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Plants produce more than 20,000 nitrogen-containing heterocyclic metabolites called 
alkaloids. These chemicals serve numerous eco-physiological functions in the plants as 
well as medicines and psychedelic drugs for human for thousands of years, with the 
anti-cancer agent vinblastine and the painkiller morphine as the best-known examples. 
Cytochrome P450 monooxygenases (P450s) play a key role in generating the structural 
variety that underlies this functional diversity of alkaloids. Most alkaloid molecules are 
heavily oxygenated thanks to P450 enzymes’ activities. Moreover, the formation and 
re-arrangement of alkaloid scaffolds such as ring formation, expansion, and breakage 
that contribute to their structural diversity and bioactivity are mainly catalyzed by P450s. 
The fast-expanding genomics and transcriptomics databases of plants have accelerated 
the investigation of alkaloid metabolism and many players behind the complexity and 
uniqueness of alkaloid biosynthetic pathways. Here we discuss recent discoveries of 
P450s involved in the chemical diversification of alkaloids and how these inform our 
approaches in understanding plant evolution and producing plant-derived drugs.

Keywords: alkaloid, catalysis, scaffold, diversification, oxidation, medicinal plants, P450

INTRODUCTION

Alkaloids – A Functionally and Structurally Diverse Natural 
Product Class With Unique Underlying Biosynthesis
Chemical diversity is the key to success for the sessile lifestyle that plants have evolved to adapt. 
Over hundreds of millions of years, land plants have accumulated a formidable capacity to 
biosynthesize numerous small molecules, often referred to as natural products or specialized 
metabolites, that help them thrive in specific environmental niches. Among plant natural products, 
alkaloids constitute arguably the most intriguing class with thousands-of-years interconnection 
with human history. Alkaloids have long been used and abused for their potent therapeutic 
properties and notorious toxic and psychedelic effects with significant geopolitical impacts, as 
seen in the Anglo-Chinese opium wars of the 19th century and the ongoing war on drugs 
(Kutchan et  al., 2015). Moreover, alkaloid diversity has attracted much attention from chemists, 
biologists, and pharmacologists alike for its unique structural diversification pathways. Instead of 
sharing the same biosynthetic routes as observed in terpenoid metabolism, the common nitrogen-
containing heterocyclic structure of more than 20,000 known alkaloids can be generated by various 
Mannich-like condensation of amino acids-derived iminiums (Lichman, 2021). The resulted alkaloid 
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scaffolds are then decorated and modified extensively to form 
a wide range of structures, ranging from the poisonous coniine 
with a simple eight-carbon and one-nitrogen skeleton naturally 
occurring in hemlock (Conium maculatum) to the complex anti-
tumor drug vinblastine with a dimeric 45-carbon and four-nitrogen 
scaffold found in Madagascar periwinkle (Catharanthus roseus; 
Ziegler and Facchini, 2008; O’Connor, 2010).

For example, in monoterpenoid indole alkaloid (MIA) 
biosynthesis, the amine moiety from tryptamine, a derivative 
of the amino acid tryptophan, is condensed with the aldehyde 
moiety from secologanin, a member of the non-canonical 
monoterpenoid group called iridoids, to yield strictosidine. 
From this central precursor, different multiple-step pathways 
are catalyzed by scaffolding and tailoring enzymes such as 
cytochrome P450 monooxygenases (P450), 2-oxoglutarate-
dependent dioxygenases, methyltransferases, dehydrogenases, 
acetyltransferases, and glycosyltransferases. This leads to more 
than 2,000 MIA structures mostly found in the dogbane family 
(Apocynaceae), with vinblastine as the best-known example. 
Other illustrating examples are found in the biosynthesis of 
benzylisoquinoline alkaloids (BIAs) which starts with the 
condensation of the amine moiety of dopamine and the aldehyde 
group of 4-hydroxyphenylacetaldehyde, both derived from the 
amino acid tyrosine. The resulted (S)-norcoclaurine goes through 
series of structural changes including oxidation, reduction, 
methylation, acetylation, and decarboxylation to yield 
approximately 2,500 BIA structures such as the well-known 
narcotic painkiller morphine in opium poppy (Papaver 
somniferum; Ziegler and Facchini, 2008; O’Connor, 2010; 
Dastmalchi et  al., 2018; Desgagné-Penix, 2021).

Plant P450s and Chemical Diversity in 
Plants
Dubbed “nature’s most versatile biological catalyst,” P450s display 
incredible adaptability in all domains of life and even in certain 
viruses (Coon, 2005). Starting as a component of the ancient 
cell’s biochemical response to a world filled with the newly-
abundant and poisonous oxygen gas (Wickramasinghe and Villee, 
1975), P450s’ ability to scissor atmospheric dioxygen at physiological 
temperatures has turned them into a reservoir of catalysts whose 
members have been recruited over and again in various metabolic 
pathways. The structure of a typical P450 consists of a central 
haem iron tethered by the thiolate group of a cysteine residue. 
This arrangement allows the formation of the highly reactive 
FeIV-oxo species, which abstracts hydrogen from the substrate’s 
chemically inert C–H bond and can kick start a cascade of 
structural diversification and functionalization with high selectivity, 
a catalytic feat enviable to chemists (Lewis et  al., 2011). Not 
only from its bond with carbon, hydrogen can also be abstracted 
by P450 enzymes from bonds with nitrogen, oxygen, and sulfur 
to allow oxidation and a range of other reactions such as 
epoxidation, sulfoxidation, dehydrogenation, aryl–aryl coupling 
and dehalogenation (Coon, 2005; Guengerich and Munro, 2013; 
Lamb and Waterman, 2013). From these initial chemical changes, 
carbon skeleton re-arrangements can further expand the chemical 
space (Tang et  al., 2017; Zhang and Li, 2017).

P450 diversity reflects the evolution of metabolism and 
adaptation in living organisms, especially plants, fungi, and 
bacteria, whose chemical diversity is extraordinary. In plants, 
hundreds of thousands of P450s have been identified and 
grouped in 277 families of sequences sharing 40% or higher 
identity; of these, more than 16,000 have been named (Nelson, 
2018). P450s control many metabolic steps and pathways of 
plant primary metabolites such as the growth regulators 
gibberellins, brassinosteroids, and abscisic acid (Helliwell et al., 
2001; Turk et  al., 2003; Kitahata et  al., 2005). P450 enzymes 
also play a crucial role in plants’ eco-physiological adaptation 
as they catalyze the production of defensive compounds and 
allelochemicals, among other specialized metabolites. Indeed, 
the vast majority of plant natural products are oxygenated, 
and, as most oxidations of chemicals in the living world are 
catalyzed by P450s, these proteins constitute the largest 
superfamily of enzymes underlying the diversification of plant 
natural products (Nelson and Werck-Reichhart, 2011; Hamberger 
and Bak, 2013; Guengerich, 2018).

Increasing genomic and transcriptomic data in recent years 
have facilitated the characterization of hundreds of P450s involved 
in plant specialized metabolism. Here we  review the roles of 
P450s in the structural diversification of plant alkaloids with 
select recently-elucidated examples being discussed in accordance 
with the chemical modifications they catalyze (e.g., oxygenation, 
scaffold re-arrangement, etc.). The metabolism of major alkaloid 
groups (i.e., BIA, MIA, etc.) which involve these P450s are 
summarized in the figures with more details available in several 
excellent reviews published in the past years (Hagel and Facchini, 
2013; Larsson and Ronsted, 2013; Thamm et  al., 2016; Frick 
et  al., 2017; Dastmalchi et  al., 2018; Polturak and Aharoni, 2018; 
Zenkner et  al., 2019; Desgagné-Penix, 2021; Lichman, 2021). 
Given the unique chemical diversification of alkaloids, insights 
into the power of P450-based biocatalysts offer essential lessons 
for exploring unknown pathways as well as generating new-to-
nature chemical diversity with tremendous potential applications.

OXYGENATION AS A STARTING POINT 
FOR CHEMICAL DIVERSIFICATION

The most common reaction catalyzed by P450s is the addition 
of an oxygen atom into the substrate molecule in the form of 
a hydroxyl or an epoxide group. This has particularly relevant 
implications in biotechnologies and pharmaceutical industries as 
the oxidation of a single C–H bond functionalizes many compounds 
or makes them more biologically active. For instance, the stereo- 
and regio-selective oxidations of camptothecin and compactin 
lead to their more potent hydroxylated forms hydroxycamptothecin 
(anti-cancer) and pravastatin (lipid-lowering), respectively 
(Kingsbury et al., 1991; Watanabe et al., 1995), and the underlying 
oxidases can address industrial-scale drug production issues 
(Di  Nardo and Gilardi, 2020). Furthermore, these simple 
oxygenations prompt a whole host of additional chemical 
decorations on the molecules, such as methylation, acetylation, 
glycosylation, and structural re-arrangements in many pathways.
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The recently-elucidated BIA biosynthetic pathways feature 
several P450s that catalyze such oxygenations. In noscapine 
biosynthesis in opium poppy (P. somniferum), three members 
of the CYP82 family add single hydroxyl groups to the 
N-methylcanadine scaffold at three different positions with 
different chemical fates in the end product, noscapine. The 
first committed step of the pathway was catalyzed by CYP82Y1, 
hydroxylating (S)-N-methylcanadine at C1 position (Dang and 
Facchini, 2014b). The second and third P450s, CYP82X2 and 
CYP82X1, hydroxylates at C13 and C8 positions, respectively 
(Dang et  al., 2015; Figure  1). While the 1-hydroxyl group 
undergoes a methylation reaction later in the pathway, the 
8-hydroxyl group constitutes an unstable structure with the 
adjacent quaternary ammonium group and is spontaneously 
converted to an aldehyde group by breaking the C8–N7 bond. 
This newly-formed C8 aldehyde group then forms a hemiacetal 
ring with the 13-hydroxyl group. Intriguingly, before forming 
the hemiacetal structure with the 8-hydroxyl group, the 
13-hydroxyl group undergoes acetylation and subsequent 
deacetylation before and after 8-hydroxylation by CYP82X1. 
As CYP82X1 and CYP82X2 do not accept each other’s substrates, 
this acetylation seems to protect the oxygenated moiety at 
C13 and allow both 13- and 8-hydroxylations to occur, albeit 
in strict order (Dang et  al., 2015).

Other members of the CYP82 family have also been found 
to be responsible for ring hydroxylations of BIAs. In the biosynthesis 
of the anti-microbial BIA sanguinarine, CYP82N4 catalyzes the 
hydroxylation at C14 of (S)-cis-N-methylstylopine, breaking the 
C14–N7 bond to yield protopine. Protopine is in turn hydroxylated 
by CYP82N3  in opium poppy (Beaudoin and Facchini, 2013) 

and by CYP82N2  in California poppy (Eschscholzia californica; 
Takemura et al., 2013) to 6-hydroxyprotopine, which is spontaneously 
converted to dihydrosnaguinarine, illustrating how hydroxylations 
by P450s can lead to further structural re-arrangement (Figure 1).

CYP82S18, a unique P450 involved in MIA metabolism in 
Indian snakeroot (Rauwolfia serpentina), catalyzes not only the 
ring hydroxylation of vinorine to form vomilenine, but also 
the non-oxidative isomerization of this product to perakine 
(Figure 2; Dang et al., 2017). Although enzymes are not required 
for the conversion of vomilenine to perakine, it needs extreme 
chemical catalysis conditions (Taylor et al., 1962), and biochemical 
studies showed that plant enzymes facilitate the isomerization 
(Sun et  al., 2008; Dang et  al., 2017). It remains unclear how 
CYP82S18 catalyzes this non-oxidative structural change; 
however, data suggest that keeping the product vomilenine in 
the active site after the hydroxylation of vinorine is essential, 
and a series of re-arrangements via ring opening and Michael 
addition could be  facilitated by this active site (Dang et  al., 
2017). Indian snakeroot’s CYP82S18 could be  considered as 
an example of a “moonlighting” P450 that can catalyze different 
types of structural transformation on the substrate, although 
it does not use different active sites as seen the “moonlighting” 
terpene synthase/oxidase CYP170A1  in Streptomyces coelicolor 
(Zhao et  al., 2009). More importantly, this unique catalytic 
capacity of CYP82S18 underlies the divergence of MIA 
metabolism in Indian snakeroot as vomilenine is the central 
intermediate leading to a series of MIAs, including the 
antiarrhythmic drug ajmaline while the bifurcated perakine 
branch leads to raucaffrinoline. The 21-hydroxyl group of 
vomilenine resulted from the CYP82S18’s hydroxylase activity 

FIGURE 1 | P450s in the biosynthetic network of benzylisoquinoline alkaloids (BIAs) in the Ranunculales with (S)-reticuline (boxed) as the central precursor. Multiple 
and single arrows indicate multiple- and single-step pathways, respectively. Enzymes indicated here are discussed in the text.
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also allows subsequent glycosylation in the end products of 
these divergent pathways (Figure  2).

Examples of P450s from other families involved in alkaloid 
hydroxylation can be  widely found in the metabolism of MIAs 
in the alkaloids-rich dogbane family (Apocynaceae). As early as 
in the 1990s, the P450-based 16-hydroxylation of tabersonine, a 
precursor of many MIAs, was identified in Madagascar periwinkle 
(C. roseus; St-Pierre and De Luca, 1995; Schröder et  al., 1999). 
This P450, CYP71D12, yields 16-hydroxytabersonine, the branching 
precursor leading from tabersonine to vindoline, which together 
with catharanthine forms the anti-cancer drug vinblastine (Figure 2). 
More recently, a homologue sharing 82% amino acid identity to 
CYP71D12 and CYP71D351 was found to be another tabersonine 
16-hydroxylase. CYP71D351, in contrast to CYP71D12, is expressed 
in better correlation with other vindoline biosynthetic genes. This 
suggests that it plays a major role in the biosynthesis of vindoline, 
which is tightly controlled in an organ-dependent manner and 
accumulates mostly in leaves of Madagascar periwinkle (Besseau 
et  al., 2013). The 16-hydroxyl group of tabersonine allows a 
methyl group to be  transferred onto the molecule, and both the 
resulted 16-methoxytabersonine and tabersonine can be  further 
oxidized by another CYP71D subfamily member, CYP71D1, to 
yield the corresponding 2,3-epoxides (Kellner et al., 2015; Qu et al., 
2015; Edge et al., 2018). Intriguingly, yeast feeding assay suggests 
CYP71D1 converts 16-methoxytabersonine to its 2,3-epoxide, 
which subsequently undergoes re-arrangement to an eburnamine 

scaffold similar to that of the anti-hypertension drug  vincamine 
(Kellner et  al., 2015; Figure  2). Reports by Qu  et  al. (2015) 
and  Edge et  al. (2018) as well as the early work by Wenkert 
and Wickberg (1965) suggest that such a re-arrangement of the 
2,3-epoxide intermediate is induced by the acidification of the 
yeast culture or extraction process. Furthermore, the concerted 
activities of CYP71D1 and  tabersonine-3-reductase were 
reported  to  reduce the C2–C3 double bond and hydroxylate C3 
of tabersonine and 16-methoxytabersonine. It is the products of 
these oxidoreduction catalyzes, not the epoxides, that serve as 
precursors to vindorosine and vindoline, respectively (Qu et  al., 
2015; Edge et al., 2018; Figure 2). These transformations, underlined 
by enzymatic activity or otherwise, highlight the frequent occurrence 
and potential applications of oxidation-induced re-arrangements 
in MIAs.

The divergence of tabersonine metabolism involves other 
members of the CYP71 family. CYP71BJ1 was implicated in the 
biosynthesis of 19-O-acetylhörhammericine as it hydroxylates the 
tabersonine scaffold at C19 and thus allows the acetylation at 
this position in the final product (Figure  2; Giddings et  al., 
2011). More recently, Carqueijeiro et  al. (2018) found two 
CYP71D  homologues, CYP71D347 and CYP71D521, which 
catalyze  the same 6,7-epoxidation of tabersonine to lochnericine. 
As both of these epoxidases exhibit strict substrate specificity 
towards tabersonine while the 19-hydroxylase CYP71BJ1 can 
accept both  tabersonine and lochnericine, the 6,7-epoxidation 

FIGURE 2 | P450s in the biosynthetic network of monoterpenoid indole alkaloids (MIAs) in the Apocynaceae with strictosidine (boxed) as the central precursor. 
Multiple and single arrows indicate multiple- and single-step pathways, respectively. Enzymes indicated here are discussed in the text. V19H: (+)-vincadifformine 
19-hydroxylase, a close homologue of CYP71D1.
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appears  to  be  the first step in the pathway leading to 
19-O-acetylhörhammericine from tabersonine (Figure  2). 
Intriguingly, the substrate spectrum of CYP71BJ1 may not extend 
to other aspidorsperma MIA enantiomers. In addition to tabersonine 
and catharanthine, the stemmadenine pathway gives rise to 
(+)-vincadifformine. This compound is hydroxylated at C19 
position by (+)-vincadifformine 19-hydroxylase. Although this 
reaction is almost identical to the 19-hydroxylations of tabersonine 
and lochnericine (tabersonine-6,7-epoxide) catalyzed by CYP71BJ1, 
(+)-vincadifformine 19-hydroxylase shares a higher sequence 
identity (about 80%) to CYP71D1 compared to its identity to 
CYP71BJ1 (37%; Williams et  al., 2019). The hydroxylation of 
(+)-vincadifformine and subsequent acetylation leading to 
(+)-echitovenine, parallel with the 19-O-acetylhörhammericine 
route, underscores enzymatic stereo-selectivity as a critical 
feature  in  defining similar yet distinct pathways in MIA 
diversification (Figure  2).

A member of the CYP75A subfamily responsible for two 
hydroxylations of the same pathway was featured in the 
recent near-complete elucidation of colchicine biosynthesis 
(Nett et  al., 2020). Colchicine from Colchicum and Gloriosa 
species has long been used to treat inflammations, including 
gout and Behçet’s disease (Barnes, 2006). It has been 
hypothesized that the biosynthesis of colchicine involves the 
condensation of 4-hydroxydihydrocinnamaldehyde and 
dopamine, derived from l-phenylalanine and l-tyrosine, 
respectively, to yield the 1-phenethylisoquinoline structure, 
which is then methylated, hydroxylated, and rearranged in 
several steps to form the tropolone ring in colchicine. Nett 
et  al. (2020) discovered that CYP75A109 catalyzes not only 
one but possibly two hydroxylations at two meta positions 
on ring A of the 1-phenethylisoquinoline scaffold (Figure 3), 
and both of the resulting hydroxyl groups are later methylated 
in the pathway.

OXIDATIVE SCAFFOLD FORMATION

Cyclization reactions that give rise to complex polycyclic scaffolds 
are hallmarks of alkaloid biosynthetic pathways. While synthetic 
efforts since the dawn of organic synthesis have demonstrated 
how different alkaloids can be  chemically synthesized from 
a  common scaffold, the enzymes, mostly P450s, that control 
the regio- and stereo-specific re-arrangement and chemical 
diversification of the central intermediate found in biological 
systems have largely remained cryptic until recently. In MIA 
biosynthesis, a key scaffold forming step is catalyzed by sarpagan 
bridge enzyme (SBE) and transforms the skeletal scaffold of 
the central MIA intermediate strictosidine into sarpagan, ajmalan 
and alstophyllan alkaloid classes (Namjoshi and Cook, 2016), 
including the class Ia antiarrhythmic agent ajmaline and the 
anti-cancer compound koumine (Hashimoto et  al., 1986; 
Zhang  et  al., 2015). More than 20  years after SBE activity was 
first detected in plants (Schmidt and Stöckigt, 1995), three 
P450 homologues in R. serpentina (CYP71AY4), Gelsimium 
sempervirens (CYP71AY5) and C. roseus (CYP71AY1) were 
found to be  responsible for the formation of this scaffold 
(Dang  et  al., 2018). The SBE-catalyzed oxidation does not 
involve oxygenation but the formation of a Schiff base at N4 
position of geissoschizine, a strictosidine derivative. This allows 
a skeletal re-arrangement to form polyneuridine aldehyde, the 
entry intermediate to the ajmalan-type and alstophyllan-type 
alkaloids (Figure  2). Intriguingly, when tested with a range 
of other MIAs, these SBEs turnover tetrahydroalstonine, a 
heteroyimbine alkaloid, to alstonine via a similar iminium 
intermediate. Guided by related yet structurally distinct substrates, 
the SBEs can catalyze either cyclization to form a sarpagan 
bridge or aromatization of the alkaloid scaffold and thus redirect 
and diversify the pathway at critical points (Dang et  al., 2018). 
This illustrates how P450s’ catalytic and substrate promiscuity, 

FIGURE 3 | P450s in the recent near elucidation of colchicine biosynthesis in the Colchicaceae. Multiple and single arrows indicate multiple- and single-step 
pathways, respectively. Enzymes indicated here are discussed in the text.
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along with the inherent reactivity of these alkaloid substrates, 
can create a suite of structurally diverse chemical products in 
many pathways.

Besides acting alone, P450 enzymes can function in 
combination with other enzymes to open gateways into rich 
families of natural products. It is not an exception that concerted 
action of enzymes from two groups commonly involved in 
plant natural product metabolism, the P450s and the reductases, 
produces unexpected re-arrangements leading to different 
scaffolds. For instance, the CYP71/reductase module was observed 
in strychnos, sarpagan, ajmalane and β-carboline in MIA 
biosynthesis. Specifically, geissoschizine synthase (an alcohol 
dehydrogenase), geissoschizine oxidase (a P450), and two other 
reductases from C. roseus, when assayed simultaneously, catalyzed 
a series of tandem reactions that lead to the remarkable 
re-arrangement of the tetrahydro-β-carboline strictosidine 
substrate into the corynanthean, strychnos, iboga, and 
aspidosperma scaffolds (Benayad et al., 2016; Tatsis et al., 2017; 
Qu et  al., 2018a). The alcohol group at C17 of geissoschizine 
is oxidized to an aldehyde by CYP71D1v1, triggering a cascade 
of skeletal changes and a reduction catalyzed by two conceptive 
reductases (Tatsis et  al., 2017; Qu et  al., 2018a,b; Figure  2). 
The resulting preakuammicine is then either spontaneously 
transformed to akuammicine or reduced to stemmadenine, the 
precursor to tabersonine and catharanthine (Caputi et al., 2018).

The dual catalytic function of vinorine hydroxylase, CYP82S18, 
in the ajmaline biosynthetic pathway mentioned earlier is also 
driven by the presence of different downstream aldo/keto reductases 
(AKRs). Various combinations of these reductases with CYP82S18 
diverge the vomilenine pool to tissue-specific metabolic routes 
with different end-products, including ajmaline, raucaffrinoline, 
raucaffricine, rauglucine, and 21-hydroxysarpagane glucoside 
(Figure  2; Dang et  al., 2017). Intriguingly, an unusual P450, 
CYP82Y2, was identified to be  a domain of a fused protein that 
also includes an AKR domain, and this fused AKR/P450 catalyzes 
the isomerization of (S)-reticuline to its (R)-epimer, a precursor 
of morphine biosynthesis in opium poppy (Farrow et  al., 2015; 
Galanie et  al., 2015; Winzer et  al., 2015; Figure  1). What  
is more unusual is that in contrast with other CYP82 
enzymes,  which usually catalyze ring hydroxylation of BIAs 
(Dang  and  Facchini, 2014b; Dang et  al., 2015), CYP82Y2  in 
reticuline isomerization removes hydrogen from (S)-reticuline to 
yield 1,2-dehydroreticuline. The resulted double bond is in turn 
reduced by the AKR domain of the AKR/CYP82Y2 fusion to 
produce (R)-reticuline. Similar fusion proteins made up of a 
CYP82Y2-like portion and an AKR domain were also found in 
dwarf breadseed poppy (P. setigerum) and Persian poppy (P. 
bracteatum), revealing an intriguing evolutionary solution in some 
poppy species to metabolic flux and/or regulation hurdles of 
BIA metabolism (Farrow et  al., 2015; Winzer et  al., 2015).

The abstraction of hydrogen from substrates underlies P450-
based catalysis as seen in the oxidation reactions discussed above. 
In many cases, this dehydrogenation can produce more than 
one radical, allowing diradical coupling, and consequently, ring 
formation. This structural transformation can fundamentally alter 
the core scaffold of the compound. Some of the earliest 
demonstrated examples of such P450-catalyzed C–C and 

C–O  coupling were observed in BIA biosynthesis (Zenk et  al., 
1989). CYP80A1 from barberry (Berberis stolonifera) was the 
first P450 identified to catalyze a C–O coupling reaction, 
condensing two methylcoclaurine molecules with different 
enantiomeric conformations to yield the (R,S)-dimer berbamunine 
(Figure  1). Interestingly, although CYP80A1 is regio-specific, it 
can accept two (R)-methylcoclaurine to form the (R,R)-dimer 
product guattegaumerine (Kraus and Kutchan, 1995).

The CYP719A subfamily members found in isoquinoline 
alkaloids-producing plants are responsible for forming the 
methylenedioxy bridge in these compounds. In meadow rue 
(Thalictrum tuberosum), Rueffer and Zenk (1994) first observed 
the P450-based conversion of (S)-tetrahydrocolumbamine to 
(S)-canadine, also known as (S)-tetrahydroberberine, the 
precursor for many important BIAs such as noscapine, berberine, 
and sanguinarine. Other (S)-canadine synthases were later 
identified in several species, including CYP719A1  in Japanese 
goldthread (Coptis japonica; Ikezawa et  al., 2003) and 
CYP719A21  in opium poppy (Dang and Facchini, 2014a). The 
methylenedioxy bridge formation on (R,S)-cheilanthifoline 
leading to (S)-stylopine is catalyzed by other members of this 
subfamily, including CYP719A2  in California poppy (Ikezawa 
et al., 2007) or CYP719A13 in Mexican prickly poppy (Argemone 
mexicana; Díaz Chávez et  al., 2011). Ikezawa et  al. (2007) also 
identified CYP719A3, which can accept three substrates (R,S)-
cheilanthifoline, (S)-scoulerine, and (S)-tetrahydrocolumbamine 
to yield (S)-stylopine, (S)-nandinine, and (S)-canadine, 
respectively (Figure 1). (S)-Scoulerine is also subject to another 
methoxyphenol cyclization catalyzed by CYP719A5 in California 
poppy (Ikezawa et  al., 2009), CYP719A14  in Mexican prickly 
poppy (Díaz Chávez et  al., 2011), or CYP719A25  in opium 
poppy (Desgagné-Penix et al., 2010; Dang and Facchini, 2014b) 
to form (S)-cheinlanthifoline. Recently, CYP719A37  in black 
pepper (Piper nigrum) has been found to be  responsible for 
the presence of the methylenedioxy bridge in piperic acid, a 
precursor of the pungent alkaloid piperine (Schnabel et al., 2021).

More than a decade after the captivating discovery of the 
P450-based C–O coupling reaction, the C–C coupling activity 
by a P450, CYP80G2, was identified in the intramolecular 
phenol coupling of (S)-reticuline that produces (S)-corytuberine 
(Ikezawa et  al., 2008; Figure  1). Not too long after, another 
P450, CYP719B1, was found to catalyze a similar reaction on 
(R)-reticuline to form salutaridine (Gesell et  al., 2009). 
P450-catalyzed C–C coupling also plays a significant role in 
the chemical diversification of Amaryllidaceae alkaloids, a group 
of approximately 600 isoquinoline alkaloids. As the name 
suggests, these alkaloids are tightly associated with the daffodil 
family (Amaryllidaceae) and are derived from the phenethylamine 
norbelladine and its derivative 4'-O-methylnorbelladine 
(Desgagné-Penix, 2021). The intramolecular C–C coupling of 
4'-O-methylnorbelladine can occurs at different positions and 
stereochemistry. The para-para cyclization yields both 
(10bS,4aR)-noroxomaritidine and its enantiomer (10bR,4aS)-
noroxomaritidine, which is the precursor for the biosynthesis 
of hemanthamine, pancrastatine, montanine and other para-para 
cyclized derivatives. The para-ortho cyclization affords 
N-demethylnarwedine (nornarwedine), leading to galanthamine, 
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chlidanthine, lycoramine and similar compounds. The ortho-
para coupling forms noroxopluviine, precursor of hippeastrin, 
lycorine and derivatives. In Narcissus sp. aff. Pseudonarcissus, 
CYP96T1 was identified as the enzyme that catalyzes the 
para–para coupling of 4'-O-methylnorbelladine to produce 

two noroxomaritidine enantiomers. This enzyme also 
displayed  some para–ortho coupling activity as it yields 
N-demethylnarwedine as a minor product (Kilgore et  al., 
2016; Figure  4A). Despite this structural diversity and a long 
history of Amaryllidaceae plants being used in traditional 

A

B

FIGURE 4 | Examples of P450 catalysis beyond oxygenation including: (A) C–C couplings of 4'-O-methylnorbelladine, a central precursor of Amaryllidaceae 
alkaloids, leading to various pathways; and (B) group migration in tropane alkaloid biosynthesis. Enzymes indicated here are discussed in the text.
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FIGURE 5 | P450s in the terpenoid scaffold formation of MIAs. Multiple and single arrows indicate multiple- and single-step pathways, respectively. Enzymes 
indicated here are discussed in the text.

medicine, galanthamine has been the only Amaryllidaceae 
alkaloid commercialized as a drug to treat neurodegenerative 
disorders. Increasing plant genomics data of Amaryllidaceae 
plants will undoubtedly reveal more P450s with C–C and 
C–O coupling activities and help us explore their untapped 
therapeutic potentials in the near future.

OXIDATIVE RING OPENING

P450s are involved not only in ring formation but also in 
ring breakage, allowing for the formation of new scaffolds, or 
activate the chemicals for further condensation in alkaloid 
metabolism. Ring opening induced by oxygenations such as 
those catalyzed by CYP82X1 and CYP82N4 in BIA biosynthesis 
has been described earlier (Dang et  al., 2015). Other P450-
catalyzed ring openings leading to characteristic scaffolds have 
also been found. One of the earliest P450s catalyzing such 
unique reactions is secologanin synthase from C. roseus, 
CYP72A1, which opens the cyclopentane ring of loganin to 
yield secologanin (Figure  5; Irmler et  al., 2000).

Secologanin synthase was the first enzyme of the then 
newly-found CYP72 family (Vetter et al., 1992; Irmler et al., 2000), 
including many members that catalyze the usual P450-based 

oxygenation in terpenoid metabolism (Turk et al., 2003; Ikezawa 
et  al., 2011; Fukushima et  al., 2013). CYP72A1’s unique ring 
opening activity is shared with close homologues in the 
biosynthesis of iridoids, a group of non-canonical terpenoids 
such as secologanin, which is condensed with tryptamine to 
make the central MIA precursor strictosidine (Mizukami et al., 
1979; McCoy et al., 2006). In the Chinese happy tree (Camptotheca 
acuminata), both CYP72A565 and CYP72A610 display 
secologanin synthase activity and break the cyclopentane ring 
of loganic acid to produce secologanic acid, the hypothetical 
precursor of the anti-cancer agent camptothecin. Intriguingly, 
these two enzymes also hydroxylate 7-deoxyloganic acid to 
yield loganic acid before proceeding to open its C7–C8 bond 
(Figure  5; Yang et  al., 2019).

Rodríguez-López et al. (2021) found two bifunctional CYP72 
enzymes in olive (Olea europaea) with dehydrogenase activity 
on the hydroxyl group of 7-epi-loganin and C7–C8 bond 
breaking activity on the resulted ketologanin (Figure  5). These 
two enzymes, named secoxyloganin synthase and oleoside 
methyl ester synthase based on their products, showed that 
ring opening activity is not restricted to the CYP72A 
subfamily  as  they share less than 50% amino acid identity 
with the three CYP72A enzymes in C. roseus and C. acuminata 
(Irmler et  al., 2000; Yang et  al., 2019).
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OTHER STRUCTURAL RE-ARRANGEMENTS

The skeletal re-arrangement of (R)-littorine to (S)-hyoscyamine, 
a tropane alkaloid drug used to manage spasms and symptoms 
of Parkinson’s disease, had intrigued researchers for a long time 
and was hypothesized to be underlined by a P450 (Robins et al., 
1995). Li et  al. (2006) demonstrated that this unique migration 
of the whole 8-methyl-8-azabicyclo[3.2.1]octan-3-yl ester group, 
or re-arrangement of the 3-phenyllactate to tropate, of (R)-littorine 
is catalyzed by CYP80F1 to produce (S)-hyoscyamine aldehyde 
in black henbane (Hyocyamus niger). (S)-hyoscyamine is thought 
to be the precursor of (S)-hyoscyamine in the plant, but CYP80F1 
can also oxidize the 3'-hydroxyl group of (S)-hyoscyamine back 
to (S)-hyoscyamine aldehyde. In addition, CYP80F1 displays 
remarkable catalytic promiscuity by catalyzing a single oxidation 
without group migration at C3' position of (R)-litorine to yield 
(2'R,3'R)-3'-hydroxylittorine (Figure  4B; Li et  al., 2006).

Colchicine biosynthesis again showcases the fascinating diversity 
of P450 activities. In addition to the two CYP75A enzymes 
described earlier, the metabolic pathway of colchicine involves 
a unique P450 with ring expansion activity. This P450-based 
ring expansion was demonstrated using NADPH and microsome 
from the seed of autumn crocus (Colchicum autumnale) by Rueffer 
and Zenk (1998), and the enzyme was identified more than 
20 years later by Nett et al. (2020) as CYP71FB1. In this reaction, 
the 1,4-cyclohexadiene ring of O-methylandrocymbine is expanded 
to yield N-formyldemecolcine, the precursor of colchicine. Although 
the final steps leading to colchicine are yet to be  elucidated, the 
finding of CYP71BF1 activity has established how the characteristic 
tropolone ring of colchicine structure is built (Figure  3).

GENERAL DISCUSSION

P450 enzyme control occurs at many steps in all chemical 
diversification pathways of alkaloids. The catalytic versatility of 
P450 enzymes provides not only tremendous chemical diversity 
and thus adaptability to increase plants’ fitness but also blueprints 
for biocatalyst engineering with applications in medicine, industry, 
and bioremediation (Bernhardt, 2006; Nelson and Werck-Reichhart, 
2011; Sakaki, 2012; Li et  al., 2020; Shang and Huang, 2020).

Although enzymes in the same P450 family tend to catalyze 
similar reactions in alkaloid metabolism, such as single 
hydroxylation by CYP82 members and methylenedioxy bridge 
formation by CYP719 enzymes, this is not always the case. 
Increasingly abundant genomic data will allow for the 
identification of more P450s and their roles in alkaloid 
biosynthesis in natural products biochemistry in general (Nelson, 
2018). Given the complexity of alkaloid structures and the 
sheer number of unelucidated pathways, what appear to 
be “unusual” such as the ring-expanding functions by CYP71BF1 
or a P450-dependent oxidoreductase fusion like CYP82Y2 could 
turn out to occur in other pathways and provide excellent 
templates for future enzyme engineering to harness these unique 
chemical prowesses. Likewise, understanding differential substrate 
specificities of P450s acting in the same pathway and on similar 
substrates as observed in the noscapine pathway sheds light 

on the chemical strategies that plants employ and thus inform 
future pathway engineering approaches. Recent progress in 
exploring plant P450s have afforded the production in engineered 
hosts of alkaloids such as dihydrosanguinarine, noscapine (Li 
et  al., 2018), thebaine, hydrocodone (Thodey et  al., 2014), 
strictosidine (Brown et  al., 2015), vindoline (Qu et  al., 2015), 
and N-formyldemecolcine (Nett et  al., 2020).

The broad substrate spectrum of many P450s can complicate 
biosynthesis studies and metabolic engineering efforts 
(Hidalgo et al., 2017; De La Peña and Sattely, 2021). Nevertheless, 
such promiscuity sheds light into the evolution of these enzymes, 
and indicates their crucial role as part of the catalytic reservoirs 
whose members can be  recruited for emerging pathways and 
further drive the chemical diversity of plants (Tawfik, 2010; 
Ikezawa et  al., 2011; Weng et  al., 2012; Guo et  al., 2016; Dang 
et  al., 2017, 2018; Forman et  al., 2018; Christ et  al., 2019; 
Nguyen et al., 2019; Lichman et al., 2020; Nguyen and O’Connor, 
2020). Even for non-native or new-to-nature substrates including 
halogenated analogues, P450s display a certain degree of natural 
tolerance as observed in the multiple-step biotransformation 
of 7-chlorotryptamine to 12-chloro-19,20-dihydroakuammicine 
in MIA metabolism of C. roseus cultures (Glenn et  al., 2011). 
This feature may, therefore, also provide natural templates for 
catalytic optimization towards desired and/or novel yet related 
activities. Despite the general challenge due to the lack of 
P450 structural information and the requirement of redox 
partners, P450 engineering will undoubtedly benefit from the 
cataloguing of new sequences and functions from the ever-
expanding plant genome datasets. In addition, modification of 
the relatively-conserved substrate-recognition sites across P450s 
may allow product profile customization without experimental 
protein structural data (Gotoh, 1992; Forman et al., 2018; Shang 
and Huang, 2020).

There remain other challenges in understanding the catalytic 
mechanisms of P450 enzymes beyond substrate specificities 
such as non-oxidative reactions, while the membrane-bound 
nature of plant P450 enzymes impedes structural studies using 
crystallography approaches (Shang  and  Huang, 2020; Zhang 
et  al., 2020). In addition, the interaction and localization of 
P450 enzymes with respect to other enzymes in the same 
pathways remain to be  explored (Bassard et  al., 2017). All of 
these continue to fascinate scientists for the years to come.
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