non-equal expression in the
parents. The percent of loci overlapping between independent
polyploids was ∼60% when parental expression was the same
and ∼64% when parental expression differed (Figure 4). There
was no significant (FDR < 0.05) difference in GO enrichment for
common loci demonstrating HSE.

3.4. Homoeolog Silencing and Loss
After orthologs were identified between diploid assemblies,
exon-capture probes were designed so that genomic data could
be used to distinguish between loci lost vs. silenced after
polyploidization. As seen with both additivity and HSE, the
number of loci expressed, silenced or lost is highly consistent
across all polyploids of independent origin (Table 3). However,
the degree of overlap varies among expressed, silenced or lost
loci. For expressed loci, approximately 95% of the same parentally
derived homoeologs (4,113 for T. lamottei and 4,054 for T.
crocifolius) overlap among the four polyploids (Figure 5). Of
those few homoeologs demonstrating loss, approximately 66%
overlap, again, for both T. lamottei (92) and T. crocifolius (99)
homoeologs, independently (Figure 6).

Silenced homoeologs showed the most variability even
though a similar number of loss events occurred across
all independently formed polyploids. Only 14 T. lamottei-
derived homoeologs (∼10% of all T. lamottei homoeolog
silencing events) and 35 T. crocifolius-derived homoeologs
(∼25% of all T. crocifolius homoeolog silencing events)
were silenced in all four polyploids. In fact, the majority of
silencing events were unique to each polyploid, suggesting
that silencing is likely a much more stochastic process than

Frontiers in Plant Science | www.frontiersin.org 5 June 2021 | Volume 12 | Article 679047

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Boatwright et al. Trajectories of Homoeolog-Specific Expression

FIGURE 3 | Additive and non-additive expression overlap across T.

castellanus individuals. Set IDs represent samples that are additive (A) or

non-additive (NA) where parents are different (PD) or the same (PS). Sample

sets with common loci are indicated by filled circles with connecting lines, and

the number of loci within that intersection may be seen directly above in the

bar chart with corresponding size over each bar. The total sample sizes are

found in the left bar chart and correspond to the adjacent sample.

TABLE 2 | Homoeolog-Specific Expression.

T. lamottei T. crocifolius No HSE

(A)

Parents same

Cast_2 774 856 1,400

Cast_10 827 881 1,346

Cast_13 789 824 1,429

Cast_31 805 858 1,397

(B)

Parents different

Cast_2 225 286 324

Cast_10 233 293 310

Cast_13 218 285 328

Cast_31 219 304 310

(C)

Ignoring parents

Cast_2 1,274 1,429 2,360

Cast_10 1,365 1,481 2,279

Cast_13 1,291 1,387 2,397

Cast_31 1,327 1,447 2,344

Counts represent total number of loci demonstrating expression bias toward a particular

parental homoeolog. Homoeolog expression biases are examined in light of (A) loci

expression levels being the same in the diploid parents, (B) loci expression levels being

different in the diploid parents, and (C)HSE if parental patterns are ignored; these numbers

are higher due to filtering constraints used to determine differences in parental expression.

homoeolog loss (Figures 7, 8). There was no significant
(FDR < 0.05) GO enrichment for loci expressed, lost
or silenced.

FIGURE 4 | Homoeolog-specific expression overlap across T. castellanus. Set

IDs represent samples where parents are different (PD) or the same (PS) and

the direction of homoeolog-specific expression (i.e. toward higher expression

of the T. lamottei (Lam) or T. crocifolius (Croc) homoeolog). Overlapping sets

are indicated by filled circles, and the number of loci within that intersection

may be seen directly above in the bar chart with corresponding size over each

bar. The total sample sizes are found in the left bar chart and correspond to

the adjacent sample.

3.5. Functional Protein Association
Network
The only group of loci that demonstrated significantly more
interactions than expected based on chance included the
additively expressed genes common to all independently formed
allopolyploids (Supplementary Figure 5). The resulting network
included 787 nodes with 185 edges with an expected edge count
of 101. The average node degree was 0.47 with an average local
clustering coefficient of 0.132. The FDR-corrected q-value was
2.75e-13.

4. DISCUSSION

4.1. Assembly and Annotation
Transcript assembly sizes were similar in these Tragopogon
diploids from Spain (113,865 and 155,600 contigs for T.
crocifolius and T. lamottei, respectively) to those seen in the US
diploid parental species (105,282, 116,777, and 122,024 for T.
dubius, T. porrifolius, and T. pratensis, respectively) (Boatwright
et al., 2018). The number of orthologous pairs identified between
diploid progenitors was also similar, with 14,389 pairs identified
in this study between T. lamottei and T. crocifolius, while US
species were represented by 15,493 pairs between T. dubius-T.
pratensis and 15,587 between T. dubius-T. porrifolius. Differences
in CORE lengths were similar between studies with no difference
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TABLE 3 | Expression states of homoeologs derived from T. lamottei or T.

crocifolius.

T. lamottei T. crocifolius

Expressed Silenced Lost Failed Expressed Silenced Lost Failed

Cast_2 4,292 142 134 109 4,225 160 139 153

Cast_10 4,360 121 138 105 4,291 139 146 148

Cast_13 4,310 129 136 112 4,248 137 161 141

Cast_31 4,352 121 145 105 4,287 135 148 153

Counts represent total number of loci exhibiting the specified expression state. T.

lamottei- and T. crocifolius-derived homoeologs may be present and expressed, silenced,

lost or have failed either to be isolated using sequence capture probes or spuriously

mismapped reads.

FIGURE 5 | UpSet plot showing homoeologs mapping both DNA and RNA

reads across T. castellanus individuals. Set IDs represent samples where

homoeologs from T. crocifolius (C) or T. lamottei (L) are present (P) based upon

both DNA and RNA alignment. Overlapping sets are indicated by filled circles,

and the number of loci within that intersection may be seen directly above in

the bar chart with corresponding size over each bar. The total sample sizes are

found in the left bar chart and correspond to the adjacent sample. As

expected, there should be no overlap across T. crocifolius and T. lamottei

homoeologs.

over 16 bp, while the %GC difference never exceeded 5%
(Supplementary Figures 2, 3). The number of hits against the
SwissProt database was nearly identical for all diploid assemblies
(∼7,000 to A. thaliana and ∼500 to O. sativa for both US and
Spanish species) as were the numbers of unique eggNOG hits
(∼4,800). These metrics are significant in that they demonstrate
that these studies contain large, similarly sized and comparable
data. Thus, differences between the studies should largely be due
to biological differences and not methodological differences.

FIGURE 6 | Loci lost across T. castellanus individuals. Set IDs represent

samples where either T. crocifolius (C) or T. lamottei (L) homoeologs are lost

(L). Overlapping sets are indicated by filled circles, and the number of loci

within that intersection may be seen directly above in the bar chart with

corresponding size over each bar. The total sample sizes are found in the left

bar chart and correspond to the adjacent sample. As expected, there should

be no overlap across T. crocifolius and T. lamottei homoeologs.

4.2. Additive Expression
Additive and non-additive gene expression patterns are
commonly studied in hybrid and polyploid plants (Guo et al.,
2006; Stupar and Springer, 2006; Swanson-Wagner et al., 2006,
2009; Wang et al., 2006a,b; Baldauf et al., 2016). Synthetic
Brassica napus exhibits proteome additivity where differential
regulation was not related to protein function (Albertin et al.,
2007). Additive protein expression has been previously described
in the neopolyploid Tragopogon mirus (Koh et al., 2012), and
additive gene expression in both neopolyploids T. mirus and T.
miscellus (Boatwright et al., 2018).

However, expression in the diploid parents of T. castellanus
is significantly different from that seen in the parents of the
nascent polyploids. For the neopolyploids, the expression
of the diploids T. dubius and T. porrifolius was the same
for 5,806 loci and different for 4,706 loci; T. dubius
and T. pratensis expression was the same for 5,026 and
different for 5,121 loci (Boatwright et al., 2018). While
expression was different between diploid parents for the
neopolyploids about 50% of the time, the values seen here for
T. crocifolius and T. lamottei indicate that parental expression
is primarily the same. Similarly, whereas the homoeolog
expression was consistent with additivity for the majority
of loci within the neopolyploids (Boatwright et al., 2018),
plants of the mesopolyploid T. castellanus exhibit more
non-additive expression.
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FIGURE 7 | Loci silenced across T. castellanus individuals. Set IDs represent

samples where either T. crocifolius (C) or T. lamottei (L) homoeologs are

silenced (S). Overlapping sets are indicated by filled circles, and the number of

loci within that intersection may be seen directly above in the bar chart with

corresponding size over each bar. The total sample sizes are found in the left

bar chart and correspond to the adjacent sample. As expected, there should

be no overlap across T. crocifolius and T. lamottei homoeologs.

A recent publication in Spartina (Giraud et al., 2021) has
demonstrated that a high degree transcriptome repatterning
(52% of genes deviated from parental additivity) occurs
following neopolyploidy (within the last 170 years), and long-
term, divergent transcriptome evolution is evident between the
mesohexaploid parents that diverged 2-3 MYA (with 36% genes
deviating from parental additivity).

One potential reason for this difference in additive expression
may be that neopolyploid survival is dependent upon reduction
in gene expression noise, as expression noise can have negative
impacts upon fitness (Barkai and Leibler, 2000; Rao et al.,
2002; Fraser et al., 2004; Pires and Conant, 2016). Thus,
shrinkage towardmean parental expression within neopolyploids
may alleviate the effects of transcriptomic shock, especially for
polyploids with sub-genome trans-acting factors that are largely
interchangeable. Over longer periods of time, mutation and
selection may then optimize expression of genes, resulting in
more non-additive expression. Both noise reduction and gene
dosage are expected to play a large role after polyploidization
(reviewed in Conant et al., 2014; Pires and Conant, 2016).
Interestingly, dosage effects are seen in numerous additively
expressed genes within polyploids (Guo et al., 1996; Chen,
2007). These dosage effects are expected to primarily affect
genes that function in protein complexes or biological pathways
(reviewed in Freeling, 2009; Birchler and Veitia, 2010, 2012).
This explanation appears to be the case for additively expressed

FIGURE 8 | Loci lost or silenced across T. castellanus individuals. Set IDs

represent samples where either T. crocifolius (C) or T. lamottei (L) homoeologs

are lost (L) or silenced (S). Overlapping sets are indicated by filled circles, and

the number of loci within that intersection may be seen directly above in the

bar chart. The total sample sizes are found in the left bar chart and correspond

to the adjacent sample. As expected, there should be no overlap across T.

crocifolius and T. lamottei homoeologs.

genes conserved across these independently formed polyploids in
that our functional protein association network was significantly
enriched for protein-protein interactions.

There is evidence that members of protein complexes within
yeast, fruit flies, and humans all exhibit reduced expression noise
(Ohno, 1970; Lemos et al., 2004; Schuster-Böckler et al., 2010;
reviewed in Pires and Conant, 2016). As such, finding protein-
protein interaction enrichment among additively expressed genes
may be further evidence that noise reduction and dosage play a
significant role in expression changes after allopolyploidization.
The degree of dissimilarity between parental expression may also
significantly affect homoeolog expression fate between neo- and
mesopolyploids (Conant et al., 2014). Environmental differences
may also select for different expression patterns over time
(Otto and Whitton, 2000). As such, there is likely a complex
interplay among the processes governing expression patterns
after polyploidization.

4.3. Homoeolog-Specific Expression
HSE, also sometimes called homoeolog expression bias, has
been observed in neopolyploids such as Senecio (Hegarty et al.,
2012), mesopolyploids such as Gossypium (Adams et al., 2004;
Chaudhary et al., 2009; Yoo et al., 2013), and even more broadly
across polyploid plants (Buggs et al., 2010b; Schnable et al., 2011;
Grover et al., 2012; Woodhouse et al., 2014; Yang et al., 2016).
Notably, we observed numerous loci demonstrating HSE, but
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overall, we see a similar proportion of loci exhibiting homoeolog
expression bias toward each parent (Grover et al., 2012). This
balanced proportion of HSE in Tragopogon is interesting in that
numerous other allopolyploid plants have exhibited substantial
subgenome expression bias (Chen and Pikaard, 1997;Wang et al.,
2006b; Flagel et al., 2008; Chaudhary et al., 2009; Akhunova
et al., 2010; Schnable and Freeling, 2011; Schnable et al., 2011).
However, both neoallopolyploid Tragopogon (Boatwright et al.,
2018) and the mesoallopolyploid T. castellanus demonstrate
similar proportions of homoeolog expression bias toward
their corresponding parents. HSE in resynthesized Brassica
neoallopolyploids is established soon after the initial genome
merger and allopolyploidization (Yang et al., 2016). So, HSE is
potentially yet another ameliorative response to whole-genome
duplication and/or hybridization (Pires and Conant, 2016). The
cause of these expression patterns in Tragopogon is unclear,
but numerous genetic and epigenetic mechanisms have been
proposed to affect expression in polyploids (Chen, 2007).

The maintenance of dosage balance is not likely to occur
indefinitely after whole-genome duplication (Conant et al., 2014;
McGrath et al., 2014). HSE is believed to allow duplicated
copies to undergo subfunctionalization, neofunctionalization or
fractionation, but it is possible that recurrent gene conversion
between duplicated copies may maintain sequence identity
between them (Pires and Conant, 2016). Biased sub-genome
expression dominance has been observed following whole-
genome duplication in maize where biased expression occurs
within neofunctionalized regulatory genes, and non-regulatory
neofunctionalized genes incrementally acquire sub-genome
dominance during development (Hughes et al., 2014). Epigenetic
regulation has been shown to facilitate sub-genome dominance
after whole-genome triplication in B. rapa where a biased
distribution of transposable elements among sub-genomes as
well as small targeting RNAs are responsible for expression
dominance at a sub-genome scale (Cheng et al., 2016). It
is also possible that HSE reconciles problems arising from
heterologous protein complexes for proteins that function more
efficiently as homopolymers or require precise binding affinities,
stoichiometry or product ratios (Birchler and Veitia, 2010, 2012;
Boatwright et al., 2018).

4.4. Homoeolog Silencing and Loss
The process of genome evolution after polyploidization is
characterized by alterations in methylation, transposable element
activity, expression and function changes as well as genome
rearrangement and downsizing (reviewed in Van de Peer et al.,
2009;Wendel, 2015; Soltis et al., 2016;Wendel et al., 2018).While
these changes have been observed in mesopolyploids (Wang
et al., 2011) and paleopolyploids (Schnable et al., 2011), they
also occur in neopolyploids where a wide spectrum of genomic
changes may occur soon after genome merger and duplication
(Madlung and Wendel, 2013), indicating that neopolyploid
genomes are not necessarily additive or static (Leitch et al., 2008).
Stochastic silencing has been proposed to play an important
role in the formation of new species and diploidization after
polyploidization. Polyploid species are notable in their tendency
to preserve duplicate gene copies, which could be a result of gene
dosage effects (Lynch and Conery, 2000; Conant et al., 2014).

Dynamic silencing likely serves as a damage-control mechanism
to temper potentially adverse effects of polyploidization on gene
dosage to improve chances of establishment and adaptation of
nascent polyploids (Wendel, 2000; Chaudhary et al., 2009; Buggs
et al., 2011). In this study, the silencing of specific homoeologs
was more inconsistent across independent polyploids than were
loss events or expressed genes. In fact, the majority of silencing
events were unique to each polyploid, which seems to support
the role of stochastic silencing in polyploid plants. However, it
is notable that even though silencing appeared to be stochastic,
the homoeologs that were lost were more consistent. This
may suggest that the mechanisms governing fractionation are
more systematic.

Tragopogon castellanus was previously shown to exhibit a
nearly additive genome size of its parents, and the degree of loss
seen here (∼3% of loci examined) is consistent with that finding
(Mavrodiev et al., 2015). Neopolyploid Tragopogon species from
the US also exhibited very little putative gene loss (Boatwright
et al., 2018) and exhibit an additive genome size (Pires et al.,
2004a). Long-term gene loss and retention after whole-genome
duplication has demonstrated what appears to be a non-random
progression in previous studies (Barker et al., 2008; Freeling,
2009; Birchler and Veitia, 2010; Schnable et al., 2011; Severin
et al., 2011; De Smet et al., 2013; Soltis et al., 2016). These
observations may also be consistent with the biased fractionation
hypothesis, where genome dominance is expected when the
subgenomes are highly diverged but not when the subgenomes
are similar (Garsmeur et al., 2014; Zhao et al., 2017). While the
exact divergence between for diploid parents of T. castellanus
has not been thoroughly investigated, the P-derived parental
genetic divergence index, the ratio between parental divergence
and the average genetic divergence in the respective genus, is
1.14 (Paun et al., 2009), indicating that the balanced expression
may be justified by the low parental divergence. This biased
fractionation theory is also supported by the contrasting case
of recently formed Mimulus peregrinus allopolyploids (Edger
et al., 2017) where subgenome expression dominance occurs
immediately following the hybridization of divergent genomes
and increases significantly over subsequent generations and
results from Ephedra allotetraploids whose subgenomes are
approximately 8MY diverged, where it has been shown that the
rapid formation of large genomes could be attributed to even and
slow fractionation following polyploidization (Wu et al., 2021).

Tragopogon seems to be yet another case of convergent
homoeolog loss after multiple, independent polyploidization
events similar to recent results from Capsella allotetraploids have
demonstrated predictable patterns of gene retention and loss
following polyploidization (Douglas et al., 2015). We further
checked for gene ontology enrichment within our retained,
lost and silenced genes but found no significant enrichment.
Differential regulation of proteome additivity was not related
to protein function in Brassica napus allotetraploids (Albertin
et al., 2007). So, a lack of enrichment within additively expressed
genes may be expected. While the lack of enrichment within
lost genes contrasts with studies that found binding proteins,
protein kinases, transcription factors, and transferases are usually
retained in duplicate (Jiao et al., 2011), and photosynthesis and
cell cycle genes typically drop to singleton status (De Smet et al.,
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2013), it is the same result found in the neopolyploid Tragopogon
species (Boatwright et al., 2018). It may be that loss is not
predominantly determined by functional category but rather by
some other genetic or epigenetic characteristic such as noise
reduction or dosage, at least within Tragopogon.

5. FINAL REMARKS

The short- and long-term effects of cis- and trans-acting
interactions are sure to have a significant, if not dynamically
different, effect on duplicate gene fate within allopolyploid
species. Studies of these processes lack duplication but are
certain to identify broader physiological, ecological, and
evolutionary implications of polyploidization (Soltis et al.,
2016). Here, we compared both homoeolog fate convergence
within independently formed mesoallopolyploid populations (T.
castellanus) and how those compare to neoallopolyploids within
the same genus using the same methodology. While homoeolog
expression bias was balanced in both the two neopolyploids
and in the mesopolyploid, the degree of additive expression was
significantly different, with populations of the mesopolyploid
demonstrating more non-additive expression. We found that
homoeologs that are retained or lost seem to be strongly
convergent across independently formed allopolyploids, while
silencing tends to occur stochastically. Further, this non-random
trend in long-term homoeolog retention and loss is not unique
to Tragopogon but may be selectively advantageous for polyploid
speciation and survival (Barker et al., 2008; Freeling, 2009;
Birchler and Veitia, 2010; Severin et al., 2011; Schnable et al.,
2012; De Smet et al., 2013; Soltis et al., 2016). While there
was no GO enrichment among the studied gene sets, additively
expressed genes demonstrated enrichment for protein-protein
interactions within a functional network. It may be that gene
dosage and noise minimization play leading roles in regulating
gene expression patterns after allopolyploidization, and these
patterns are conserved across independent lineages.
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