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Arundo donax, Cortaderia selloana and Phragmites australis are high-biomass-
producing perennial Poalean species that grow abundantly and spontaneously in warm
temperate regions, such as in Mediterranean-type climates, like those of Southern
Europe, Western United States coastal areas, or in regions of South America,
South Africa and Australia. Given their vigorous and spontaneous growth, biomass
from the studied grasses often accumulates excessively in unmanaged agro-forestry
areas. Nonetheless, this also creates the demand and opportunity for the valorisation of
these biomass sources, particularly their cell wall polymers, for biorefining applications.
By contrast, a related crop, Miscanthus × giganteus, is a perennial grass that
has been extensively studied for lignocellulosic biomass production, as it can grow
on low-input agricultural systems in colder climates. In this study Fourier transform
mid-infrared spectroscopy (FTIR), high-performance anion-exchange chromatography
(HPAEC) and lignin content determinations were used for a comparative compositional
characterisation of A. donax, C. selloana and P. australis harvested from the wild,
in relation to a trial field-grown M. × giganteus high-yielding genotype. A high-
throughput saccharification assay showed relatively high sugar release values from
the wild-grown grasses, even with a 0.1M NaOH mild alkali pretreatment. In addition
to this alkaline pretreatment, biomass was treated with white-rot fungi (WRF), which
preferentially degrade lignin more readily than holocellulose. Three fungal species were
used: Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor. Our results
showed that neutral sugar contents are not significantly altered, while some lignin is lost
during the pretreatments. Furthermore, sugar release upon enzymatic saccharification
was enhanced, and this was dependent on the plant biomass and fungal species
used in the treatment. To maximise the potential for lignocellulose valorisation, the
liquid fractions from the pretreatments were analysed by high performance liquid
chromatography – photodiode array detection – electrospray ionisation tandem mass
spectrometry (HPLC-PDA-ESI-MSn). This study is one of the first to report on the
composition of WRF-treated grass biomass, while assessing the potential relevance of
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breakdown products released during the treatments, beyond more traditional sugar-
for-energy applications. Ultimately, we expect that our data will help promote the
valorisation of unused biomass resources, create economic value, while contributing
to the implementation of sustainable biorefining systems.

Keywords: Arundo donax, biomass, cell wall, Cortaderia selloana, marginal lands, Miscanthus × giganteus,
Phragmites australis, white-rot fungi

INTRODUCTION

Horizon 2020, a European Union (EU) research and innovation
framework programme has generously funded research toward
a sustainable bio-based economy. This is a recognition of the
importance of reducing the dependency on fossil fuels in Europe,
and a substantial contribution to the EU’s ambitious climate and
energy aims for 2030, which includes an EU-wide target for
renewable energy of at least 27% of final energy consumption
(European Comission, 2017).

Lignocellulosic biomass and its main constituent cell wall
polymers represent the most abundant renewable resource on
Earth (Pauly and Keegstra, 2008). Biomass can be derived from
dedicated biomass crops, such as perennial herbaceous crops,
which are being evaluated as biomass feedstocks throughout
the world (Zegada-Lizarazu et al., 2010). Factors such as low
production cost, fast-growth, high biomass production, relative
low water and nutrient requirements account for the advantage
of using these crops as feedstocks for second generation
biorefineries (Zegada-Lizarazu et al., 2010; Alzagameem et al.,
2019). One of these herbaceous crops is Miscanthus × giganteus
J.M.Greef, Deuter exHodk., Reuvoize, a vigorous inter-specific
hybrid between M. sinensis and M. sacchariflorus, which has been
well researched in terms of its use as a dedicated lignocellulosic
crop in Europe (Lewandowski et al., 2000; Heaton et al., 2008;
Clifton-Brown et al., 2016; da Costa et al., 2019). Dedicated
biomass crops do, however, raise concerns related to land use
competition against food production or long-term soil health
(Mitchell et al., 2016). Nonetheless, high quantities of biomass
from perennial grasses are accumulated from wild vegetation.
The abandonment of rural landscapes throughout the 20th

century has led to the emergence of many derelict, underused
and abandoned spaces, which in turn are colonised by vegetation
traditionally not considered of great use (Millard, 2004). In
this study, the term “marginal land” refers to these types of
spaces, while “spontaneous” refers to the vegetation that emerges
without the need for cultivation. In the Centro Region of
Portugal, Arundo donax L. (giant cane), Cortaderia selloana
(Schult. and Schult.f.) Asch. and Graebn. (Pampas grass) and
Phragmites australis (Cav.) Trin. ex Steud. (common reed), are
three abundant and spontaneous grass species, which remain
unharvested or become agroforestry waste, squandering potential
opportunities for economical gain, and creating land and waste
management issues.

Lignocellulose is a highly attractive material for bio-based
applications such as fermentation processes to produce a
wide range of industrial relevant products. Three groups of
polymers constitute lignocellulosic biomass: cellulose, lignin

and hemicelluloses. For the latter, in grass cell walls, the
most abundant hemicelluloses are arabinoxylans (Carpita, 1996).
Besides cellulosic ethanol (Liu et al., 2019), other potential
products from cellulose bioconversion include biogas via
fermentation with anaerobic bacteria (Cheng et al., 2010),
and butyrate and acetate as by-products of the hydrogen
fermentation (Pan et al., 2010). Non-biofuel related products
such as lactic, citric, acetic, and succinic acids, may also be
produced from cellulose fermentation (Watanabe et al., 1998;
Ravinder et al., 2001; Kim et al., 2004; Mussatto et al., 2008).
Although the bioconversion of hemicelluloses presents its own
set of challenges, there is also a range of products that may be
derived from this fraction. Examples include the use of pentoses
in hemicellulose hydrolysates for ethanol fermentation (Silva
et al., 2010), acetone-butanol-ethanol fermentation (Qureshi
et al., 2010a,b), or even for xylitol production via fermentation
of xylose (Mussatto and Roberto, 2004). Moreover, processing
breakthroughs have created the opportunity to dramatically
increase the transformation of lignin to value-added products, by
improving the yield of low molecular weight aromatic monomers
with potential industrial value (Ragauskas et al., 2014; Nguyen
et al., 2018; Song et al., 2018). One of these strategies relies on
lignin-first biomass fractionation, which uses mild fractionation
approaches to prevent lignin recondensation, ensuring a wider
range of applications (Renders et al., 2017; Korányi et al., 2020).

Nonetheless, efficient biorefinery conversion of lignocellulosic
biomass is hampered by an intrinsic recalcitrance to enzymatic
degradation, an evolutionary adaptation aimed at resisting biotic
attacks and abiotic stress (Alam et al., 2019). The main cause
of this recalcitrance is cell wall complexity and architecture
(McCann and Carpita, 2015; Park and Cosgrove, 2015). This
results in very high conversion processing costs, making it
essential to develop improved biomass processing technologies
for optimal biorefining of lignocellulosic biomass.

A commonly employed approach to reduce biorefinery costs
is to apply biomass pretreatments which are conducted up-
stream in the biomass processing pipeline to enhance the
efficiency of down-stream enzymatic hydrolysis and fermentation
processes (Mosier et al., 2005). Among diverse pretreatments that
have been characterised, mild alkali conditions are particularly
promising, as they primarily break ester bonds that cross-link
polysaccharides with each other and with lignin, thereby making
cellulose more accessible to hydrolytic enzymes (Hendriks and
Zeeman, 2009; Xu et al., 2012; Li et al., 2013; Wyman et al., 2013).

The pretreatment of biomass with white-rot fungi (WRF)
represents another mild method approach to biomass
fractionation, which may allow an increase in the recovery
of fermentable sugars, the isolation of reactive lignins and the
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release of valuable small molecules (Salvachúa et al., 2011; Sun
et al., 2011). Biological pretreatments have been less studied
than thermochemical ones, possibly because industry often finds
slower processing rates unattractive. However, this problem can
be addressed by continuous flow processing systems (Scott et al.,
1998). Lignin polymers represent the main barrier to degradation
due to their large, stereo-irregular structures, and the presence
of inter-unit carbon-carbon and ether bonds. Lignin degradation
mechanisms require oxidative rather than hydrolytic processes,
and ligninolytic agents must have wide substrate specificity and
act synergistically. WRF have developed ligninolytic enzymatic
machineries, including a wide range of peroxidases and laccases
(Ruiz-Dueñas and Martínez, 2009; Dashtban et al., 2010; López
et al., 2017). These diverse enzymatic pools allow WRF to
deal with different compositional and structural aspects and
depolymerise lignin.

The primary focus of our work was to assess the biorefinery
potential of wild-grown spontaneous grass biomass from
marginal lands and characterise the mechanism of action of
innovative processing methodologies, by combining chemical
and biological approaches (Figure 1). For biomass pretreatment,
we employed three WRF species, which preferentially degrade
lignin rather than holocellulose (Taniguchi et al., 2005; Abidi
et al., 2014; López et al., 2017): Pleurotus ostreatus, Ganoderma
lucidum and Trametes versicolor. These were applied alone
or in combination with a mild alkali pretreatment. The
purpose of this approach was to determine whether these
would act synergistically on the biomass and release potentially
valuable molecules, while reducing recalcitrance. Subsequently,
a multidimensional analytical approach, followed by biomass
conversion assays was employed. We consider that by identifying
economic opportunities for spontaneous vegetation valorisation,
landowners would have a monetary incentive to cull excessive
vegetation more frequently and employ more efficient land
management practices.

MATERIALS AND METHODS

Poalean Lignocellulosic Biomass
Biomass from 3 wild-grown spontaneous grasses was
collected at two locations in Central Portugal. Montemor-
o-Velho (40.171679◦N, 8.671122◦W): Arundo donax (ADO),
Phragmites australis (PHA). Serra da Boa Viagem (40.186115◦N,
8.903903◦W): Cortaderia selloana (CTS). Additionally, biomass
from Miscanthus × giganteus (MXG; genotype Mb311) was
harvested from a field trial near Aberystwyth, United Kingdom
(52.437848◦N, 4.026688◦W). Sampling for the Portuguese-
harvested biomass was done during later summer (September),
whereas M. × giganteus was harvested by late May. All samples
consisted in whole tillers cut at soil level from non-senesced
plants. For each species, to account for the heterozygosity of the
biomass, two biological replicates were collected. The choice
of two biological replicates was made to ensure the feasibility
of the study. All seed, seed-bearing or flowering structures,
were discarded when present. Within a maximum of 5 h from

collection, all samples were stored at −80◦C until being freeze-
dried. Once dry, stems were separated from leaves (including
sheath), individual organs were ground using a Retsch SR3
Rotor Beater Mill and passed through a perforated plate screen
containing 2 mm diameter holes.

Preparation of Alcohol Insoluble Residue
A procedure based on a protocol reported by da Costa et al.
(2020), was carried out to produce the alcohol insoluble residue
(AIR) used in the subsequent analyses. For each sample,
approximately 1 g of ground plant biomass was extracted
sequentially as follows: with 30 mL 70% (v/v) aqueous ethanol,
first for 12 h and then twice more for 30 min in a shaking
incubator set at 40◦C/150 rpm; three times with 20 mL
chloroform/methanol (1:1 v/v), for 30 min incubation at 25◦C
and 150 rpm; and finally, three times with 15 mL acetone, for
30 min, at 25◦C/150 rpm. Between each step of the extraction, the
material was collected by centrifugation at 25000 × g for 10 min
and the supernatants were discarded. Following the third acetone
step, the samples were left to dry overnight in a fume hood.

Inoculum Preparation and Fungal
Pretreatment
Ganoderma lucidum (GAN), Trametes versicolor (TRA) and
Pleurotus ostreatus (PLE) were used as white-rot fungi (WRF)
for biological pretreatments. As described elsewhere (Paiva De
Carvalho et al., 2019), morphological examination and molecular
analysis, targeting internally transcribed spacer (ITS) regions,
allowed the identification of the fungal species used in this
study. Fungal inocula were prepared by culturing the individual
WRF strains at 23◦C on 2.9% potato dextrose agar (PDA, Oxoid
CM0139, Basingstoke, England). After 10 days of growth, for
each of the three WRF strains, inoculation discs (Ø = 10 mm)
were taken from actively growing mycelium on the PDA plates
and used to inoculate each sample of the poalean lignocellulosic
feedstocks (2 discs per sample), under solid state fermentation
(SSF) conditions. To serve as solid media for WRF growth,
the grass biomass was prepared as follows: approximately 1.5 g
of previously dried and milled but not organic solvent-washed
biomass was added to 5 mL deionised water and autoclaved in
glass culture tubes capped with hydrophobic cotton. This was
performed for each combination of the 3 WRF species, and leaf
or stem from the 4 grass species. Additionally, non-inoculated
biomass samples (non-WRF treated, NF controls) with an equal
volume of deionised water added, were included to serve as
negative controls. All cultures were incubated statically at 23◦C
in the dark for 30 days; with a total of 64 duplicated samples:
4 grass species × 2 organs (leaf or stem) × 4 treatments (3
WRF species plus control). WRF-pretreatment methodologies
were adapted from procedures reported elsewhere (Salvachúa
et al., 2011; Sun et al., 2011). After incubation, the inoculation
discs were removed, 5 mL deionised water were added, and
the samples were thoroughly mixed and incubated at 30◦C
for 24h with constant mixing. Samples were then centrifuged
(2000 × g for 10 min), clarified supernatants were removed
and immediately flash-frozen with N2 and then freeze-dried
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FIGURE 1 | Schematic diagram of the employed experimental study design.

for subsequent chemical characterisation. The solid pretreated
biomasses were washed twice with deionised water, dried at
60◦C, and stored for subsequent analyses and alkali pretreatment.
For neutral sugars and lignin determinations, AIR samples were
produced from this WRF-treated biomass (as described above).

Mild Alkali Pretreatment
A portion of the non-WRF treated (NF) and WRF-treated solid
fractions (approximately 250 mg, dry weight) were subjected to
a mild alkali treatment with 2.5 mL 0.1 M NaOH for 24 h at
150 rpm shaking at 21◦C. This step was performed with the aim of
achieving biomass saponification, and to determine if combined
WRF and mild alkali (WRF-ALK) pretreatments would act
synergistically on the biomass, break ester-linkages, and release
potentially valuable molecules. After the pretreatment, the
samples were centrifuged (2000 × g for 10 min) and aliquots
of the supernatants were flash-frozen with N2, and then freeze-
dried for subsequent chemical characterisation. The pretreated
solids were washed 3 times in 5 mL of 0.025M potassium acetate
buffer (pH = 5.6) and twice with deionised water, dried at 60◦C,
and stored for subsequent assays. For neutral sugars and lignin
determinations, AIR samples were produced as described above
from this alkali (ALK)-treated biomass. Furthermore, the alkali
pretreatment was also employed on AIR samples prepared from
non-pretreated samples, to assess the exclusive effect of 0.1M
NaOH on structural compounds. These samples are subsequently
referred to as AIK.

Fourier-Transform Infrared Spectroscopy
Attenuated total reflectance Fourier transform mid-infrared
(FTIR-ATR) spectroscopy was performed on all samples included
in this study (AIR, WRF-treated and mild alkali-treated samples),
as reported elsewhere (da Costa et al., 2020; Marques et al., 2020).

Duplicate spectra were collected in the range 4000–400 cm−1

using a Bruker Optics Vertex 70 FTIR spectrometer purged by
CO2-free dry air and equipped with a Brucker Platinum ATR
single reflection diamond accessory. A Ge on KBr substrate
beamsplitter and a liquid nitrogen-cooled wide band mercury
cadmium telluride (MCT) detector were used. Spectra were
averaged over 32 scans at a resolution of 4 cm−1, and the 3-
term Blackman-Harris apodization function was applied. The
Bruker Opus 8.1 software was also used to: (i) remove eventual
H2O and CO2 contributions, and (ii) spectral smoothing using
the Savitzky-Golay algorithm (window: 17 pt.). Absorbance
spectra were converted to text files, imported into MatLab (v.
R2014b; MathWorks, Natick, MA, United States) and averaged.
Full spectra, or fingerprint region spectra (1800–800 cm−1),
were vector normalised to unit length and the baseline was
removed according to the automatic weighted least squares
algorithm (polynomial order = 2) prior to statistical analysis,
using the Eigenvector PLS Toolbox (v. 7.9; Eigenvector Research,
Wenatchee, WA, United States).

Saccharification
Non-pretreated, WRF-treated (30-day incubation with G.
lucidum, T. versicolor and P. ostreatus) and mild alkali-treated
biomass samples were included in a saccharification assay, with
four technical replicates for each sample, using an automatic
platform as previously described by Gomez et al. (2010).
Briefly, enzymatic hydrolysis was achieved using Cellic CTec2
(Novozymes, Bagsvaerd, Denmark) in a Na-Acetate buffer
(25 mM; pH = 4.5) at 50◦C. Cocktails were prepared so that
cellulase loadings were 8 filter paper units (FPU) per g of biomass
in the Na-Acetate buffer. Saccharification was measured after
8 h by colorimetric detection of reducing sugar equivalents as
described by Whitehead et al. (2012).

Frontiers in Plant Science | www.frontiersin.org 4 July 2021 | Volume 12 | Article 679966

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-679966 June 29, 2021 Time: 16:6 # 5

da Costa et al. Biorefining Potential of Wild-Grown Species

Neutral Monosaccharides
Acid hydrolysis and neutral monosaccharide determinations
were performed as previously described (da Costa et al., 2017),
on non-pretreated, WRF-treated (30-day incubation with P.
ostreatus) and mild alkali-treated AIR samples. Briefly, 10 mg
of each sample was weighed into 10 mL Pyrex glass tubes and
100 µL H2SO4 (72% w/w) was added. Sealed tubes were left
at 30◦C for 1 h. Samples were diluted to 4% H2SO4 (w/w)
and autoclaved at 121◦C for 1 h. Once at room temperature,
hydrolysates were neutralised using CaCO3, and the tubes were
centrifuged (2000 × g for 10 min) to obtain a clear supernatant.
Carbohydrate separation and detection was achieved using
high-performance anion exchange chromatography with pulsed
amperometric detection (HPAEC-PAD). The ICS-5000 ion
chromatography system (Dionex, Sunnyvale, CA, United States)
was operated at 45◦C using a CarboPac SA10 column with a
CarboPac SA10G guard column. An eluent generator prepared
0.001 M KOH for 14 min isocratic elution at 1.5 mL
min−1. Calibration standards were used for monosaccharide
identification and quantitation.

Lignin Measurement
Acetyl bromide soluble lignin percentages were determined in
duplicate for non-pretreated, WRF-treated (30-day incubation
with P. ostreatus) and mild alkali-treated AIR samples, as
previously reported (da Costa et al., 2014). To approximately
10 mg of each sample, 500 µL of freshly prepared 25% (v/v)
acetyl bromide solution in glacial acetic acid was added, the tubes
were capped and left at 50◦C for a total of 3h. Following lignin
solubilisation, the tubes were cooled, and their contents were
diluted by the addition of 2000 µL of 2 M NaOH. A further
addition of 350 µL of 0.5 M hydroxylamine hydrochloride
to each tube ensured the decomposition of polybromide ions
(Monties, 1989). Final volumes were adjusted to 10 mL with
glacial acetic acid and centrifuged (2000 × g for 10 min)
to produce particulate-free supernatants. From there, 200 µL
of each sample was transferred to UV-transparent 96-well
plates (UV-Star, Greiner Bio-One). Absorbance at 280 nm was
measured with a plate reader (Perkin Elmer, Multimode Plate
Reader 2300 EnSpire). Blank negative controls were included
and their absorbance at 280 nm was set as absorbance baseline.
Lignin dry weight percentages were calculated as follows:
ABSL% = (A280/(SAC × PL)) × (VR/WS) × 100%; where ABSL%
is the acetyl bromide-soluble lignin percentage content; A280
is the absorption reading at 280 nm; PL is the pathlength
determined for the 96-well microplates with a volume of 200 µL
per well used during the analysis (0.556 cm); VR is the reaction
volume (litres); WS is the sample weight (g); and SAC is
the a specific absorption coefficient of 17.78 g−1 L cm−1, as
reported for purified HCl-dioxane lignin from poalean samples
(Lygin et al., 2011).

Characterisation of Pretreatment Liquid
Fractions
The freeze-dried pretreatment liquid fractions from WRF-treated
(30-day incubation with P. ostreatus), mild alkali-treated, and

non-pretreated samples (non-inoculated negative controls with
deionised water) were reconstituted in 100% methanol. These
were then kept at −20◦C for 24 h and then centrifuged
(14,000 × g for 5 min). The resulting supernatants consisted
of clarified methanolic extracts, containing phenols of interest,
but free of most sugars and other water-soluble compounds.
Samples were analysed by reverse-phase HPLC equipped with
a photodiode array detector and coupled with an electrospray
ionisation tandem mass spectrometer (HPLC-PDA-ESI-MSn) on
a Thermo Finnigan system (Thermo Electron Corp., Waltham,
MA, United States), as described elsewhere (Bhatia et al., 2020).
Separation of compounds was carried out on a Waters C18
Nova-Pak column (3.9 × 150 mm, particle size 4 µm) at 30◦C
with a flow rate of 1 mL/min and injection volume of 10 µL.
The mobile phase consisted of water with 0.1% formic and acid
(A) and methanol with 1% formic acid (B) with B increasing
from 5 to 65% in 30min. Eluting compounds were detected
with a Finnigan PDA Plus detector between 240 and 400 nm
and a Finnigan LTQ linear ion trap with an ESI source. MS
parameters were as follows: sheath gas flow 30, auxiliary gas
flow 15 and sweep gas zero (arbitrary units), spray voltage
−4.0 kV in negative and 4.8 kV in positive ionisation mode,
capillary temperature 320◦C, capillary voltage −1.0 and 45 V,
respectively, tube lens voltage −68 and 110 V, respectively,
and normalised collision energy (CE) typically 35%. Data were
acquired and processed using Thermo ScientificTM XcaliburTM

software. Potential compounds of interest were characterised
and/or tentatively identified by their UV and MS spectra or
identified by direct comparison with authentic standards, or with
fragmentation patterns reported elsewhere (Simirgiotis et al.,
2013; Ostrowski et al., 2016). Approximate quantification of
compounds was carried out by comparison of the area under the
curve for selected m/z chromatograms in negative mode.

Statistical Analysis
All univariate descriptive statistics, analyses of variance and
Tukey’s range tests were performed using Statistica (v. 8.0;
StatSoft, Tulsa, Oklahoma). For the t-tests on spectral data
to unveil the underlying chemometric relationships between
FTIR-ATR spectra, an R-based data analysis platform was used
(Chong et al., 2018).

RESULTS

Grass Cell Wall Compositional
Characterisation
Alcohol insoluble residues (AIR) were prepared for the
compositional characterisation of cell wall biomass from A.
donax, C. selloana, P. australis, and M. × giganteus, and
examined by FTIR-ATR spectroscopy. Resulting data underwent
analysis of variance (ANOVA), to find the most significantly
different spectral regions between the different species. A low
p-value threshold (p ≤ 0.00001) was chosen to expose the
most significantly different wavenumbers. Heatmaps in the
most distinct spectral regions highlight the relative chemometric
differences between the different spontaneous grasses, and in
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FIGURE 2 | Attenuated total reflectance Fourier transform mid-infrared (FTIR-ATR) spectra of alcohol insoluble residue (AIR) of leaf and stem biomass from Arundo
donax, Cortaderia selloana, Phragmites australis and Miscanthus × giganteus. Grey shading highlights the most significantly different regions of the spectra, based
on ANOVA (p ≤ 0.00001), while the heatmaps highlight the relative absorption intensities according to the grass species. Spectral bands of interest are marked from
a – l, see text and Table 1 for more information.

relation to M. × giganteus, a prospective dedicated lignocellulosic
crop for biorefining applications (Figure 2).

For leaf cell wall biomass, six contiguous intervals were the
most significantly different spectral regions (cm−1): 1754 – 1695,
1510 – 1489, 1339 – 1311, 1281 – 1256, 1201 – 1140, 995 – 985.
For stem, three intervals showed the most significant differences
(cm−1): 1232 – 1197, 1171 – 1161, 1063 – 809. In the FTIR
spectra of leaves, spectral regions e (1275 – 1256 cm−1) and
d (1322 – 1310 cm−1) have been assigned to lignin structural
features (Table 1). Bands a (1736 – 1730 cm−1), and g (1170 –
1160 cm−1) have been attributed to C = O stretching in acetyl-
xylans, and to O-C-O asymmetric stretching in glycosidic links,
respectively (Table 1). Lastly, spectral region j (993 – 985 cm−1)
includes wavenumbers associated with vibrations in cellulose.

For stems, the spectral regions showing the greatest significant
differences between the species also include bands associated
with cellulose. Specifically, bands h (1060 – 1055 cm−1), i
(1035 – 1030 cm−1) and k (898 – 890 cm−1) which is associated
with amorphous cellulose structures (Table 1). For the spectra
of stem biomass, the most significantly different regions also
included band g (1170 – 1160 cm−1), which has been ascribed
to vibrations in glycosidic links (Table 1), and to vibrations in
non-cellulosic cell wall components. The latter included band f

(1240 – 1235 cm−1), associated with xylans, and band l (840 –
830 cm−1), assigned to lignin structures (Table 1).

Together these results suggest that despite the compositional
similarity between the biomasses of these different poalean
species, key significantly differences may have an impact in their
biorefining performance.

Effect of Mild Alkali and White-Rot Fungi
Pretreatments on Grass Biomass
Composition
To assess the effect of a mild alkali pretreatment on the cell wall
from A. donax, C. selloana, P. australis, and M. × giganteus,
AIR samples were treated with 0.1 M NaOH for 24 h at 21◦C
(AIK). FTIR-ATR was subsequently employed to assess the main
compositional changes effected by the alkali. For leaf and stem of
the four examined grasses, the most marked differences between
the spectra of AIR and AIK samples were observed in the a
(1736 – 1730 cm−1) and f (1240 – 1235 cm−1) spectral regions
(Figure 3). Band a, centred at 1735 cm−1 and assigned to
C = O stretching in xylans (Table 1), showed reduced intensity
in pretreated biomass. Concomitantly, the intensity of band f,
associated to C-O vibrations of acetyl, is also reduced.
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TABLE 1 | Assignment of relevant FTIR-ATR absorption bands characteristic of cell wall biomass from poalean species.

Region Absorption (cm−1) References Assignment Cell wall feature

a 1736 – 1730 1735 (Gwon et al., 2010)
1730 (Sills and Gossett, 2012)

1735 (Bekiaris et al., 2015)
C = O vibrations Xylan

b 1625 – 1635 1630 (Chatjigakis et al., 1998)
1630 (Manrique and Lajolo, 2002)

1630 (Gannasin et al., 2012)
COO− vibrations Non-esterified carboxyl

groups

c 1515 – 1505 1515 (McCann et al., 2001)
1510 (Bekiaris et al., 2015)
1513 (Zhang et al., 2017)

Aromatic ring vibration Lignin and other phenols

d 1322 – 1310 1315 (Pandey, 1999)
1317 (Chen et al., 2010)

1320 (Bekiaris et al., 2015)
Syringyl monomer vibration Lignin

e 1275 – 1256 1270 (Tejado et al., 2007)
1270 (Tan et al., 2009)

1268 (Jiang et al., 2015)
Guaiacyl monomer vibration Lignin

f 1240 – 1235 1240 (Marchessault, 1962)
1235 (Harrington et al., 1964)

1240 (Bekiaris et al., 2015)
C-O vibrations of acetyl Xylan

g 1170 – 1160 1160 (Kačuráková et al., 2000)
1161 (Abidi et al., 2014)

1160 (Szymanska-Chargot and
Zdunek, 2013)

1160 (Bekiaris et al., 2015)

O-C-O asymmetric stretching
(glycosidic link) all residues

Polysaccharides

h 1060 – 1055 1055 (Harrington et al., 1964)
1060 (Wilson et al., 2000)

1060 (Schulz and Baranska,
2007)

C-O, C-C and O-C-H vibration Cellulose

i 1035 – 1030 1035 (Wilson et al., 2000)
1035 (Schulz and Baranska,

2007)
C-O, C-C and C-C-O stretching Cellulose

j 993 – 985 990 (Pastorova et al., 1994)
993 (Gwon et al., 2010)
990 (Marry et al., 2000)

993 (Oh et al., 2005)

C-O stretching Cellulose

k 898 – 890 893 (Oh et al., 2005)
898 (Ciolacu et al., 2011)
898 (Bekiaris et al., 2015)

C-O-C asymmetric stretching Cellulose (amorphous)

l 840 – 830 835 (Harrington et al., 1964)
834 (Faix, 1991)

838 (Zhang et al., 2017)
C-H out-of-plane bending in syringyl
and p-hydroxy-phenyl monomers

Lignin

Another approach to biomass fractionation, which may
lead to an increase in lignocellulosic biodegradability and
the release of valuable molecules, is the pretreatment of
biomass using white-rot fungi (WRF). The WRF-treated
samples were subjected to FTIR-ATR examination to
reveal the main effects of the pretreatments on biomass
composition (Figure 4). Interestingly, the effect of a given
WRF species varies between different biomass species.
Similarly, the same biomass is differently affected by
each WRF species. Leaf biomass composition does not
appear to be greatly affected in M. × giganteus and C.
selloana when only WRF treatments are employed. In
stems, biomass treated with WRF alone generally does not
appear to be modified in relation to the non-WRF treated
(NF) control samples, except in P. australis stems, where
non-pretreated samples showed higher intensities for the
b (1625 – 1635 cm−1).

By contrast, when the combined WRF-ALK treatment is
employed, similar modifications were seen to when AIR and
AIK samples were compared (Figure 3). As previously discussed,
modifications induced by the mild alkali pretreatment are
primarily observed at a (1736 – 1730 cm−1) and f (1240 –
1235 cm−1) spectral regions (Figure 4), which have been credited
to a decrease in acetylation of xylans. In leaf samples treated
with WRF and with the combined WRF-ALK pretreatment,
the grass species with greater compositional modifications
are A. donax and P. australis. In stems, it is noteworthy
that for P. australis the intensity of band a is not reduced
in biomass treated with T. versicolor and 0.1 M NaOH, as
observed with the remaining biomasses after being treated
with alkali. For both leaf and stem, the most striking spectral
modification is in the band centred at 1630 cm−1 (b; Table 1),
which has been assigned to non-esterified carboxyl groups in
polysaccharides.
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FIGURE 3 | Attenuated total reflectance Fourier transform mid-infrared (FTIR-ATR) spectra of untreated alcohol insoluble residue (AIR) and pretreated with 0.1 M
NaOH for 24 h at 21◦C (AIK), for leaf and stem biomass from Arundo donax, Cortaderia selloana, Phragmites australis and Miscanthus × giganteus. The difference
between AIR and AIK biomasses are presented by a red dashed line. Spectral bands of interest are marked as: a (1736 – 1730 cm−1) and f (1240 – 1235 cm−1).

Saccharification Yields of Grass Biomass
To compare biorefining potentials between the different poalean
species, and to investigate the effect of the applied pretreatments,
enzymatic saccharification assays were performed on all samples.
AIR prepared from P. australis biomass showed the highest
saccharification yields in leaves and in stems, respectively
(Figure 5): 541.8 and 375.2 nmol mg−1 after 8h incubation
(Supplementary Table 1). The AIR samples were also treated
with a mild alkali pretreatment (AIK) 0.1 M NaOH (24 h at 21◦C).
In these samples, A. donax showed the highest saccharification
yield among leaf samples (799.2 nmol mg−1), whereas for
stem the highest yield was seen with Cortaderia selloana
(812.1 nmol mg−1). By contrast, M. × giganteus typically showed
comparatively low saccharification yields. Saccharification yields
were also typically higher from leaves than stems, except for C.
selloana, which showed higher sugar yields from stem AIR and
AIK samples (Figures 5A,D; red bars).

For each of the applied pretreatments, the percentage of
recovered solids was calculated (Supplementary Table 2) for
each grass species and organ. From WRF-treated leaf and stem
samples, typically 97% of the biomass is recovered after a 30-day
incubation. When the 0.1M NaOH mild alkali pretreatment alone
is employed, 97% of leaf and 96% of stem biomass is recovered. As
for combined WRF-ALK pretreatments, recovered percentages
drop slightly to 95% from leaves, and 94% from stems.

Biomass treated with WRF showed increased saccharification
yields in certain conditions when compared with NF controls

(Figures 5B,E; green bars). The highest saccharification yield
from samples treated with WRF alone was seen using P. ostreatus
on A. donax leaf biomass (503.7 nmol mg−1; Figure 5), 26.4%
higher than NF controls (p ≤ 0.05). While stem biomass
treated with T. versicolor showed a lower saccharification yield
(331.1 nmol mg−1), these WRF-treated samples yielded 55.2%
more sugars than M. × giganteus samples (213.2 nmol mg−1;
p ≤ 0.05). Stem biomass from A. donax and P. australis treated
with G. lucidum also showed marginally higher saccharification
yields than the NF controls, although, for most samples treated
only with WRF, the saccharification yields were lower than
the NF controls.

A mild alkali pretreatment (0.1 M NaOH; 24 h; 21◦C)
was also employed in sequence with the WRF pretreatment
(Figures 5C,F; blue bars) to extract compounds which may
be of interest from an application perspective. This alkaline
treatment substantially increased saccharification yields. The
highest, significantly different (p ≤ 0.05) saccharification yield in
relation to the controls was seen with A. donax stems treated with
G. lucidum and 0.1M NaOH (589.4 nmol mg−1). However, the
overall highest yield seen in samples treated with this combined
WRF-ALK treatment was with C. selloana stems treated with P.
ostreatus (725.2 nmol mg−1).

For leaves pretreated with WRF alone, the highest
saccharification yield was seen with P. ostreatus-treated A.
donax (503.7 nmol mg−1), whereas with the combined WRF-
ALK approach, the highest yield was also observed with P.
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FIGURE 4 | Attenuated total reflectance Fourier transform mid-infrared (FTIR-ATR) spectra of milled but not organic solvent-washed biomass samples from Arundo
donax, Cortaderia selloana, Phragmites australis and Miscanthus × giganteus, treated with white-rot fungi (WRF; 30 days) and/or in combination with 0.1 M NaOH
(24 h at 21◦C) alkali pretreatment. Three fungal species were used: Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor. Control samples consist of
biomass incubated only with water, without WRF. Spectral bands of interest are marked as: a (1736 – 1730 cm−1), b (1625 – 1635 cm−1) and f (1240 – 1235 cm−1).

ostreatus-treated biomass, but in C. selloana samples (637.9 nmol
mg−1; Supplementary Table 1 and Figures 5B,C). In stems
treated with the WRF-ALK combination, the highest yield was

once again with P. ostreatus on C. selloana biomass (725.2 nmol
mg−1; Supplementary Table 1 and Figure 5F), although when
only the WRF pretreatment was employed, the highest yield
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FIGURE 5 | Saccharification of leaf and stem biomass from four poalean species measured by a high-throughput saccharification assay: Arundo donax, Cortaderia
selloana, Phragmites australis and Miscanthus × giganteus. Mean nmol of reducing sugar released per mg of biomass material (nmol mg−1) after 8 h incubation in a
hydrolytic enzyme mixture. Red bars (A,D) refer to non-pretreated alcohol insoluble residue samples, without (AIR) or with (AIK) a 0.1 M NaOH mild alkali
pretreatment. Green bars (B,E) refer to samples treated only with one of the following white rot fungi (WRF): Ganoderma lucidum, GAN; Pleurotus ostreatus, PLE;
Trametes versicolor, TRA. Blue bars (C,F) designate treatments where the 0.1 M NaOH treatment was employed subsequently to the WRF pretreatment. Pairwise
t-tests were performed between each treatment and non-pretreated control samples (AIR; or NF, no fungi; striped bars) to evaluate the impact of the pretreatments.
The treatments which are significantly different from the controls are marked with a "*" (p ≤ 0.05). Error bars represent the standard error of the sample replicates.
For the saccharification values see Supplementary Table 1.

was obtained with G. lucidum. Given that three out of the four
highest saccharification yields were obtained from biomasses
treated with P. ostreatus, subsequent cell wall and pretreatment
liquid fraction compositional analyses were performed only for
samples treated with this ligninolytic fungal species.

Grass Cell Wall Neutral Sugars and
Lignin Composition
Main cell wall neutral sugars and lignin contents were determined
for leaf and stem samples from the grass species examined in
this study. In A. donax, C. selloana and P. australis, average
leaf cell wall composition was 29.7% glucose, 18.2% xylose and
3.0% arabinose (Figure 6 and Table 2) of AIR dry weight
(DW) for non-pretreated control samples (only incubated with
water). Glucose content did not vary significantly (p > 0.05)
much between species, but xylose and arabinose were typically
higher in C. selloana leaves (21.1% and 3.7% DW respectively).
In stems, the corresponding values were: 34.5% glucose, 19.1%
xylose and 2.4% arabinose DW, respectively, with highest glucose
and xylose being observed in P. australis (39.4% and 19.2% DW

respectively), while for highest arabinose content was observed in
C. selloana (3.5%).

In biomasses treated with WRF, 0.1M NaOH mild alkali or a
combination of both, in most cases, neutral sugar composition
did not change significantly in relation to the non-pretreated
samples (p > 0.05). The only exceptions were glucose in A. donax
leaf biomass treated with the combined WRF-ALK pretreatment,
where the values were slightly higher than in non-pretreated
biomass (37.6% versus 33.2% DW; p ≤ 0.05). Similarly, for
arabinose, the values were statistically higher than the non-
pretreated samples for C. selloana leaves treated with mild alkali
or the combined WRF-ALK pretreatments (up from 3.7% to 4.2%
and 4.4% DW, respectively; p ≤ 0.05). These slight increases in
neutral sugars in alkali-pretreated samples are likely related to the
pretreatment effect, which improved acid hydrolysis efficiency.
An estimation of arabinoxylan (AX) degree of ramification was
also achieved by calculating arabinose to xylose ratios (Ara/Xyl).
In non-pretreated samples, Ara/Xyl ratios averaged to 0.16 in
leaves, and 0.13 in stems (Figure 6). For both leaf and stem, the
highest values were seen in C. selloana, with an Ara/Xyl ratio of
0.18 (Table 2).
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FIGURE 6 | Mean percentage (%) composition of alcohol insoluble residues (AIR) prepared from previously pretreated biomass from Arundo donax, Cortaderia
selloana, Phragmites australis and Miscanthus × giganteus (no results are shown for M. × giganteus leaves due to sample losses). Pretreatment acronyms: NP,
non-pretreated control samples (incubated only with water; striped bars); WRF, samples pretreated only with Pleurotus ostreatus; ALK, samples pretreated only with
0.1 M NaOH for 24 h at 21◦C; W + K, samples pretreated with P. ostreatus followed by 0.1 M NaOH for 24 h at 21◦C. Ara/Xyl is the ratio of arabinose to xylose
determined in the biomasses. Pairwise t-tests were performed between each treatment and control (NP) samples to evaluate the impact of the pretreatments in
relation to NP samples for each variable, the treatments which are significantly different from the NP controls are marked with a "*" (p ≤ 0.05). Error bars represent
the standard error of the sample replicates.

For lignin in non-pretreated cell wall biomass (Figure 6),
average values across the spontaneous grasses were 22.4% in
leaves (23.8% in C. selloana, 22.9% in A. donax and 20.5%
DW in P. australis; Table 2) and 25.3% in stems (27.8% in A.
donax, 24.9% in C. selloana, and 23.3% DW in P. australis). In
pretreated samples, there was a decrease in lignin content, albeit
only significantly lower in relation to non-pretreated samples in
M. × giganteus treated with 0.1M NaOH and with the combined
WRF-ALK treatments (a decrease from 27.0% down to 24.8% and
23.4%, respectively; p ≤ 0.05; Figure 6).

Analysis of Pretreatment Liquid
Fractions
The liquid fractions derived from the fungal and mild alkali
pretreatments, including the NF control samples (incubated
only with water) were analysed by liquid chromatography

with detection by photodiode array and tandem mass
spectrometry (HPLC-PDA-ESI-MSn). Several negative ions,
corresponding to lignin-derived compounds were detected in
the pretreatment liquid fractions. These included p-coumaric
acid (m/z 163), hydroxybenzoic acid (m/z 121) and ferulic
acid (m/z 193). Other cell wall related compounds that
were tentatively identified include diferulic acid isomers
(m/z 385) and diferulic acid cyclobutane isomers (m/z 387).
Other prevalent ions included m/z 563 and m/z 389, with
the former producing a UV spectrum and MS2 fragment
ions consistent with apigenin-C-hexoside-C-pentoside
(AHP). Multiple forms of m/z 389 ions (Mr 390) were
detected in samples.

Both alkali pretreatment and tissue type showed a relationship
with pretreatment liquid fraction composition. Coumaric acid
and hydroxybenzaldehyde were observed in all samples following
incubation with alkali, irrespective of tissue type or fungal
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TABLE 2 | Mean percentage (%) composition of alcohol insoluble residues (AIR) prepared from previously pretreated biomass from Arundo donax, Cortaderia selloana,
Phragmites australis and Miscanthus × giganteus.

Leaf

Glucose Xylose Arabinose Arabinose to Xylose ratio Lignin

NP 30.0 ± 1.0 17.7 ± 0.3 3.0 ± 0.2 0.17 ± 0.01 22.9 ± 0.4 A. donax

WRF 30.3 ± 0.8 17.9 ± 0.1 2.9 ± < 0.1 0.16 ± < 0.01 22.2 ± 0.5

ALK 31.2 ± 1.7 18.9 ± 0.5 3.2 ± 0.2 0.17 ± < 0.01 20.6 ± 0.9

WRF + ALK 32.5 ± 0.3 18.9 ± 0.5 3.0 ± < 0.1 0.16 ± < 0.01 20.3 ± 0.1

NP 30.2 ± 0.9 21.1 ± 0.8 3.7 ± < 0.1 0.18 ± < 0.01 23.8 ± 0.5 C. selloana

WRF 30.1 ± 1.3 20.3 ± 0.8 3.9 ± 0.1 0.19 ± 0.01 23.4 ± 0.2

ALK 33.6 ± 1.5 21.8 ± 0.5 4.2 ± 0.1 0.19 ± < 0.01 23.3 ± 0.6

WRF + ALK 32.5 ± 2.2 21.8 ± 0.5 4.4 ± 0.1 0.20 ± 0.01 22.4 ± 0.3

NP 28.8 ± 2.4 15.8 ± 0.2 2.2 ± 0.1 0.14 ± < 0.01 20.5 ± 0.1 P. australis

WRF 28.0 ± 2.2 16.2 ± 0.7 2.4 ± 0.1 0.15 ± < 0.01 20.1 ± 0.6

ALK 31.9 ± 1.3 17.5 ± 0.4 2.5 ± 0.1 0.14 ± < 0.01 19.6 ± 0.6

WRF + ALK 30.2 ± 1.1 17.7 ± 0.7 2.5 ± 0.2 0.14 ± 0.01 19.1 ± 1.0

NP 33.2 ± 0.6 18.8 ± 0.3 1.8 ± < 0.1 0.09 ± < 0.01 27.8 ± 2.2 A. donax

WRF 33.2 ± 0.3 18.4 ± 0.2 1.9 ± < 0.1 0.10 ± < 0.01 24.3 ± 0.1

ALK 34.7 ± 0.3 19.6 ± 0.1 2.0 ± 0.1 0.10 ± < 0.01 24.3 ± 0.7

WRF + ALK 37.6 ± 1.0 20.6 ± 0.9 1.9 ± 0.1 0.10 ± < 0.01 24.1 ± < 0.1

NP 31.0 ± 0.5 19.1 ± 0.1 3.5 ± 0.2 0.18 ± 0.01 24.9 ± 0.3 C. selloana

WRF 30.1 ± 0.2 18.6 ± < 0.1 3.4 ± 0.1 0.18 ± 0.01 25.0 ± 0.3

ALK 32.1 ± 0.9 19.2 ± 0.6 3.3 ± 0.1 0.18 ± 0.01 23.7 ± 0.7

WRF + ALK 31.7 ± 1.2 19.7 ± 0.8 3.4 ± 0.1 0.17 ± 0.01 23.3 ± 0.3

NP 39.4 ± 1.4 19.2 ± 0.5 2.0 ± 0.1 0.10 ± < 0.01 23.3 ± 0.4 P. australis

WRF 39.2 ± 2.0 19.3 ± 1.0 2.0 ± 0.1 0.10 ± < 0.01 24.0 ± 0.7

ALK 39.3 ± 1.3 19.5 ± 0.2 1.8 ± < 0.1 0.09 ± < 0.01 22.9 ± 0.3

WRF + ALK 41.4 ± 0.4 19.8 ± 0.4 1.8 ± < 0.1 0.09 ± < 0.01 24.5 ± 0.4

NP 38.3 ± 2.9 16.2 ± 0.4 2.2 ± < 0.1 0.13 ± < 0.01 27.0 ± < 0.1 M. × giganteus

WRF 37.8 ± 1.0 15.7 ± 0.2 1.9 ± < 0.1 0.12 ± < 0.01 27.1 ± 0.3

ALK 39.1 ± 0.3 16.3 ± 0.8 2.0 ± 0.1 0.12 ± < 0.01 24.8 ± 0.5

WRF + ALK 39.4 ± 0.3 16.7 ± 0.3 2.0 ± < 0.1 0.12 ± < 0.01 23.4 ± 0.3

Pretreatment acronyms: NP, non-pretreated control samples; WRF, samples pretreated only with Pleurotus ostreatus; ALK, samples pretreated only with 0.1 M NaOH for
24 h at 21◦C; WRF + ALK, samples pretreated with P. ostreatus followed by 0.1 M NaOH for 24h at 21◦C. Values are the mean ± standard error of the sample replicates.

pretreatment, while levels were negligible with other treatments
(see Table 3). Ferulic acid is relatively abundant in grass
cell wall tissues; however, here the amounts of this acid
were relatively low or even absent, apart from leaf tissue
pretreatment liquid fractions obtained from A. donax and
P. australis. This pattern was also reflected in the content of
diferulic acid and diferulic acid cylobutane. These compounds
were observed in other samples but did not show an
obvious relationship with treatment type or species. Certain
compounds did show greater abundance following fungal
pretreatments, however these were not consistent between
species. AHP levels were raised in P. australis treated with
P. ostreatus. However, this was not evident with other
species. A compound with m/z 436 was also observed in
M. × giganteus samples following fungal pretreatment, but
again this observation was only specific to this species.
AHP (apigenin-C-hexoside-C-pentoside) levels increased in
P. australis treated with P. ostreatus, however this was not
evident with other species. This compound was the only
flavonoid observed in these pretreatment liquid fractions with

the exception of the related compound apigenin-C-pentoside-
C-pentoside in A. donax and tricin in C. selloana pretreatment
liquid fraction.

DISCUSSION

Characterisation of the Biomass From
Wild-Grown Spontaneous Grasses in
Comparison to Miscanthus × giganteus
To determine the biorefining potential of spontaneous A. donax,
P. australis and C. selloana from marginal lands in Portugal, their
biomass composition was studied using a variety of analytical
techniques. Furthermore, Miscanthus × giganteus (MXG), a
potential energy crop was included in the study, for comparison
with the wild biomass species. This crop has been proposed
as a dedicated lignocellulosic crop in Europe (Lewandowski
et al., 2000; Heaton et al., 2008), and has been extensively
characterised from physiological, agronomical and potential
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TABLE 3 | Abundance of compounds observed in pretreatment liquid fractions obtained from leaf and stem plant material.

Leaf Stem

NP WRF ALK W + K NP WRF ALK W + K

Coumaric acid ND ND + + + + + + ND ND + + + + + Arundo donax

Hydroxybenzoic acid ND ND Trace + + + ND ND + + + +

Ferulic acid + + + + + ND ND + ND

Diferulic acid isomers + + + + + + ND + + + + + ND ND ND

Ferulic acid cyclobutane isomers + + + + + + + ND + + + + + Trace ND Trace

Apigenin-C-pentoside-C-pentoside ND + ND + + ND ND +

Apigenin-C-hexoside-C-pentoside + + + + + + +++ + + + + +

Coumaric acid ND ND + + + + + + + ND ND + + + + + + Cortaderia selloana

Hydroxybenzoic acid ND ND + + + + + ND ND + + + + + +

Ferulic acid Trace ND ND ND ND ND ND ND

Diferulic acid isomers + + + + + + + + + + + + + + + +

Ferulic acid cyclobutane isomers + + + + + + + + + + + +

Apigenin-C-pentoside-C-pentoside ND ND ND ND ND ND ND ND

Apigenin-C-hexoside-C-pentoside + + + + + ++ + ++ ++ + + + +++ ++ + +

Compound Mr 436 ND ND ND ND ND ND ND ND

Coumaric acid ND ND + + + + + + ND Trace + + + + + + + + Phragmites australis

Hydroxybenzoic acid ND ND + + Trace ND + + + + + +

Ferulic acid + + + + + + + + Trace Trace ND ND

Diferulic acid isomers + + + + + + + + + + + + + + + Trace +

Ferulic acid cyclobutane isomers + + + + + + + + + + Trace + + +

Apigenin-C-pentoside-C-pentoside ND + + + + ND + + + Trace + + + + + +

Apigenin-C-hexoside-C-pentoside ND + + + + ND + + + ND + + + + ND + + + +

Compound Mr 436 ND ND ND ND ND ND ND ND

Coumaric acid ND ND + + + + + + + + Miscanthus × giganteus

Hydroxybenzoic acid ND ND + + + + + + +

Ferulic acid Trace Trace ND ND

Diferulic acid isomers ND + Trace Trace

Ferulic acid cyclobutane isomers ND + + + +

Apigenin-C-pentoside-C-pentoside ND ND ND ND

Apigenin-C-hexoside-C-pentoside ND ND ND ND

Compound Mr 436 ND + + + + ND + + + +

The apigenin-C-hexoside-C-pentoside (AHP) compound schaftoside is commonly reported in grasses, however there are other flavonoids that are also relatively abundant
in grasses. Furthermore, there are also reports of flavonoid biosynthesis in white rot fungi (Gąsecka et al., 2015). Pretreatments: NP, non-pretreated control samples
(incubated only with water); WRF, samples pretreated with Pleurotus ostreatus; ALK, samples pretreated with 0.1 M NaOH for 24 h at 21◦C; W + K, samples pretreated
with P. ostreatus followed by 0.1 M NaOH for 24h at 21◦C. The symbol “ + ” indicates levels detected, ND, not detected; Trace, very low levels detected.

application perspectives down to its cell wall composition and
structure (de Souza et al., 2015; Clifton-Brown et al., 2016;
Lewandowski et al., 2016; Van Der Weijde et al., 2016; da Costa
et al., 2018; da Costa et al., 2019; Bhatia et al., 2021).

The contribution of leaf biomass to total biomass has not
been determined in the present work. However, these percentages
were previously determined in a range of Miscanthus genotypes
(da Costa et al., 2014). Comparably to what was shown in that
study, as the bauplan of A. donax, C. selloana and P. australis is
similar to that of Miscanthus spp., leaf percentage contributions
should also represent ca. 50% of total biomass in non-senesced
plants (ranging between 40% – 60%). The separate analysis of
leaf and stem, instead of pooled total above-ground biomass, as
each of these types of biomass have very distinct properties in a
biorefinery context.

Alcohol insoluble residues (AIR) were prepared from non-
pretreated biomass samples from leaf and stem from the four
grass species under study. From this material, neutral sugars, and
acetyl bromide soluble lignin contents were determined. In all
spontaneous species glucose and lignin content was higher in
stems than in leaves, whereas for arabinose the amounts were
higher in leaves. These values agree with previously reported
data for grass species (Mann et al., 2009; Shen et al., 2009;
Le Ngoc Huyen et al., 2010; da Costa et al., 2017). Xylose
contents are higher in stems for A. donax and P. australis,
which agree with the values reported elsewhere. However, for
C. selloana, xylose contents are higher in leaves. No reports
could be found in the literature about Cortaderia spp., however
higher xylose percentages in stems would be expected for
a grass species.
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The cell wall molar ratio of arabinose to xylose can be
used as indicator of the degree of arabinose substitution in
arabinoxylans, which are the most abundant hemicellulose
compounds in grass cell walls (Carpita, 1996). Arabinose to
xylose ratios have been positively correlated with enzymatic
saccharification efficiency of glucose (da Costa et al., 2019), and
may be a good indicator of the potential applications of biomass
crops. These ratios are typically highest in leaves and lowest
in stems (Rancour et al., 2012), which agrees with the values
observed for A. donax (0.17 in leaves and 0.09 in stems) and for
P. australis (0.14 in leaves and 0.10 in stems). However, in C.
selloana the arabinose to xylose ratio is the same in leaves and
in stems (0.18).

The AIR from non-pretreated biomass from M. × giganteus
stems contained 38.3% of glucose, 16.2% of xylose, 2.2% of
arabinose and, 27.0% of lignin (Figure 6 and Table 2). These
values are in accordance with previously reported determinations
in 8 miscanthus genotypes harvested from the same location
(da Costa et al., 2019). For each cell wall trait, a comparison
can be made between these values and those of stem biomass
from the spontaneous grasses under study. For glucose, the stems
of P. australis contain higher amounts of glucose (39.4%) than
M. × giganteus, whereas all three spontaneous species contain
higher amounts of xylose (A. donax: 18.8%; C. selloana: 19.1%;
P. australis: 19.2%), whereas lower amounts of lignin are found
in C. selloana and in P. australis (24.9% and 23.3% respectively).

From the FTIR-ATR analysis it was observed that the spectra
of AIR prepared from leaf biomass are mostly significantly
different in regions ascribed to hemicelluloses, namely to acetyl-
xylans (bands a 1736 – 1730 cm−1; g 1060 – 1055 cm−1; Table 1),
to lignin (bands c 1322 – 1310 cm−1; d 1275 – 1256 cm−1

and e 1240 – 1235 cm−1), and to amorphous cellulose (band
j 898 – 890 cm−1). With respect to xylan, bands a and g
are highly positively and significantly correlated to each other
(r > 0.8; p < 0.01). For the lignin-associated bands c, d and
e, the decreasing band intensities across the grass species (C.
selloana > A. donax > P. australis; Figure 2) coincide with
the corresponding lignin determinations (Figure 6 and Table 2)
in non-pretreated leaf biomass: C. selloana (23.8%), A. donax
(22.9%) and P. australis (20.5%). Furthermore, spectral regions e
and d are highly positive and significantly correlated to each other
(r > 0.9; p < 0.01; Supplementary Figure 1). Finally, for band j,
which has been assigned to amorphous cellulose, its decreasing
intensity across the grass species (A. donax > C. selloana > P.
australis; Figure 2) agrees with determined glucose percentages,
as C. selloana and A. donax have the highest glucose values (30.2%
and 30.0% respectively), and P. australis has the lowest (28.8%;
Figure 6 and Table 2).

FTIR-ATR spectral bands showing the greatest significant
differences in AIR from stems, for the different grass species
(Figure 2) include: h (1060 – 1055 cm−1), i (1035 – 1030 cm−1)
and k (898 – 890 cm−1). Although these bands have all
been attributed to cellulose (Table 1), correlation analysis
(Supplementary Figure 1) shows that while h and i band
intensities are highly positively correlated to each other (r > 0.9;
p < 0.01), they are both highly negatively correlated to band k
(r < −0.9; p < 0.01), which has been associated with amorphous

cellulose structures. The intensities of band k decrease across the
grass species in the following order: P. australis > A. donax > C.
selloana. This agrees with the order of their respective glucose
contents (Figure 6 and Table 2): P. australis (39.4%), A. donax
(33.2%) and C. selloana (31.0%). By contrast, the trend in the
intensities of bands h and i are the inverse of those glucose
contents: C. selloana > A. donax > P. australis (Figure 2). It
is plausible that bands h and i are associated with crystalline
cellulose structures, and their abundance varies inversely to that
of amorphous cellulose structures. Concomitantly, given that
the acid hydrolysis performed for the determination of glucose
content does not hydrolyse 100% of crystalline cellulose (Torget
et al., 2000), more glucose may be released from biomasses
with higher amorphous cellulose content. Furthermore, band
g (1170 – 1160 cm−1), which has been assigned to vibrations
in glycosidic links (Table 1), is also a significantly different
spectral region between the grass species. This also agrees with
the interpretation that there are significant alterations in the
structure of the main cell wall polysaccharides, which may be
related to the crystalline arrangement of cellulose.

Lastly, bands f (1240 – 1235 cm−1) and l (840 – 830 cm−1),
which have respectively been ascribed to vibrations in xylan
and lignin structures, are significantly different between the
stem biomass of grass species, despite not being reflected in the
xylose and lignin percentage determinations made for the stem
biomasses of these species (Figure 6 and Table 2). Nonetheless,
these associations made for leaf and stem biomass provide strong
evidence that the bands assigned according to the literature
are indeed strongly correlated with the corresponding cell wall
compounds in the grasses being studied.

Mild Alkali Pretreatment and Impact on
Saccharification
Alkaline pretreatments have been considered to increase
the biodegradability of lignocellulosic feedstocks (Jackson,
1977; Sharma et al., 2013). Mild alkali pretreatments
are known to result in a controlled de-esterification
of the biomass samples, minimising lignin and
carbohydrate losses (Kong et al., 1992; Chen et al., 2013;
Chen et al., 2014).

To further understand the potential of the studied grass
biomasses for applications in biorefining, AIR samples
were treated with a mild alkali pretreatment followed by
enzymatic saccharification. The alkali pretreatment had a
significant effect on saccharification (p ≤ 0.05; Figure 5),
as AIK yields were on average 2-fold higher than AIR.
However, the increase varied between the species and organs
(Supplementary Table 1). The most substantial effect of the
alkali pretreatment was seen in C. selloana, as AIK yields
were 3.3-fold higher in leaves, and 2.5-fold higher in stems. In
stems of A. donax the increase was 2.7-fold in AIK samples,
whereas for the remaining samples, saccharification yield
increases ranged between 1- and 2-fold. In comparison to
M. × giganteus, all spontaneous grass species showed higher
saccharification yields.

Frontiers in Plant Science | www.frontiersin.org 14 July 2021 | Volume 12 | Article 679966

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-679966 June 29, 2021 Time: 16:6 # 15

da Costa et al. Biorefining Potential of Wild-Grown Species

FTIR-ATR analysis (Figure 3) showed clear differences
between AIR and AIK samples at spectral regions a (1736 –
1730 cm−1; assigned to C = O stretching in acetyl-xylans) and
f (1240 – 1235 cm−1; attributed to C-O vibrations of acetyl
(Table 1). The intensity of these bands is reduced in pretreated
biomass and is observed across all grass species. However, the de-
acetylation effect appears to be more complete in stem biomass
than in leaves. This is presumably due to the presence of higher
amounts of secondary metabolites in leaves, given their more
diversified physiological roles, when compared to stems.

It has been reported that alkaline saponification during mild
alkali pretreatment is able to release acetylester substituents
from heteroxylans in grass cell walls (da Costa et al., 2017).
This agrees with our results, that the most noticeable and
consistent compositional differences between AIR and AIK
samples is seen with bands associated to xylan and acetyl
substituents. These differences are the result of the loss of acetyl
groups in the biomass, specifically in xylans, as O-acetylated
xylan is the main source of acetylesters in grass cell walls
(Pauly and Scheller, 2000).

Direct determination of acetylester concentrations was not
performed in the present study. However, HPLC-PDA-ESI-MSn

was performed for the compositional analysis of the supernatants
derived from the alkali pretreatment (Table 3). Coumaric
acid, ferulic and diferulic acid isomers were observed in the
liquid fractions from all alkali-pretreated biomasses. Feruloyl,
diferuloyl and p-coumaroyl esters are abundant compounds
bound to cell wall structures, namely to arabinoxylans, the
main hemicellulose found in grasses (Williamson et al., 1998;
Määttä-Riihinen et al., 2004). This observation corroborates
that the mild alkali pretreatment promotes the hydrolysis
of ester linkages, partially removing esterified substituents
that may inhibit saccharification (Grohmann et al., 1986;
Kong et al., 1992; Ishii, 1997; Buanafina et al., 2006; Pawar
et al., 2013). Furthermore, by breaking ester bonds that
cross-link polysaccharides with each other and with lignin,
cellulose becomes more accessible to hydrolytic enzymes
(Hendriks and Zeeman, 2009; Xu et al., 2012; Li et al., 2013;
Wyman et al., 2013). The removal of ester-linked coumaric acid,
which is known to be mostly bound to lignin (Sun et al., 1998;
Grabber et al., 2004), may also compromise lignin structure thus
deteriorating cell wall integrity. Additionally, some separation
of lignin from the structural polysaccharides may be promoted,
and a similar hypothesis has been presented by Paripati
and Dadi (2014) as an explanation for the mechanism of
action of a mild alkali treatment. Indeed, lignin content was
slightly decreased in all alkali-pretreated biomass (Figure 6
and Table 2), although this was only significant in stems of
M. giganteus.

It was shown that mild alkali does not cause significant loss of
individual neutral monosaccharide components (Table 2).
In fact, the percentages of individual monosaccharides
are typically higher in alkali-pretreated samples than in
non-pretreated (Figure 6), although this is likely to be
due to an increase of efficiency of the acid hydrolysis.
Nonetheless, it has been previously demonstrated that even
low concentrations of alkali can extract pectin from grass

cell walls (da Costa et al., 2017). Although it did not emerge
as significantly different (p ≤ 0.00001), a spectral region
centred at 1103 cm−1 showed a marked increased intensity
in C. selloana stems (Figure 2). This band has been ascribed
to pectic polysaccharides (Coimbra et al., 1999; Kačuráková
et al., 2000; McCann et al., 2001). Pectic polysaccharides
were not directly quantified in this study. However, despite
grass cell walls containing low amounts of pectin (Carpita,
1996), they play important roles in maintaining structural
integrity (Tan et al., 2013; Lionetti et al., 2015; Biswal et al.,
2018). It is plausible that higher pectin contents could make
stems from C. selloana more prone to degradation than other
grass species when treated with 0.1 M NaOH. Thus partly
explaining the higher saccharification yields observed in this
biomass (Figure 5).

Effects of White-Rot Fungi
Pretreatments in Grass Biomasses
The relevance of using WRF-mediated biomass pretreatments
is that these organisms can degrade lignin more readily than
holocellulose (Valmaseda et al., 1991; Taniguchi et al., 2005;
Abdel-Hamid et al., 2013; López et al., 2017). By comparing
the FTIR-ATR spectra of stem biomass treated with WRF
with the spectra from NF controls, it was observed that
they are less affected by the fungal pretreatment than leaves
(Figure 4). According to the modifications in the FTIR-ATR
spectra of leaves, it is in A. donax and P. australis biomass
that the most noticeable effect of the WRF treatment is
observed, particularly in spectral region b (1625 – 1635 cm−1)
and an adjacent band centred at 1600 cm−1, which have
respectively been correlated with non-esterified carboxyl groups
in polysaccharides (Table 1), and aromatic ring stretching
(Pandey and Pitman, 2003; Bekiaris et al., 2015). This observation
may be the consequence of WRF-mediated de-esterification
and modification of ester-linked phenolic hydroxycinnamates
involved in cell wall polymer cross-linking (Ishii, 1997; Ralph,
2010). As HPLC-PDA-ESI-MSn was used to characterise the
liquid fractions produced during the incubation with WRF,
it was observed that in leaves treated with P. ostreatus, for
all plant species, the liquid fractions contained ferulic and
diferulic acid isomers. Whereas in stems, these compounds were
detected only at trace levels, or not at all, in A. donax and in
M. × giganteus (Table 3).

WRF are known to secrete a diversity of feruloyl and
coumaroyl esterases (Akin et al., 1995; Linke et al., 2013;
Nieter et al., 2014; Dilokpimol et al., 2016; Kelle et al., 2016)
which catalyse the hydrolysis of ester bonds between ferulic
and coumaric acids and plant cell wall polysaccharides. In our
experiments, except for A. donax stems, in all biomass treated
with WRF, ferulic or diferulic acid isomers were released. By
contrast, coumaric acid was only detected at trace levels in P.
australis stems, not being found in any other biomass. This
observation agrees with reports from other authors who have
demonstrated that ferulic acid primarily, but also coumaric acid,
are removed in grass biomass treated with WRF, breaking cell wall
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cross-links and improving saccharification (Agosin et al., 1985;
Valmaseda et al., 1991).

In the saccharification assay performed in this study, although
the differences in relation to the controls were statistically
significant in few cases, further interesting inferences can be
drawn by interpreting the absolute values. The saccharification
yield of A. donax leaf biomass was increased when incubated
with P. ostreatus, while in stems, these yields were increased
in A. donax, C. selloana and P. australis, when treated with
G. lucidum. In M. × giganteus stem, when treated with
T. versicolor, saccharification yield increased in relation to
the control. However, in the remaining cases, when samples
are treated with WRF, the saccharification yields were lower
than the controls (Figure 5 and Supplementary Table 1).
This is presumably due to the release of enzyme-inhibitory
compounds during fungal action. It is known that pretreatment-
derived soluble compounds can inhibit saccharification, via
steric hindrance for binding of hydrolytic enzymes (Biely,
2012; Pawar et al., 2013; Zhai et al., 2018). To address
this issue and enhance pretreatment efficiency, a mild alkali
pretreatment was employed (0.1 M NaOH; 24 h; 21◦C),
which substantially increased saccharification yields in relation
to their non-alkali treated counterparts. Once again, looking
at the absolute values, in comparison to the controls, in
some cases, the results suggest that a synergistic effect does
indeed occur when the WRF and mild alkali pretreatments
are combined. Namely, in C. selloana leaves treated with alkali
and P. ostreatus, the saccharification yield was 637.9 nmol
mg−1, which is higher than the samples treated only with
alkali (615.1 nmol mg−1), and almost 2-fold higher than the
non-pretreated controls (359.0 nmol mg−1). In stems treated
with alkali subsequently to the WRF pretreatment (Figure 5
and Supplementary Table 1), similar relationship can be
established for: A. donax treated with G. lucidum, T. versicolor
and P. ostreatus; C. selloana treated with T. versicolor and
P. ostreatus; and M. × giganteus treated with T. versicolor.
In all these cases the saccharification yield of biomass
treated with a combination of WRF and the mild alkali
pretreatment was higher than that of samples treated only
with alkali and, than non-pretreated controls. Furthermore, in
all these combinations, lignin content in pretreated samples
is lower than in non-pretreated controls (Table 2 and
Figure 5). It is likely that some lignin loss, detachment, or
structural alteration is responsible for the increase seen in
saccharification.

Under the tested conditions it cannot be excluded that
a synergistic effect of combined WRF-ALK pretreatments is
responsible for a disruption of cell wall integrity. These
modifications are likely to be at the level of cell wall polymers,
namely in lignin, and in ester-bound substituents, such as ferulic
acid. Ultimately, a structurally compromised cell wall would be
more susceptible to hydrolysis by cellulolytic enzymes, leading to
increased saccharification yields.

Conclusions and Final Remarks
Arundo donax, C. selloana and P. australis are grass species
that grow spontaneously throughout Southern Europe, including

Portugal. By characterising their biomass, potential applications
can be proposed, contributing to their economic valorisation.

Some compositional variation will be expected between
individuals due to heterozygosity of wild populations.
Nonetheless, as the aim of this study was to probe the
potential value of wild-grown biomass from various species,
a compromise had to be made in terms of the number of
replicates. When compared to M. × giganteus composition, a
potential lignocellulosic crop, the three spontaneous grass species
showed higher xylose content, higher glucose in P. australis and
lower lignin in C. selloana and P. australis. Furthermore,
saccharification yields are higher in A. donax, C. selloana and P.
australis, than in M. × giganteus. Our results suggest that the
biomass from spontaneous grasses has a comparable biorefining
potential as M. × giganteus. To this, there is an added advantage
that A. donax, C. selloana and P. australis occur spontaneously
on marginal lands; which mostly consist of lands that have been
abandoned due to relocation of agriculture, low productivity, or
with physical or environmental constraints to agriculture (Daily,
1995; Campbell et al., 2008; Cai et al., 2011; Dauber et al., 2012;
Pancaldi and Trindade, 2020). Considering these observations,
future studies will be drawn to assess how the heterozygosity of
the biomass affects valorisation potential across a wild population
and between different geographic origins.

Lignocellulosic biomass from high-biomass-producing
grasses, such as those studied here, can be a raw material
to produce a wide range of industry-relevant products.
However, biorefinery of plant biomass is limited by cell
wall recalcitrance. To address this issue, this study also
involved the application of fungal pretreatments, with
or without a combination with mild alkali, followed by
saccharification, and pretreatment liquid fraction analysis.
This study has contributed to the characterisation of the
mechanism of action of the employed pretreatments. In the
biomass of the grass species being studied, both the WRF
and the mild alkali approaches seem to act mainly by de-
esterification of the biomass, breaking crosslinks between
the cell wall polymers, thus increasing its porosity and
allowing better access to hydrolytic enzymes. Significant
amounts of coumaric, ferulic and diferulic acid, among other
compounds, were released during the WRF and mild alkali
pretreatments. Furthermore, a possible synergistic effect was
also revealed, as the effect of combining the alkali and the WRF
pretreatments produced higher saccharification yields than a
given pretreatment on its own.

One of the aims of lignin-first approaches is to obtain fewer
but uniform products from biomass fractionation through the
application of milder pretreatments (Korányi et al., 2020). This
study suggests that fractionation approaches where combinations
of WRF and mild alkali are used may represent a strategy for
controlled depolymerisation of lignin. However, further work is
required to optimise these methodologies.

This work represents the first study where the biorefining
potential of spontaneous A. donax, P. australis and C. selloana
from marginal lands is assessed in comparison to a trial field-
grown lignocellulose-dedicated crop such as M. × giganteus.
These spontaneous grasses were previously uncharacterised
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in a biorefining context. Thus, compositional characterisation
data generated here will contribute to the advancement of
novel lignocellulosic crops and opportunities to valorise these
resources. This, in turn, may contribute to industry and create
capital, as a new economic crisis is arising. Additionally, the
potential added value to these spontaneous grass species may
create a monetary incentive for voluntary biomass culling
by landowners, thus contributing to reduce excessive biomass
accumulation in marginal and unused lands, providing new uses
for these areas and vegetation.
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Supplementary Figure 1 | Correlation matrix between the spectral bands of
interest most significantly different FTIR-ATR spectral regions between the different
grass species (cm−1): (a, 1736 – 1730; b, 1625 – 1635; c, 1515 – 1505; d,
1322 – 1310; e, 1275 – 1256; f, 1240 – 1235; g, 1170 – 1160; h, 1060 – 1055; i,
1035 – 1030; j, 993 – 985; k, 898 – 890; l, 840 – 830). See main text and Table 1
for more information.

Supplementary Table 1 | Saccharification of leaf and stem biomass (nmol mg−1)
from four poalean species measured by a high-throughput saccharification assay
after 8 h incubation in a hydrolytic enzyme mixture. See main text for more
information. Acronyms: AIR, alcohol insoluble residue; AIK, alcohol insoluble
residue treated with a 0.1 M NaOH mild alkali pretreatment; NF, no fungi; GAN,
Ganoderma lucidum; PLE, Pleurotus ostreatus; TRA, Trametes versicolor. Values
are expressed as mean ± standard error.

Supplementary Table 2 | Percentage of recovered biomass after white-rot fungi
(WRF; 30-day incubation) and mild alkaline 0.1 M NaOH for 24 h at 21◦C
(ALK) pretreatments.
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