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UDP glucose pyrophosphorylase (UDPGP) family genes have been reported to play
essential roles in cell death or individual survival. However, a systematic analysis
on UDPGP gene family has not been performed yet. In this study, a total of
454 UDPGP proteins from 76 different species were analyzed. The analyses of
the phylogenetic tree and orthogroups divided UDPGPs into three clades, including
UDP-N-acetylglucosamine pyrophosphorylase (UAP), UDP-glucose pyrophosphorylase
(UGP, containing UGP-A and UGP-B), and UDP-sugar pyrophosphorylase (USP). The
evolutionary history of the UDPGPs indicated that the members of UAP, USP, and
UGP-B were relatively conserved while varied in UGP-A. Homologous sequences of
UGP-B and USP were found only in plants. The expression profile of UDPGP genes
in Oryza sativa was mainly motivated under jasmonic acid (JA), abscisic acid (ABA),
cadmium, and cold treatments, indicating that UDPGPs may play an important role in
plant development and environment endurance. The key amino acids regulating the
activity of UDPGPs were analyzed, and almost all of them were located in the NB-loop,
SB-loop, or conserved motifs. Analysis of the natural variants of UDPGPs in rice revealed
that only a few missense mutants existed in coding sequences (CDSs), and most of
the resulting variations were located in the non-motif sites, indicating the conserved
structure and function of UDPGPs in the evolution. Furthermore, alternative splicing
may play a key role in regulating the activity of UDPGPs. The spatial structure prediction,
enzymatic analysis, and transgenic verification of UAP isoforms illustrated that the loss
of N- and C-terminal sequences did not affect the overall 3D structures, but the N-
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and C-terminal sequences are important for UAP genes to maintain their enzymatic
activity. These results revealed a conserved UDPGP gene family and provided valuable
information for further deep functional investigation of the UDPGP gene family in plants.

Keywords: UDP glucose pyrophosphorylase family, UDP-N-acetylglucosamine pyrophosphorylase, UDP-glucose
pyrophosphorylase, UDP-sugar pyrophosphorylase, conserved evolution, alternative splicing

INTRODUCTION

UDP glucose pyrophosphorylase (UDPGP) is a big gene
family ~ with  three groups, UDP-N-acetylglucosamine
pyrophosphorylase (UAP), UDP-glucose pyrophosphorylase
(UGP), and UDP-sugar pyrophosphorylase (USP). UAP
prefers  N-acetylglucosamine-1-P (GlcNAc-1-P) and
N-acetylgalactosamine-1-P (GalNAc-1-P) as substrates (Yang
etal., 2010; Decker and Kleczkowski, 2019). UGP is reported to be
specific for uridine triphosphate (UTP) and glucose 1-phosphate
(Glc-1-P) as substrates (Kleczkowski et al., 2010; Decker et al.,
2012). For USP, previous studies reported that it had a broader
substrate specificity, including galactose-1-phosphate (Gal-1-P),
a-glucuronic acid 1-phosphate (GlcA-1-P), and glucose 1-
phosphate (Glc-1-P) (Gronwald et al, 2008; Decker and
Kleczkowski, 2017). The UDPGPs have been reported related to
plant development such as programmed cell death in Arabidopsis
thaliana (Chivasa et al.,, 2013), survival in insects (Arakane
et al,, 2011), and microorganisms (Yi and Huh, 2015), as well as
cancers in humans (Itkonen et al., 2015; Wang et al., 2016).
Some studies on UAP were reported to illustrate its function
in microorganisms, animals, and plants. UAP was reported
in both prokaryotes and eukaryotes, while no homologous
sequences were identified between them (Palaka et al., 2019).
In fungi, a singular UDP-GIcNAc pyrophosphorylase gene
was reported in yeast (Saccharomyces cerevisiae), and loss-
of-function mutant (uaplA) exhibited aberrant morphology
including swelled or lysed (Mio et al., 1998). In Moniliophthora
perniciosa, the inhibition of this enzyme leads to cell death (Junior
et al,, 2013). In insects, the UAP enzyme plays a key role in
chitin synthesis (Zhu K.Y. et al., 2016), protein glycosylation
(Schimmelpfeng et al., 2006), growth, and development (Zhu
K.Y. et al, 2016). Some insects have two members of
UAP, and they usually account for different functions. For
example, LAUAPI regulated the chitin content, while LdUAP2
managed the development in Leptinotarsa decemlineata (Shi
et al., 2016). Besides, in the Locusta migratoria, the LmUAPI
inhibited by RNAi resulted in mortality, while the LmUAP2
did not (Liu et al., 2013). In Drosophila, the gene mummy
encodes a UDP-N-acetylglucosamine-dipohosphorylase, and the
gene mutants exhibited central nervous system fasciculation,
dorsal closure, and eye development defects (Schimmelpfeng
et al, 2006). Besides, the mummy gene also acted as a
BMP signaling antagonist (Humphreys et al, 2013). In
human, the expression level of UAPI is positively correlated
with the androgen receptor, which is a main driver of
prostate cancer. Inhibition of UAPI can specifically sensitize
prostate cancer cells to the inhibitors of N-linked glycosylation
(Itkonen et al, 2015). Few UAP studies were reported

in plants. In rice, functional inactivation of UAPI was
reported to be related to early leaf senescence, defense
responses (Wang et al, 2015), and programmed cell death
(Xiao et al., 2018).

UGP is a key enzyme in the metabolism of UDP-glucose,
which plays an important role in cellulose, callose (Park et al.,
2010), sucrose, and polysaccharide synthesis (Meng et al., 2009b).
At first, only two homologous genes (ATUGPI and ATUGP2)
were identified belonging to UGP clades in A. thaliana with
ATUGPI predominantly expressed in most tissues (Meng et al.,
2008; Meng et al., 2009b). Single mutants (atugpl or atugp2)
did not show any deficiency, while an atugpl/atugp2 double
mutant exhibited extreme deficiency in plant growth and male
sterility. Further experiments showed that the destruction of
the callose wall around microspores at the tetrad stage gives
rise to abnormal development of pollen, resulting in male
sterility in the double mutant (Park et al., 2010). In another
study, transfer-DNA gene-knockout plants proved that UDP-
glucose pyrophosphorylase 1 (ATUGPI) regulates fumonisin
Bl-induced programmed cell death (Chivasa et al, 2013).
Then, a novel UDP-glucose pyrophosphorylase 3 (AtUGP3) was
reported in A. thaliana, which played a key role in sulfolipid
biosynthesis (Okazaki et al., 2009). Similarly, two UDP-glucose
pyrophosphorylase genes were identified in rice, UGPI on
chromosome 9 and UGP2 on chromosome 2 in early research
(Chen et al., 2007). Both UGPI and UGP2 were expressed
ubiquitously in rice, and the expression level of UGPI was
much higher than that of UGP2. UGPI is vital for callose
deposition during the stage of pollen mother cells, and when
UGPI was silenced by RNA interference, the mutant plants
exhibited both male sterility and chalky endosperm phenotypic
characteristics (Chen et al., 2007). In other plants, such as
potato and tobacco, the functions of UGP genes were also
reported. Two UGPs (UGP3 and UGP5) were reported in
potatoes (Katsube et al., 1990; Spychalla et al.,, 1994), and the
studies demonstrated that the UGP was associated with cold-
sweetening (Sowokinos et al, 2004; Gupta et al., 2008). In
tobacco, plant height was significantly increased compared to
control lines through overexpressing the UGP gene (Coleman
et al., 2006). In Phaeodactylum tricornutum, UGP was reported
to be associated with chrysolaminaran content, lipid biosynthesis,
and carbon allocation (Zhu B.H. et al, 2016). In fungi, UGP
was proven to be associated with oxidative stress response
and long-term survival (Yi and Huh, 2015). In Dictyostelium,
the UDP-glucose derivative plays a key role in autophagic cell
death (Tresse et al.,, 2008). In humans, the loss of function of
UGP?2 caused a genetic disease (Roeben et al., 2006), and the
UGP2 expression was correlated with clinicopathological and
biological behaviors, which could be used as a biomarker for
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FIGURE 1 | The UDP glucose pyrophosphorylase (UDPGP) genes were investigated in this study. The species tree was downloaded from the National Center for

progression and poor prognosis of gallbladder cancer (Wang

and a knockout mutant of the USP gene exhibited an abnormal

et al., 2016). There are a few studies focused on the function of  development in pollen, resulting in sterility (Schnurr et al., 2006;

USP. Only one USP gene was reported in Arabidopsis (AtUSP),

Geserick and Tenhaken, 2013).
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FIGURE 2 | Maximum likelihood phylogenetic tree of UDP glucose pyrophosphorylases (UDPGPSs). A maximum likelihood analysis phylogenetic tree illustrates the
evolutionary relationships among UDPGP sequences from 16 species representing a wide variety of plant lineages and the ancestral homolog. The three

phylogenetic clusters were designated as UDP-N-acetylglucosamine pyrophosphorylase (UAP; yellow), UDP-sugar pyrophosphorylase (USP; red), and UDP-glucose

pyrophosphorylase (UGP; blue). Statistical support is shown in corresponding nodes at relevant clades according to the color of the label. Branch lengths in the tree
are proportional to evolutionary distances between nodes, and the scale bar represents the number of inferred amino acid substitutions per site.

Multiple UGP isoforms have been detected in soybean USP were also reported in Arabidopsis (Gronwald et al,
(Vella and Copeland, 1990), potato (Gupta and Sowokinos, 2008). However, isoforms of UAP have not been surveyed in
2003), and rice (Chen et al, 2007). Besides, isoforms of plants yet. In the current study, we retrieved and classified
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UDPGP among plants, animals, and microorganisms for
the sake of getting a better understanding of the evolution
of the UDPGP gene family. Moreover, the expression
profiles, motif and key amino acids, gene variation, 3D
structures, and isoforms of UDPGPs in O. sativa were
also surveyed for understanding the conserved function of
the UDPGP genes.

RESULTS AND DISCUSSION

Identification of UDP Glucose
Pyrophosphorylase Genes in the Variety
Species

To identify full-length UDPGP genes in different species,
we searched the UDPGP genes using HMMER software
(Potter et al, 2018). A total of 454 full-length primary
protein  sequences were identified in 76 organisms,
including plants (58 species: 404 sequences), chlorophyte
(seven species: 21 sequences), animals (six species:
16 sequences), fungi (three species: 11 sequences),
kinetoplastid (one species: two sequences), and bacteria
(one species: 0 sequence). The detailed information is in
Supplementary Table 2.

Phylogenetic Classification of the UDP
Glucose Pyrophosphorylase Gene Family

Into Three Major Clades

To study the origin and evolutionary history of the UDPGP genes
in different species, we constructed a phylogenetic tree with the
Maximum Likelihood (ML) method. The phylogenetic tree with

gene names and bootstrap values (UFBoot/SH-aLRT/aBayes) is
shown in Supplementary Figure 1. The topology of the ML
tree showed that UDPGP genes were clustered into three clades,
which were defined as UAP, UGP, and USP. Besides, The UGP
clade could be divided into two subgroups, UGP-A and UGP-
B. These results were similar to the OrthoFinder analysis results
(Supplementary Table 3). The orthogroup analysis divided the
gene family into seven orthogroups, and the first four largest
orthogroups, OG1, OG2, OG3, and OG4, were corresponding
with the subgroup UGP-A, UAP, USP, and UGP-B, respectively,
while three minor orthogroups (OG5, OG6, and OG7) contained
UAP and UGP-A members. Notably, no homologous UGP-
B and USP members were identified in animals, fungi, and
kinetoplastid. Furthermore, Escherichia coli does not contain
any homologous genes belonging to UDPGP in this study,
which is corresponding to that of previous studies (Kleczkowski
et al., 2004; Fihring et al, 2013). Then, we analyzed the
distribution of each subgroup in the 58 plants (Figure 1 and
Supplementary Table 2). The result showed that the numbers of
UDPGP genes significantly varied among the major lineages of
plants, ranging from the two members detected in chlorophytes
including Micromonas sp. RCC299 and Micromonas pusilla to
the 19 sequences identified in Gossypium raimondii. In general,
the numbers of UAP and USP genes were relatively stable
among the plants, ranging from 0 to 5 (UAP) and 0 to 4
(USP), while the members in UGP (UGP-A and UGP-B) varied
greatly, spanning from 0 to 14 (G. raimondii). Specifically,
we did not find any full-length UAP genes in Kalanchoe
fedtschenkoi or USP genes in Volvox carteri. In addition,
Micromonas sp. RCC299, Micromonas pusilla, and Ostreococcus
sp. Lucimarinus had no UGP (UGP-A or UGP-B) genes (Figure 1
and Supplementary Table 2).
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FIGURE 3 | Chromosome distributions of UDP glucose pyrophosphorylases (UDPGPSs). The chromosomal distributions of UDPGP genes in Oryza sativa (A) and
Arabidopsis thaliana (B) are shown in the outer circle, where the numbers represent the chromosome length 10 Mb. The synteny and collinearity genes detected by
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FIGURE 4 | UDP glucose pyrophosphorylase (UDPGP) expression profiles in different tissues from Oryza sativa. The RNA sequencing expression data of UDPGPs
from different tissues and developmental stages in O. sativa were downloaded from the Rice Expression Database and displayed as filled blocks from white to red.

Physicochemical Features of UDP

Glucose Pyrophosphorylase Gene Family
The calculated isoelectric point (pI) and molecular weight (MW)
of each UDPGP sequence are shown in Supplementary Table 2.
The average MWs of subgroups UAP, UGP-A, UGP-B, and
USP were 56,234.91, 47,351.92, 93,678.22, and 66,044.22 Da,
respectively. The results showed remarkable differences among
the four subgroups, with subgroup UGP-A containing the
smallest MW and subgroup UGP-B containing the heaviest
MW. The pI for the UDPGP genes ranged from 4.33 to
9.99, implying a wide range of activity in microcellular
environments. The subgroup UAP had more acidified
pl with an average of 6.00 compared with the other
subgroups, suggesting possible functional divergence of
UAP (Supplementary Table 2). All these showed the conserved
physicochemical features in UDPGP genes.

Gene Structure Difference in the Three
Clades

The loss or gain of introns leads to different gene structures,
makes genes more complex, and acts as the foundation of
gene evolution (Fedorova and Fedorov, 2003). Previous studies
have shown that introns play an important biological role
in regulating gene expression (Castillo-Davis et al., 2002; Le
Hir et al, 2003). In the current study, we constructed a

phylogenetic tree using protein sequences from 16 representative
plant species (Figure 2) and analyzed the exon-intron structures
(Supplementary Figure 2). The exon-intron organization of
UDPGP genes was significantly different among the four
subgroups, while the structure within each subgroup was
conserved, indicating the conservative characteristics in the
UDPGP gene family (Supplementary Figure 2). Besides, the
numbers of exons in each subgroup are similar, ranging from 15
in UAP to 21 in UGP-A typically.

The Divergence and Segmental

Duplication of UDP Glucose
Pyrophosphorylase Family

In the evolutionary history of the UDPGP gene family,
the number of members was relatively stable, resulting in
an elementary gene family. As shown in Figure 3A, six
of 12 chromosomes contain UDPGP genes in Oryza sativa.
Three OsUGP genes (OsUGPI, OsUGP2, OsUGP3) posited on
chromosome 9, chromosome 2, chromosome 3, respectively.
Synteny analysis of the UDPGP family in rice showed that
collinearity blocks between UDPGP members only existed in
clade UAP (OsUAPI and OsUAP2) and located on chromosome
8 and chromosome 4. Furthermore, the genome of O. sativa only
contains a single OsUSP gene located on chromosome 6. The
similarity of OsUAPI and OsUAP2 indicated that these two genes
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FIGURE 5 | (A-F) UDP glucose pyrophosphorylase (UDPGP) expression profiles under abscisic acid (ABA), jasmonic acid (JA), cadmium, and cold treatment.
Transcriptional expression changes of UDPGPs in Oryza sativa shoot under ABA (100 M), JA (100 M), low cadmium (1 uM CdSQy), very low cadmium (0.2 pM
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scale on the right indicates the gene expression level transformed by log» (RPK). All the genes were normalized by columns.
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originated from duplication. Among the five chromosomes in
Arabidopsis, only chromosome 4 carried no UDPGP genes, and
others had one or two UDPGP genes (Figure 3B). Chromosome
3 contained two ATUGP genes (ATUGPI and ATUGP3), and
chromosome 5 contained ATUSP and ATUGP2 genes at both
arms. Besides, chromosome 1 and chromosome 2 separately

hold GIcNA.UT1 (ATUAPI) and GIcNA.UT2 (ATUAP2) genes. In
addition, we also detected duplication events, which were similar
to O. sativa, in A. thaliana. The ATUAPI and ATUAP2, ATUGPI
and ATUGP2 were two paired collinearity genes detected by
McScanX, while no tandem gene pairs were identified in both
O. sativa and A. thaliana. All these results showed that the

Frontiers in Plant Science | www.frontiersin.org

June 2021 | Volume 12 | Article 681719


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Liu et al.

Conserved UDPGP Family for Cell Death

A B
r Y
100/1/100 l oPDP
A4
100/1/100 USP L N0
95.1/0.998 /99
100/1/100 UGP-B I l . ssioo
100/1/100 UGP-A I l . oop

USP

UGP-B MMA

UGP-A

FIGURE 6 | UDP glucose pyrophosphorylase (UDPGP) domain classification and conservation of functional motifs. (A) Phylogram showing the classification of the
UDPGP gene family with the major clades labeled. (B) Typical UDPGP structure consists of an NB-loop, SB-loop, and I-loop with the approximate positions.

(C) Conservation of the NB-loop functional motifs in different clades.

gt T i 3]

TAoeTbeoReoe oIS RETReS g,

———————————

members of UDPGP genes were stable and the expansions of the
UDPGP gene family were only caused by segmental duplication.

Expression Patterns of UDP Glucose
Pyrophosphorylase Genes in Different

Tissues

The transcriptomic profile reflects the tissue-specific function.
RNA sequencing data from Rice Expression Database (RED)
were downloaded to analyze the UDPGP genes in O. sativa
expression pattern in eight (anther, callus, leaf, panicle, pistil,
root, seed, shoot) different tissues (Figure 4). The results
showed that the expression level of LOC_0s09¢38030 (OsUGPI)
was significantly higher than that of other gene members in
the UDPGP family. Anther during flowering is the highest
expressing tissue detected with OsUGPI. The LOC_0s02g02560
(OsUGP2) and LOC_Os01g15910 (OsUGP3) also belonged to
the UGP clade in rice, whose expression levels were greatly
lower than that in OsUGPI1. For OsUGP2, anther (before and
during flowering) and panicle (7 days before heading and 7 days
after flowering tissues) in specific development stages exhibited
higher expression levels than other tissues. Notably, OsUGP3
showed almost no expression in the seven tissues. Besides, for the
UAP clade LOC_0s04¢52370 (OsUAP2) and LOC_Os08¢10600

(OsUAPI), the expression patterns were similar to each other and
the expression level of OsUAP2 gene was slightly higher than
OsUAPI in some specific tissues, such as root and shoot from 7-
day seedlings. In addition, for the OsUSP gene, a single member
of the rice USP clade, the expression profile was ubiquitous in
all tissues with a relatively low level. These results suggest that
rice UDPGP genes can be expressed in various tissues to perform
their roles with different expression levels as needed.

Expression Profiles of UDP Glucose
Pyrophosphorylases Under Hormones,
Abiotic, Non-metal, and Heavy Metal

Stress

Plant hormones, abscisic acid (ABA) and jasmonic acid
(JA), are important regulatory factors involved in various
biological processes, including cell death (Sreenivasulu et al.,
2006; Reinbothe et al., 2009). The expression patterns of rice
UDPGP genes under ABA and JA treatments are similar
in both shoot (Figure 5A) and root (Figure 5B) tissues.
Importantly, OsUAP1, OsUGP3, and OsUSP were generally
upregulated in shoot tissue under the ABA and JA stress,
and OsUSP was also upregulated in root tissue under the
ABA and JA stress.
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Cadmium (Cd) contamination has become a big issue in
food safety, especially in rice (Liu et al., 2020). Under the very
low Cd and low Cd treatments, the expression level of all six
rice UDPGP genes were uniformly upregulated in root tissue
except for OsUGP3 (Figure 5D). The three genes (OsUAPI,
OsUGP1, and OsUSP) also showed increased expression trend
in shoot tissue (Figure 5C) under the same treatments. When
stressed by cold, the four rice UDPGP genes (OsUGP1, OsUGP2,
OsUGP3, and OsUSP) were raised both in shoot (Figure 5E) and
root (Figure 5F).

Moreover, the expressions of UDPGP genes in O. sativa
under abiotic (salinity, dry, flood, and osmotic) and non-metal
[phosphate (P)] (Supplementary Figure 3) treatments were also
investigated. In general, OsUAPI and OsUSP were found to be
upregulated under dry, flood, and osmotic stresses of shoot, and
OsUSP was also upregulated under flood and osmotic stresses
of root. Moreover, OsUAP2 and OsUGP2 separately showed
upregulated expression under dry stress of shoot and osmotic
stress of root. No significant expression changes were identified
for UDPGP genes under salinity and P treatment in both shoot
and root tissues.

The expression data above together implied that rice UDPGP
genes may be involved in environmental endurance.

Conserved Motifs in UDP Glucose
Pyrophosphorylase Family Members and
the Key Amino Acids Affect Catalytic
Activity

Phylogenetic analysis of the UDPGP homologs yielded three
big different clades and four distinct subgroups (Figure 6A). In
previous reports, UGP-A clade contained a nucleotide-binding
loop (NB-loop) and substrate binding loop (SB-loop) at the
active center and an insertion loop (I-loop) at the C-terminus
site (Steiner et al., 2007; Fiihring et al., 2015; Chi et al., 2016;
Figure 6B). For the UAP clade, only NB-loop and I-loop
were reported (Peneff et al, 2001; Figure 6B). In the USP
clade, NB-loop and SB-loop were described (Dickmanns et al.,
2011; Figure 6B). Based on the NB-loop reported by Geisler
et al. (2004), we identified the differences of the NB-loop in
the three clades through multiple sequence alignment (MSA)
(Figure 6C). The results showed that NB-loop was diverse in
different subgroups. In general, all the NB-loops contained a start
with “GGxG.”

Then, the motifs from 16 represented species were analyzed
based on the primary protein sequences using MEME software.
As shown in Supplementary Figure 4, motifs 1, 4, 13, and
14 existed in all subgroups, while motifs 20, 18, and 15 were
unique sequences at the N-terminus in UAP, USP, and UGP-A
subgroups, respectively. Besides, motif 14 was a common
motif at the C-terminus in all UDPGP clades except the UAP
clade, which carried extra motifs 5, 9, and 17. Furthermore,
motifs 6, 16, and 19 were only located in the USP clade,
while the UGP-A subgroup contained distinctive motifs 7,
8, 10, 12, and 14. In our study, we defined a motif 8 with
“NPSIELGPEFKKVGNFLSRFKSIPSIVELDSLKVSGDVWEG”
sequence, which overlapped with a previously reported motif

“RFKSIPSL” and this motif was proven to be an essential
element for the phosphorylation and binding with 14-3-3
protein (Toroser et al, 1998; Cotrim et al., 2018). Moreover,
motif 2 “KLAVLLLAGGLGTRLGCTGPK” displayed in all
clades except UGP-B; this motif was corresponding to that of
a previous study that reported a high essential signature motif
“LX2GXGTX6PK” (Mio et al., 1998) and three amino acids (G,
R, and K) were proven vital for the activity of the enzyme. All the
above contributed to the form of the UDPGP gene family and
diverged it into three large clades (UAP, USP, and UGP). Thus,
the conservation of these additional motifs in their respective
clades may play a key role in their functional specificity.

In OsUAPI mutant osuapl, guanine (G) was replaced by
thymine (T) at the position of 712 bp in the CDS, resulting in
the 238th amino acid changed from glycine (Gly) to cysteine
(Cys) and thus lost function of UAP enzymatic activities for the
OsUAP1 protein (Wang et al., 2015; Supplementary Figure 5).
This key amino acid site is located in motif 2, which exhibited
in all clades except UGP-B, and this site might be involved
in the uridine recognition region (Wang-Gillam et al., 2000).
Some single amino acid and fragment deletion mutations were
performed to study the key amino acid of UDPGPs. In the
UAP clade, 14 site-directed mutants were used to study the
key amino acid affecting the catalytic activity, including Giardia
intestinalis (Mok and Edwards, 2005), Homo sapiens (Wang-
Gillam et al., 2000; Peneft et al., 2001), Saccharomyces cerevisiae
(Mio et al, 1998), and Aspergillus fumigatus (Raimi et al,
2020; Supplementary Figure 6 and Supplementary Table 4).
In G. intestinalis (Mok and Edwards, 2005), when G108
(corresponding to G125 in OsUAPI) and G210 (corresponding
to G236 in OsUAPI) were substituted by alanine, the enzymatic
activity of UAP was significantly reduced. In H. sapiens (Wang-
Gillam et al., 2000; Peneff et al., 2001), R115, P220, G222,
G224, Y227, and G111 were replaced by alanine to study the
catalytic property. The results showed that R115, G222, G224,
and G111 were key amino acids to maintain the activity of
the enzyme, corresponding to R129, G236, G238, and G125
in OsUAPI. Besides, the G111 and R115 were located in the
NB-loop as well as motif 2, indicating the importance of the
sequence. In Saccharomyces cerevisiae (Mio et al., 1998), three
amino acids were studied, including G112, R116, and K123,
which equated to G125, R129, and K136 in OsUAPI. The
enzymatic activity was severely diminished when these three sites
were replaced by alanine. In A. fumigatus, five site mutations
were performed to study the key amino acids in AfUAP gene
(Raimi et al., 2020). Three (K148, Y330, and K437) of them
showed a key role in impacting Km value of UTP or GlcNAc-
1P, corresponding respectively to K136, Y320, and K416 in
OsUAPI in rice. Several mutants in Hordeum vulgare (Martz
et al.,, 2002; Meng et al., 2009a), Solanum tuberosum (Katsube
et al., 1991), Cricetulus griseus (Flores-Diaz et al., 1997), and
H. sapiens (Chang et al., 1996), including single amino acid and
fragment deletion, were used to study the key amino acids of
UGP (Supplementary Figure 7). In H. vulgare (Martz et al,
2002; Meng et al., 2009a), G91, C99, L117, 1118, V119, K127,
K128, L135, L136, L137, Y192, and K260 were key amino acids
to provide the activity of proteins, which corresponded to G88,
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TABLE 1 | Natural variant of UDPGP genes in rice.

Gene LOC name SNP position Primary allele Secondary Primary allele Amino acid snpEff annotation Motif
name allele frequency mutation and
position

OsUAPT LOC_0s08g10600.1 210 G T 98.70% Cys70Phe missense_variant motif_20
OsUAPT LOC_0s08g10600.1 570 A T 99.90% Lys190Asn missense_variant no
OsUAPT LOC_0s08g10600.1 726 G A 99.80% Ala242Thr missense_variant motif_1
OsUAPT LOC_0s08g10600.1 855 G T 99.90% Lys285Asn missense_variant motif_14
OsUAP2 LOC_0s04952370.1 846 G T 99.40% Phe282Leu missense_variant no
OsUAP2 ~ LOC_0s04g52370.1 39 ACCGCCG  ACCGCCG CCG 48.90% Ala13dup inframe_insertion no
OsUGP1 LOC_0s09938030.1 12 G A 63.90% ThrdAla missense_variant no
OsUGP1 LOC_0s09938030.1 117 G A 99.70% Ser39Asn missense_variant& motif_15

splice_region_variant
OsUGP1 LOC_0s09938030.1 153 G T 99.40% GIn51His missense_variant motif_15
OsUGPT1 LOC_0s09938030.1 1,311 C G 99.20% Leu437Val missense_variant motif_14
OsUGP1  LOC_0s09g38030.1 1,386 C G 60.60% Asp462His missense_variant& no

splice_region_variant
OsUGP2  LOC_0s02902560.1 1218 C G 94.30% Gly406Arg missense_variant motif_8
OsUGP2  LOC_0s02902560.1 186 T G 60.60% Ala62Gilu missense_variant no
OsUGP3 LOC_0s01915910.1 36 C T 89.80% Pro12Leu missense_variant no
OsUGP3  LOC_0s01g15910.1 51 G A 97.80% Ala17Thr missense_variant no
OsUGP3  LOC_0Os01g15910.1 102 G A 58.10% Gly34Glu missense_variant no
OsUGP3 LOC_0s01915910.1 108 C T 58.00% Ala36Val missense_variant no
OsUGP3  LOC_0s01g915910.1 186 A G 43.50% Arg62Gly missense_variant no
OsUGP3  LOC_0Os01g15910.1 192 C T 78.30% Pro64Leu missense_variant no
OsUGP3 LOC_0s01915910.1 207 A G 44.30% Lys69GiIu missense_variant no
OsUGP3  LOC_0s01g915910.1 234 A T 50.60% Val78Asp missense_variant no
OsUGP3  LOC_0Os01g15910.1 267 A C 59.70% Asp89Ala missense_variant no
OsUGP3 LOC_0s01915910.1 450 G A 89.90% Gly150Ser missense_variant no
OsUGP3  LOC_0s01g15910.1 510 A G 50.30% Val170Met missense_variant no
OsUGP3  LOC_0Os01g15910.1 858 A G 89.80% Asn286Ser missense_variant no

&splice_region_variant
OsUGP3  LOC_0s01g915910.1 1,425 G A 59.60% Gly475Asp missense_variant no
OsUGP3  LOC_0s01g15910.1 1,603 C A 59.60% Asp501Glu missense_variant no
OsUGP3 LOC_0s01915910.1 1,506 G A 59.60% Ser502Asn missense_variant motif_8
OsUGP3  LOC_0s01g915910.1 1,672 G A 99.90% Asp524Asn missense_variant motif_8
OsUGP3  LOC_0Os01g15910.1 1,803 T A 97.30% Asp601Glu missense_variant no
OsUGP3 LOC_0s01915910.1 1,836 A G 50.40% Arg612GIn missense_variant no
OsUGP3  LOC_0s01g15910.1 1,893 A G 99.90% Asp631Gly missense_variant no
OsUGP3  LOC_0s01g15910.1 1,965 G T 50.40% Leu655Arg missense_variant no
OsUGP3 LOC_0s01915910.1 2,088 A G 59.50% Ser696Gly missense_variant no
OsUGP3  LOC_0s01g15910.1 2,133 A ¢} 50.40% Lys711Asn missense_variant no
OsUGP3  LOC_0Os01g15910.1 2,166 C T 97.30% Ala722Val missense_variant no
OsUSP LOC_0s06948760.1 1,569 A G 91.90% Leub523Pro missense_variant no
OsUSP LOC_0s06948760.1 1,386 A C 71.70% Serd462Ala missense_variant motif_6
OsUSP LOC_0s06948760.1 1,353 C T 70.50% Thr451Ala missense_variant no
OsUSP LOC_0s06948760.1 468 T A 97.30% Tyr156Phe missense_variant motif_20
OsUSP LOC_0Os06g48760.1 123 T ¢} 97.10% Lys41Glu missense_variant no
OsUSP LOC_0s06g48760.1 90 C T 97.30% Arg30GIn missense_variant no
OsUSP LOC_0s06948760.1 18 C T 84.90% Asp6Asn missense_variant no

SNP, single-nucleotide polymorphism; UDPGRF, UDP glucose pyrophosphorylase.

C96, L114, 1115, V116, K124, K125, L132, L133, L134, Y189, and K180, K329, and K402 in OsUGPI. In addition, the authors
K257 in OsUGP1. And when K183, K332, K405 were replaced trimmed different lengths of N and C terminals to study the
by alanine, the activity was not greatly impacted in HVUGP key role in regulating the activity. Results showed that the
(HORVU5Hr1G087810.2). These three sites corresponded to the  majority (Ncut-21, Ncut-27, Ccut-8, Ccut-67, and Ccut-101)
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largely reduced the activity except for the cut 32 amino acids
in C terminal, indicating the importance of N and C terminals
for catalytic activity. In S. tuberosum (Katsube et al., 1991), five
site mutants were studied through substituting with glutamine,
including K263, K329, K367, K409, and K410. Among them,
K263 and K367 were two important sites to keep the activity of
UGP in S. tuberosum, which corresponded to K257 and K361
in OsUGP1. When G115 was replaced by aspartic acid (D) in
Cricetulus griseus (Flores-Diaz et al., 1997), the activity of UGP
was largely affected, which corresponded to G88 in OsUGPI.
In H. sapiens (Chang et al, 1996), eight site mutants were
developed including C123, W218, H266, W333, R389, R391,
R422, and R445. Among them, C123, W333, R389, R391, and
R422, corresponding to C96, W299, R354, R356, and R387
in OsUGP, were key amino acids for sustaining the activity.
Among these, G115 in CgUAP was mapped to NB-loop, which
corresponded to motif 2 assigned by MEME. And K236 in StUGP
was a key amino acid located in SB-loop, which was in agreement
with motif 3. The rest of the amino acids were located in motifs
4, 7, 8, and 11. Furthermore, no visible differences of activity
were described when K183, K332, and K405 in HYUGP (Martz
et al., 2002; Meng et al., 2009a) and W218, H266, and R445 in
HsUGP (Chang et al., 1996) were substituted by other amino
acids, indicating that these sites were not key amino acids in UGP
protein. In addition, these four amino acids were not located in
any motif assigned by MEME. The only one study reported on
the key amino acid of USP was from Leishmania major (Prakash
etal., 2019). V330, F383, and V199 were key sites for the activity
of USP in LsUSP, corresponding to Q353, F405, and V239 in
OsUSP (Supplementary Table 4 and Supplementary Figure 8).
These sites were located in motifs 13, 16, and 19. Moreover, we
compared the key amino acids, important loops (NB-loop, SB-
loop, and I-loop), and motifs from MEME. The results showed
that the amino acids in the loops or the motifs more likely
contributed to the catalytic activity of UDPGPs.

Most UDP Glucose Pyrophosphorylase
Genes Are Conserved in Natural Rice

Variant

Previous studies showed that the mutants of UDPGP genes lead
to aborting of enzymatic activity, resulting in cell death (Tresse
et al., 2008). Besides, the family numbers of UAP and USP clades
are conserved, and many species contained only two UAP genes
or a single USP gene. To address the question if the amino
acid sequences are conserved in UDPGP genes, we scanned
the protein sequences of UDPGPs in 4,726 rice accessions in
RiceVarMap'. A total of 4, 2, 5, 2, 23, and 7 gene variants for
OsUAPI, OsUAP2, OsUGPI1, OsUGP2, OsUGP3, and OsUSP were
identified, respectively (Table 1). Furthermore, 32 of 43 variation
sites located in the non-motif region, and only 11 posited on the
motif sites. Among the 11 variants, only two of them showed a
relatively higher proportion in nature. The 502nd amino acid (in
Motif 8) changed from Ser to Asn in OsUGP3 with 40.40% and
the 462nd amino acid changed (in Motif 6) from Ser to Ala in

Uhttp://ricevarmap.ncpgr.cn/

OsUSP with 28.30% (Table 1). In the previous study, one amino
acid in Motif 8 was mutant in wheat, and the result showed it
only slightly lowered the enzymatic activity (Meng et al., 2009a).
In addition, the number of OsUGP3 variants was greater than
other members (Table 1), but the expression levels of OsUGP3
were much lower than other members (Figure 4), which may
indicate that this gene is under evolution. All above suggest that
most UDPGP genes are conserved in the evolution.

Alternative Splicing Events Affect Protein
Activities Among the UDP Glucose
Pyrophosphorylase Gene Family

Alternative splicing events are important posttranscriptional
regulatory mechanisms, which could reduce the enzyme activities
or completely abolish the activity (Kelemen et al., 2013). Here we
studied the alternative splicing events of the UDPGP gene family
in O. sativa. Four (OsUAPI, OsUAP2, OsUSP, and OsUGP1I) of six
UDPGP genes carried more than one transcript sequence from
the rice annotation file. The OsUAPI gene had three different
types of mRNA sequences, OsUAPI.1, OsUAPI.2, and OsUAPL.3.
The OsUAPI.1 transcript was the longest form with 489 amino
acids, while the OsUAPI.2 transcript lacked exon sequence near
5 untranslated region (5 UTR), and the OsUAPI.3 transcript lost
exons at 3’ UTR (Figure 7A). The OsUAP2 gene had two similar
transcripts with a difference of six nucleotides at the end of the
fifth exon (Figure 7A and Supplementary Figure 9). The OsUSP
gene and the OsUGPI gene both had two transcripts with the
exon differences closing to the 3> UTR.

To compare the structure differences for these gene isoforms,
we predicted the 3D structures of proteins using I-TASSER.
The results showed that the spatial structures among the three
OsUAP]I isoforms were similar, while OsUAPI.2 (Figure 7B) and
OsUAP1.3 (Figure 7C) lacked some folding due to the deficiency
of exons at 5 UTR and 3’ UTR. And for OsUAP2 isoforms, the
predicted tertiary structures of OsUAP2.1 and OsUAP2.2 were
almost the same (Figure 7D) due to the tiny difference between
OsUAP2.1and OsUAP2.2 variants, with OsUAP2.2 discarding two
amino acids compared to OsUAP2.1 (Supplementary Figure 9).
In addition, the structures of OsUGPI.1, OsUGP1.2, OsUSP.1,
and OsUSP.2 were also predicted to compare differences in
the spatial structures (Supplementary Figure 10). The results
showed that the N and center domains were similar, while the
C terminal was diverse because of the lack of sequences in
OsUGP1.2 and OsUSP.2.

To understand if the alternative splicing events in UDPGP
genes affect the catalytical characteristics, we performed the
enzymatic activity analysis in the UAP clade. 'H-nuclear
magnetic resonance ('H-NMR) spectroscopy was used to record
the enzymatic reaction of OsUAPI.1, OsUAPI.2, and OsUAPI1.3
in situ. In the time-gradient enzymatic progression at 60 min,
forward conversion of GIcNAc-1-P (5.36 ppm) to UDP-GIcNAc
(5.52 ppm) was observed with OsUAPI.1 (Figure 8A, line
2), but not with the glutathione S-transferase (GST) control
(Figure 8A, line 1), OsUAPI.2 (Figure 84, line 3), and OsUAPI1.3
(Figure 8A, line 4). Besides, the reverse conversion of UDP-
GlcNAc (5.52 ppm) to GIcNAc-1-P (5.36 ppm) was identified
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3D protein structure of OsUAP2.1 (orange) and OsUAP2.2 (blue).
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FIGURE 7 | Alternative splicing of UDP glucose pyrophosphorylases (UDPGPs) in Oryza sativa. (A) Gene structure and phylogenetic tree of UDPGP genes in
O. sativa, different alternative splicing events were marked with red (OsUAP1.2), purple (OsUAP1.3), or black dashed rectangles. (B) Comparison of the 3D protein
structure of OsUAP1.1 (green) and OsUAP1.2 (red). (C) Comparison of the 3D protein structure of OsUAP1.1 (green) and OsUAP1.3 (purple). (D) Comparison of the

with OsUAPI.1 (Figure 8B, line 2), but not with the GST control
(Figure 8B, line 1), OsUAP1.2 (Figure 8B, line 3), and OsUAPI.3
(Figure 8B, line 4). Furthermore, OsUAPI.1 could also catalyze
the reverse conversion of UDP-GalNAc (5.55 ppm) to GalNAc-1-
P (5.39 ppm) (Figure 8C, line 2), whereas GST (Figure 8C, line 1),
OsUAP1.2 (Figure 8C, line 3), and OsUAPI.3 (Figure 8C, line 4)
could not perform this reaction. Furthermore, we also conducted
the same reaction in the OsUAP2 gene. The OsUAP2 gene was
another member of the UAP clade in rice, which contained two
isoforms (OsUAP2.1 and OsUAP2.2). The results showed that
both OsUAP2.1 and OsUAP2.2 could catalyze the reaction from
GlcNAc-1-P to UDP-GIcNAc, UDP-GIeNAc to GIcNAc-1-P, and
UDP-GalNAc to GalNAc-1-P (Supplementary Figures 11A-C).

Losing UAP enzymatic activity for OsUAPI induces
early leaf senescence (Wang et al, 2015). Actually, all three
alternatives (OsUAPI.I, OsUAPI.2, and OsUAPI.3) were
mutated, corresponding to the 238, 203, and 238 in amino acid
sequences (Gly to Cys), respectively (Supplementary Figure 5).
Accordingly, this mutant osuap1 was used to identify the function
of OsUAPI.1, OsUAPI1.2, OsUAPL.3, OsUAP2.1, and OsUAP2.2.
Results showed that the osuapl exhibited early leaf senescence,
and overexpressing OsUAPI.1 in osuap1 could restore the healthy
leaf (C1, C2, and C3 in Figure 8D) but not with OsUAPI.2 (C4,
C5, C6 in Figure 8E) and OsUAP1.3 (C7, C8, C9 in Figure 8F).

All the above indicated the key role of the N and C terminals in
maintaining the activity of UAP. The UAP protein would lose
its function without N or C terminal, which corresponded to a
previous study on UGP protein (Supplementary Figure 7; Meng
etal., 2009a). Then, we test whether the OsUAP2.1 and OsUAP2.2
could restore the osuapl mutant. The results showed that both
the OsUAP2.1 (Supplementary Figure 11D) and OsUAP2.2
(Supplementary Figure 11E) also complemented the function of
OsUAPI.1, making the leaves of osuapl grow normally without
early leaf senescence.

The above results illustrated that the loss of N and C terminals
in UDPGP gene isoforms did not affect the overall 3D structures,
but these N- and C-terminal sequences may be important for the
UDPGP gene isoforms to maintain or change their enzymatic
activity. The molecular mechanisms for the existence of inactive
UDPGP gene isoforms through alternative splicing are not clear.
We proposed the following speculations: (1) the inactive UDPGP
gene isoforms are mistake alternative splicing; (2) the inactive
UDPGP gene isoforms are under evolution for new functions; (3)
the inactive UDPGP gene isoforms have effective but unknown
functions, for example, competing with active isoforms to bind
the enzymatic substrates to regulate the enzymatic activities of
active isoforms; (4) lack of the C terminal could reduce the
spatial block of the UDPGP, resulting in forming an inactive
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FIGURE 8 | /n vitro and in vivo activity of isoforms from OsUAP1. Enzymatic activities of three isoforms of OsUAP1 based on 'H-nuclear magnetic resonance
("H-NMR). (A) Forward activity: UTP + GlcNAc-1-P — UDP-GIcNAG + PPi. (B) Reverse activity: UDP-GIcNAG + PPi — GIcNAc-1-P + UTP. (C) Reverse activity:
UDP-GalNAc + PPi — GalNAc-1-P + UTP. (A-C) Line 1, glutathione S-transferase (GST) control. Line 2, the protein of OsUAP1.1. Line 3, the protein of OsUAP1.2.
Line 4, the protein of OsUAP1.3. (D) The phenotype of wild-type (WT), mutant (osuap1), and three independent complementary transgenic lines overexpressing
OsUAP1.1. (E) The phenotype of WT, mutant (osuap1), and three independent complementary transgenic lines overexpressing OsUAP1.2. (F) The phenotype of WT,
mutant (osuap1), and three independent complementary transgenic lines overexpressing OsUAP1.3.

dimer in the plant (Decker et al., 2012). All above represent
potential regulating mechanisms of alternative splicing isoforms
of UDPGP in the plant, and further experiments are needed to
validate the hypothesis.

CONCLUSION

In the present study, the phylogenetic tree of the UDPGP gene
family from 76 organism lineages divided this gene family into
three clades, including UAP, UGP, and USP, and the UGP could
be additionally separated into two subclades, UGP-A and UGP-
B. This result was also supported by the diverse physicochemical
features, gene structures, and motifs in different clades. Through
scanning the UDPGP gene members in 76 species, we found
that the number of the UGP-A is more variable among the
clades, while UGP-B, UAP, and USP showed relatively conserved
members, indicating the important role of these UDPGP genes.
UDPGP genes significantly respond to cadmium, cold, ABA,
and JA stresses in the shoot or root tissues in rice, while
they do not exhibit obvious feedback to salinity, dry, flood,
osmotic, and phosphate stimulation. Through MSA, we identified
the key amino acids regulating the enzymatic activities of the
UDPGP proteins, and many of them located in the NB-loop,
SB-loop, and conserved motifs, demonstrating the key role of
these structures. Alternative splicing may be a key mechanism
to regulate the enzymatic activity of UDPGP genes. In the

current study, in vitro enzymatic experiments showed that the
OsUAPI lost its catalytic activity without the N (OsUAP1.2)
or C (OsUAPI1.3) terminal, while OsUAP2.1 and OsUAP2.2
both maintained their catalytic activity with complete N and
C terminals. The same results were also proven in in vivo
transgenic experiments, where the early senescence phenotype
of the mutant osuapl could be rescued through overexpressing
OsUAPI.1, OsUAP2.1, and OsUAP2.2, but not with OsUAPI.2
and OsUAP1.3. All above provide new insights into the evolution
and function of the UDPGP gene family, which may lay a
foundation to further investigate their molecular regulatory
mechanisms in the plant.

MATERIALS AND METHODS

Data Sources and Sequence Retrieval

Protein sequences, transcript sequences, genomic sequences,
and GFF annotation files of 58 green plants, seven chlorophytes,
six animals, three fungi, one kinetoplastid, and one bacterium
were downloaded from Phytozome* and Ensembl website’
(Supplementary Table 1). UDPGP homologs were identified by
the following steps: (1) A hidden Markov model (HMM)
of UDPGP (ACC: PF01704.19) was downloaded from

Zhttps://phytozome-next.jgi.doe.gov/
3http://uswest.ensembl.org/index.html
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the Pfam website. (2) The UDPGP HMM was used to
direct HMMSEARCH with the parameters E-value < 0.1.
(3) Pfam-Ahmm was a manually corrected database and
was downloaded from the Pfam website (April 18, 2020).
Hmmscan software was used to identify the UDPGP
domain with default parameters, and a total of 454 non-
redundant primary protein sequences were retrieved for
further analysis.

Multiple Sequence Alignment and

Phylogenetic Analysis

To explore the phylogenetic relationships of the UDPGP
genes in the plant, animal, and microbial lineages, 454
full-length non-redundant primary protein sequences were
used to perform MSA analysis using MAFFT V7.271 (Katoh
and Standley, 2013) with default parameters. The MSA was
submitted to IQ-TREE v2.1.1 (Minh et al., 2020) to be
tested for the best substitution model, and the model with
the lowest Bayesian Information Criterion (BIC) was selected
as the best model (LG + I 4+ G). Then, the phylogenetic
tree was inferred by the ML method. We measured branch
supports using the Ultrafast Bootstrap (UFBoot) algorithm with
1,000 replicates, the SH-aLRT, and approximate transformation
Bayes test (aBayes). The tree was visualized using Interactive
Tree of Life (iTOL)* (Letunic and Bork, 2019) and FigTree
v1.4.4°.

Gene Structure, Sequence Motif

Analysis, and Physicochemical Features
The coding sequence (CDS) information of the 105 full-
length primary protein sequences from 16 representative plants
was retrieved from the GFF annotation files and submitted
to the TBtools (Chen et al, 2018) to visualize the exon-
intron organization of UDPGP genes in representative species.
Motif analysis was performed using MEME suite v5.3.0
(Bailey et al., 2009), which scans for motifs recurring in a
set of sequences. Motif analysis was carried out using the
MEME server®, keeping the width of the motif at 6-50
amino acids, the number of motifs was 20, and the other
parameters set to default. The gene structure and conserved
motif patterns were visualized by the TBtools (Chen et al,
2018). The pI/MW tool from ExPASy (Gasteiger et al,
2005) was used to compute the theoretical pI and MW
of each sequence.

Transcriptomic Analyses

The UDPGP gene expression data of O. sativa were
downloaded from the Rice Expression Database’ and
TENOR  database®. The expression abundance with
different treatments was transformed by log;RPK and
visualized using TBtools.

“https://itol.embl.de/login.cgi
Shttp://tree.bio.ed.ac.uk/software/figtree/
Chttp://meme-suite.org/tools/meme
"http://expression.ic4r.org/
8https://tenor.dna.affrc.go.jp/

Orthogroup Generation

All full-length sequences from the 16 species (Amborella
trichopoda, A. thaliana, Brachypodium stace, Citrus sinensis,
Glycine max, Marchantia polymorpha, O. sativa, Panicum
hallii, ~ Physcomitrella  patens, Prunus persica, Ricinus
communis, Selaginella moellendorffii, Setaria italica, Solanum
lycopersicum, Sorghum bicolor, and Triticum aestivum),
including basal angiosperm, spikemoss, mosses, liverwort,
monocots, and eudicots were selected to study the evolution
of the UDPGP gene family (Supplementary Table 1).
Orthologous  genes were generated by OrthoFinder
v2.2.7 (Emms and Kelly, 2015) with default parameters.
In total, seven orthogroups were identified across the
16 species, and 105 (100%) of the input genes were
assigned to orthogroups.

Collinearity and Analysis

The collinearity of O. sativa and A. thaliana was detected with
MCScanX (Wang et al.,, 2012). The result was visualized using
TBtools (Chen et al., 2020).

Evolutionary Expansion of UDP Glucose
Pyrophosphorylase Gene Family

To understand and infer the evolutionary expansion history of
the UDPGP family, we used a total of 105 full-length homologs
from the 16 species.

3D Structure Modeling

The I-TASSER (Yang et al., 2014) was used to model the structures
of all O. sativa UDPGP genes, including OsUAPI, OsUAP2,
OsUGPI, OsUGP2, OsUGP3, and OsUSP. I-TASSER generates
simulated protein structures depending on the pairwise structure
similarity. Then, we selected the top models based on the C-score
as representative structures. The 3D structures of proteins were
visualized in PyMOL software.

Enzymatic Reaction Experiments for
OsUAP Isoforms Examined by

TH-Nuclear Magnetic Resonance

Analysis

The GST gene fusion constructs of UAP isoforms were
generated. The full-length CDS of the OsUAPI.1, OsUAPI.2,
and OsUAPIL.3 isoforms were specifically amplified using
primers GST-OsUAPI.1 (F: cgGGATCCatggcggagatcgtggtgge, R:
cgGAATTCctaaaatgaaatctcactcggtge), GST-OsUAPL.2 (F: ¢gGG
ATCCatggatgtacacagcc, R: c¢gGAATTCctaaaatgaaatctcacteggtge),
and GST-OsUAPL.3 (F: ¢gGGATCCatggcggagatcgtggtgge, R:
cgGAATTCtcaagctttaagectgeegtg). The full-length CDS of the
OsUAP2.1 and OsUAP2.2 isoforms were amplified using
primers GST-OsUAP2 (F: cgGGATCCatgaaggagatagtggttggetcg,
R: ¢gGAATTCctagaaggaaatctcactcggeg). PCR products were
inserted into pGEX-6P-1 using the restriction enzyme sites
BamHI and EcoRI. Then, the recombinant vectors were
transferred into E. coli DH5a and sequenced to check if the
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constructions were correct. Expression and purification of the
fused GST-UAP isoforms were performed using the same method
as described (Wang et al., 2015). The reaction of enzymatic
activities of UAPs were performed as described previously
(Wang et al,, 2015), with 0.5 g purified GST-UAP recombinant
proteins used in the reaction mixture. Examination of GIcNAc-1-
P/GalNAc-1-P and UDP-GIcNAc¢/UDP-GalNAc was performed
by 'H-NMR as described (Zhang et al., 2011; Wang et al., 2015).
Data acquisition started at 60 min respectively after the addition
of an enzyme to the reaction mixture.

Transgenic Experiments

The overexpression vectors of UAP gene isoforms were
constructed. The full-length CDSs of the OsUAPI.I,
OsUAP1.2, and OsUAPL.3 isoforms were specifically
amplified using primers OsUAPI1.1-OE (F: cagtGGTCTCa
gttgatggcggagatcgtggtgee, R: cagtGGTCTCaagagctaaaatgaaatctca
cteg), OsUAPI.2-OE (F: cagtGGTCTCagttgatggatgtacacagcccact,
R: cagtGGTCTCaagagctaaaatgaaatctcactcg), and OsUAPI.3-OE
(F:  cagtGGTCTCagttgatggcggagatcgtggtgee, R: cagtGGTCTC
aagagctaaaatgaaatctcactcg). The full-length CDSs of the
OsUAP2.1 and OsUAP2.2 isoforms were amplified using primer
OsUAP2-OE (F: cagtGGTCTCagttgatgaaggagatagtggttge, R:
cagtGGTCTCaagagctagaaggaaatctcactcg). PCR products were
inserted into the binary vector pPBWA(V)BU (reconstructed from
pCAMBIA3300) using Bsal sites for the digesting-link one-step
reaction. The recombinant vectors were transferred into E. coli
DH5a and sequenced to check if the constructions were correct.
Correct vectors were introduced into Agrobacterium tumefaciens
EHA105 and then transformed into the osuapl calli. Positive
transgenic plants were confirmed using the phosphinothricin
solution (20 mg/L) screening and then cultivated under
natural conditions.
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Supplementary Figure 1 | Maximum likelihood tree of 75 species generated by
IQ-Tree and branch supports using ultrafast bootstrap
approximation/SH-aLRT/aBayes methods. UAP, UGP, and USP were marked in
yellow, blue, and red, respectively.

Supplementary Figure 2 | Gene structures of 105 UDPGPs from 16 species.
Phase 0 intron doesn’t interrupt a codon, phase 1 intron interrupts a codon
between the 1st and 2nd bases, and phase 2 intron interrupts a codon between
the 2nd and 3rd bases.

Supplementary Figure 3 | Expression profile of UDPGPs of the shoot and root
tissues under salinity (150 mM NaCl), dry (grown without medium), flood
(completely submerged in medium), osmotic (0.6 M Mannitol), and P (3 mM
KH»>POy) treatment from Oryza sativa. The scale on the right indicates the gene
expression level transformed by logs (RPK). All the genes were

normalized by columns.

Supplementary Figure 4 | Motif architectures of 105 UDPGPs from 16 species.

Supplementary Figure 5 | CDS alignment of three isoforms (OsUAP1.1,
OsUAP1.2, and OsUAP1.3) from OsUAP1.

Supplementary Figure 6 | Key amino acids affect UAP catalytic activities. The
key amino acids were marked by black triangles. The black squares mean
the deletion sites.

Supplementary Figure 7 | Key amino acids affect UGP catalytic activities. The
key amino acids were marked by dark triangles.

Supplementary Figure 8 | Key amino acids affect USP catalytic activities. The
key amino acids were marked by black triangles.

Supplementary Figure 9 | CDS alignment of three isoforms (OsUAP2.1 and
OsUAP2.2) from OsUAP2.

Supplementary Figure 10 | Spatial structure comparison of isoforms from
OsUGPT1 and OsUSP. (A) The structure comparison of OsUGP1.1 (green) and
OsUGP1.2 (red). (B) The structure comparison of OsUSR 1 (green) and
OsUSR2 (red).

Supplementary Figure 11 | In vitro and in vivo activities of OsUAP2. Enzymatic
activities of two isoforms of OsUAP2 based on 'H-NMR. (A) Forward activity:
UTP + GlcNAc-1-P — UDP-GIcNAc + PPi. (B) Reverse activity:

UDP-GIcNAc + PPi — GIcNAc-1-P + UTP. (C) Reverse activity:

UDP-GalNAc + PPi — GalNAc-1-P + UTP. (A-C) Line 1, GST control. Line 2,
protein of OsUAP2.1. Line 3, protein of OsUAP2.2. (D) The phenotype of wild type
(WT), mutant (osuap1), and three independent complementary transgenic lines
overexpressing OsUAP2.1. (E) The phenotype of wild type (WT), mutant (osuap1),
and three independent complementary transgenic lines overexpressing
OsUAP2.2.

Supplementary Table 1 | Protein resource of UDPGP genes from 76 species.
Supplementary Table 2 | Characteristics of the 454 UDPGPs in 75 species.
Supplementary Table 3 | Orthogroups generated by McScanX.

Supplementary Table 4 | Key amino acid residues affect the activity of UDPGP
based on reported mutants.
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