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INTRODUCTION

The strategic goals of the “Consultative Group on International Agricultural Research”
(CGIAR), which serves small-scale agricultural producers in the developing world, include the
increase of nutrition and food security, the reduction of poverty, and the reduction of the
“environmental footprint” of agricultural production systems (https://www.cgiar.org/how-we-
work/strategy/). For each of these goals, progress can be made by breeding new crop varieties with
increased productivity, stress resilience, nutritional value, and reduced requirement for fertilizer
or agrochemicals.

Despite the great success of CGIAR breeding in the last decades, we posit that quantitative
genetics principles must be more strongly emphasized in breeding strategies to keep pace with the
accelerated demand and with changes in production conditions resulting in a growing demand for
food, climate change and newly introduced breeding objectives -such as nutritional quality.

Traditionally, molecular breeding approaches focused on the identification of major genes, often
for disease resistance, and the introgression of these alleles into elite material. This has been a
fruitful strategy to prevent or mitigate production losses since disease resistances are essential traits
for most target populations of environments (TPEs). However, the focus on major genes for disease
resistances may also have slowed down genetic gain for yield in some programs. We advocate
the redesign of breeding pipelines with a stronger orientation on quantitative genetics principles,
optimizing the components of the “breeder’s equation” to deliver a high selection response for
quantitative traits like yield. Moreover, to improve the basis on which selection decisions are made,
we propose an open-source breeding approach in which individual public and private institutions
collaborate, align their activities, and share data to enhance efficiency for all participants.

We will briefly present the breeder’s equation and highlight the terms that can be manipulated
to increase genetic gain per time and per dollar invested. We will also present some guidelines
recommended by the Excellence in Breeding (EiB) platform to optimize the selection response in
a classical breeding scheme. We then discuss how genome-assisted prediction methods (genomic
selection, GS) can be used for further optimization.

THE BREEDER’S EQUATION

In its simplest form, the breeder’s equation for one trait, or even a composite of traits integrated
in a selection index, states that the genetic gain per unit of time, expressed as the difference of the
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means of the (additive) genetic values before and after selection
(1µ) divided by time t, is given by:

1µ

t
=

(h2 i σp)

t

Here, h2 is the narrow sense heritability, i is the standardized
selection differential, that is the difference in phenotypic standard
deviations between the mean of the selected fraction and the
mean of the initial population, and σp is the phenotypic standard
deviation of the population before selection (modified from
Lynch andWalsh, 1998). The cycle length t in years describes the
time needed for one breeding “cycle” including recombination,
evaluation, and selection of parents for the new set of crosses.
The breeder’s equation highlights the parameters that can be
optimized to increase genetic gain per unit of time. We can
increase the accuracy of our selection, h2 for instance, by
improving trial quality or increasing replication. We can increase
the selection intensity i by selecting fewer individuals, or from a
greater number of candidates (or both). Finally, we could reduce
the cycle time t by shortening the time from cross to evaluation
and to crosses of selected progeny (rapid generation advance).

RECOMMENDATIONS FOR THE DESIGN
OF PROGRESSIVE BREEDING PIPELINES

The Excellence in Breeding (EiB) platform (https://
excellenceinbreeding.org/) provides guidance to the
CGIAR system and its national partners on the successful
implementation of genomic prediction methods. EiB has
proposed, as a first step, to optimize classical programs by
addressing resource allocation in the light of the breeder’s
equation, which may sometimes require a radical redesign of
the pipeline. The routine use of genomic selection to select
parents is then implemented in a second iteration. EiB has
modeled many of the breeding pipelines of CGIAR centers
in detail and has evaluated a range of approaches to crossing,
evaluation, and selection decisions in simulations. Some general
recommendations are summarized below:

1) Formalize the breeding objective by defining market
segments and corresponding product profiles describing the
“ideal” product.

Point (1) guarantees that we clearly define in which direction
we would like to breed. Moreover, market intelligence from
a wide range of sources can be brought to bear on variety
design (Cobb et al., 2019). We do not advocate for a
particular methodology but emphasize the importance of
investing resources in de- and refining the breeding goal. Client
and market intelligence can be assembled from participatory
plant breeding approaches (Witcombe et al., 1996; Ashby,
2009; Ragot et al., 2018) for subsistence-oriented systems, but
product design for market-oriented cropping systems requires
formal engagement with farmers, processors, and marketers to
ensure that breeding objectives result in products that are both
producible and marketable.

2) Form the crossing blocks out of small elite populations of
20–301 parents (avoid closely related individuals) and keep
the crossing block as a mostly closed system. Use diversity
measures and the variance of the traits defined in the product
profile to monitor the diversity in the population over time.

Point (2) allows concentration on the “most elite” material (i.e.,
material with high breeding or genetic value) for our breeding
objectives, which increases selection intensity (i). Moreover, a
smaller effective population size avoids unnecessary crossing and
testing, which saves resources. Experimental populations, theory
and simulations show that a small number of elite individuals
contain enough variance to avoid genetic bottlenecks in short
and medium-term breeding time-horizons (Moose et al., 2004;
Gaynor et al., 2017). This recommendation is linked to the
breeder’s equation by effectively managing the genetic variance
and optimizing selection intensity.

3) The rate of new “diversity” injected into the pipeline each
cycle should be low rather than high, which means parents
of a cycle should be mainly chosen from the progeny of the
previous cycle (recurrent selection strategy). New diversity
(e.g., alleles conferring disease resistance) should be mainly
injected in the form of donors of elite background with high-
value haplotypes that do not currently exist in the population.
This diversity must be carefully introduced to minimize
linkage drag associated with new resistance alleles.

The restriction of the input of new diversity in point (3) is critical
to the success of methods such as pedigree BLUP (Best Linear
Unbiased Predictor) or genomic BLUP to improve the accuracy
of selection of parents for the subsequent cycle. A certain degree
of relatedness is required for these methods to be accurate. In
addition, introgressing too many new parents can reduce the
accuracy of quantitative genetics methods (Lynch and Walsh,
1998; Walsh and Lynch, 2018). When a recurrent selection
strategy is used properly, almost any introgression would be a
step backwards in terms of general performance and breeding
value, and should only be used for special trait introgression or
if genetic variance has been exhausted (Allier et al., 2020). This
recommendation is linked to effectively managing the genetic
variance in breeder’s equation.

4) Formalize the crossing, evaluation, and selection decisions as
variables in a process that is comprised of different stages (e.g.,
crossing blocks, nursery, early testing, late testing, etc.).

The formalization described in point (4) is required to apply
selection criteria consistently and to characterize the breeding
scheme more easily for simulations (point 5) and continuous
improvement processes.

5) Changes in crossing, evaluation or selection procedures
and resource allocations should be supported by simulations

1The number of elite parents is suggested for 30-year breeding time horizon of a

classical program that takes between 3–5 years to recycle parents. In addition, the

number of elite parents in the crossing block must be increased when adopting

an aggressive GS scheme (recycling F1s) because the number of effective cohorts

decreases drastically.
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or experiments measuring the effect of the change on
genetic gain while considering other influencing parameters,
including costs.

It is critical that all the steps and processes used in the
breeding pipeline be accurately costed, permitting simulation and
modeling to be used to allocate resources to maximize the rate of
genetic gain delivered per year and per dollar spent.

6) Use and document selection indices or independent culling
to formalize the selection decisions when breeding for several
quantitative traits simultaneously. The goal should be to make
parent selection as objective and “data-driven” as possible,
such that anyone having the underlying data can understand
how the selection decision was made. All traits which are
included in the selection decision should also be formally
included in the recorded data and in the description of the
selection criteria.

Selection indices allow application of selection criteria more
consistently, can increase the selection intensity for several traits
simultaneously and make use of genetic correlations between
traits, if they are approximately known (Lynch andWalsh, 1998).

7) Use a data management and analytical system as a high
priority to enable the analytical pipelines.

Adoption of analytical methods such as state of the art
experimental design, spatial modeling to increase accuracy, and
use of BLUP are all critical to acceleration of genetic gains.
Organized, digitized data collection and storage and querying
systems linking phenotypic, pedigree, and genotypic data are
required to provide predictions routinely and rapidly. This
recommendation is linked to all terms of the breeder’s equation
since better datamanagement and analytics lead tomore accurate
selections, better management of diversity and in general to more
accurate decisions.

8) According to the number of plots available and the breeding
time-horizon, optimize the number of crosses and progeny per
cross to maximize variation among and within families that
can be selected.

The trade-off between allocating resources between number
of families and family size will depend on factors like
the number of traits included in the product profile,
their genetic correlations and the time that we expect
our breeding program to operate (longer periods benefit
of putting more resources in the number of families
and shorter breeding periods benefit of putting more
resources in bigger families). We recommend the use of
simulations to approach this question. This recommendation
is linked to the breeder’s equation by optimizing the
selection intensity.

9) Parents for recycling should be selected from the first one
or two testing stages of phenotyping yield (early recycling)
to reduce cycle length. Also, breeders should avoid using
the same parent repeatedly for several years in new crosses,
which substantially lengthens the breeding cycle. Indeed, with

emphasis on a short cycle time, selected progeny from a parent
should always be preferred to the parent itself.

Shortening the breeding cycle while maintaining confidence in
the selection of parents will often require reallocation of resources
to improve data quality and quantity of the first and second
testing stages of phenotyping.

10) Multiplication time (e.g., line generation, clonal
propagation) should be reduced to the minimum possible
(aiming for an overall cycle time as short as biology allows. For
example, in seed crops that might be 2–3 years), leveraging
new methodologies such as speed breeding, semi-autotrophic
hydroponics, among others.

A successful example of renewing a traditional breeding pipeline
at the International Rice Research Institute (IRRI) has been
described at by Collard et al. (2019).

An overview, as well as a more detailed description of the
different simulations supporting the recommendations above,
can be found in the toolbox of EiB (https://excellenceinbreeding.
org/toolbox). Once an aggressive classical breeding program
with most of the features described above has been implemented,
the adoption of genome-assisted prediction methods is
recommended for parent selection. Implementation may follow
the approach suggested below.

INCORPORATION OF GENOMIC
SELECTION IN THE BREEDING STRATEGY

Much plant breeding literature on genomic selection (GS) focuses
on predictive ability, especially the prediction of the performance
of a selection candidate in the absence of any phenotypic data.
Predicting the commercial performance of material that has
not been phenotyped, which would mean that we substitute
experiments with predictions, is an important application of GS,
but it is not necessarily the most impactful one, especially not
for small programs. The most important application of GS is the
inference of the individual’s genomic estimated breeding values
(GEBV) from the phenotypes of its available relatives, for the
purpose of selecting parents of the next cycle. In the context
of population improvement, with the objective of maximizing
genetic gain per year, we are not primarily interested in the
phenotype of a selection candidate itself, but rather would like to
knowwhich candidates we should select as parents of new crosses
to achieve the highest improvement in the new generation. The
breeding value aims at capturing the improvement of the new
generation when randomly crossing the line under consideration
with other lines of the population (Mrode, 2014).

The first simple step in applying GS is therefore increasing
accuracy by the use of the GEBV as the selection criterion,
instead of EBV or phenotypes in isolation. This application can be
incorporated into any breeding pipeline, usually at the agronomic
testing stage, provided that genotypic data is available. Moreover,
the resulting increase in accuracy can also give more freedom
to reduce cycle time t, for instance by allowing parents to be
selected from the first stage of agronomic testing (see point 9
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above) due to the increased accuracy of surrogates of trait genetic
merit compared to pure phenotypic information.

A second step could be the use of GS for sparse phenotyping.
Sparse phenotyping means that not each genotype is tested in
each environment, but some genotypes are tested at only a
subset of locations. Such an approach can increase the accuracy
of the estimation of genetic values by sampling from more
environments, which again reduces the error resulting from
genotype-by-environment (GxE) interaction. Moreover, sparse
phenotyping can be used to increase the number of candidates
tested which increases selection intensity. Both, increasing the
number of environments and increasing the number of tested
candidates can be approached by sparse testing subjected to
fixed costs. GS helps to keep the data quality when reducing
the data points and models including genotype-by-environment
(GxE) effects can be of additional advantage (Jarquin et al.,
2020).

A third application of GS is to recycle selection candidates
as early as possible (e.g. nursery stage) based on their GEBVs,
or genomic estimated genetic value (GEGV; additive plus non-
additive effects). The training population should be formed
by phenotypes generated from related candidates from the
same program (not exotic diversity panels) phenotyped in
previous seasons.

The fourth step in applying GS is to use genomic marker
information to predict the crossing process, e.g., not only the
expected performance of genotypes coming from a certain cross,
but also the variability within a family of siblings. This can be

used to optimize family sizes for different crosses, and to use
predicted within family variance to maximize long-term gain.

For these points see for instance Cobb et al. (2019), Clark et al.
(2013), Lehermeier et al. (2017), Gorjanc and Hickey (2018) and
Henryon et al. (2019),Werner et al. (2020). Any of these steps can
be incorporated independently, but the order proposed reflects
an increasing level of complexity of the related logistics, and
therefore may lead to a more successful implementation of GS.

OPEN SOURCE BREEDING

CGIAR centers together with NARs breeding centers form
networks that phenotype and disseminate breeding materials
that primarily originate from CGIAR centers. We envision an
“open-source” breeding model that combines resources from
different public and/or private partners for the benefit of all
participants (intellectual property questions would need to be
addressed to make a participation attractive for private partners).
GS would permit the pooling of experimental data from different
institutions that work within the same TPE. This would enable
a better coverage of the TPE through a stronger testing network
that shares (highly) related material. This way, CG centers, NARs
and local companies could “borrow strength” from each other
by sharing data on a central platform (Atlin and Jannink, 2010).
A similar approach is currently used in dairy breeding, where
the data are centrally processed and managed. In the context
of public plant breeding, this would mean that the data from
participating programs is jointly used to generate a stronger,

FIGURE 1 | Organization of open-source breeding: A hub receives the data (phenotypes and genotypes) from different programs or companies and makes the data

available as training sets to enable the different ways of using genomic prediction (see main text).
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more accurate prediction model than any single program could
generate independently. A hub could then manage a source
population and deliver lines or clones to local partners who
could utilize the lines in a product development pipeline and give
the experimental results back to the central data management
unit (see Figure 1). Moreover, they could also use the lines as
parents in their own pipelines. No CGIAR breeding networks
have yet been formally constituted as open-source GS networks,
but several have begun generating GEBVs for all new selection
candidates and are therefore ready to implement the model
with their national partners. The open-source GS network model
has many advantages, including allowing breeding programs
serving small-scale producers in the developing world to make
selections and advance populations even when trials are lost to
biotic or abiotic stress, or when disruptions such as a human
pandemic hamper or prevent field testing, as happened in many
breeding programs in 2020–2021. The open-source GS model
will also permit highly efficient, two-stage rapid-cycle recurrent
GS methods (Gaynor et al., 2017) that can reduce the breeding
cycle to the biological limit imposed by the juvenility period of
the species (time interval needed to move from seed to seed in
seed cropsmay be 1 year or less but in tree speciesmay be a couple
of years) to be applied in the service of small-scale producers
in Africa.

CONCLUSION

An efficient implementation of genomic prediction methods in
CGIAR-NARs breeding programs (and maybe other publicly
funded programs) depends on forming structured programs that
follow certain design rules. Such programs must be outcome-
oriented, with well-defined targets expressed in formal product
profiles that guide selection decisions. We suggest that the first
step in this process is to implement a classical breeding pipeline
optimized based on quantitative genetics principles (reducing
cycle time to the biological limit while increasing the accuracy
of early testing and managing the genetic diversity at the proper

program size). From there, the adoption of GS methods will be

a natural extension guided by the breeder’s equation. A first step
would then be the use of GEBVs as selection criteria instead of
phenotypic data in isolation. The breeding populations should be
(almost) closed, using a relatively small number of elite parents.
In the next steps, GS should be used to reduce evaluation costs
while increasing the coverage of the TPE using sparse testing
supported by marker data. Moreover, GS should be used to
reduce the breeding cycles down to 1 year in a stepwise fashion
for most crops if the phenotyping and selection methods are
up to the challenge (data for all traits and use of indices is a
pre-requisite for the most extreme use of GS). Simultaneously,
it should be explored how “open source” breeding structures
could be implemented in CGIAR-NARs networks, allowing small
breeding programs to borrow strength from each other by
incorporating the data generated by other programs working in
the same crop but different regions with highly related material.
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