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Novoselović D (2021) Variation

for Nitrogen Use Efficiency Traits
in Wheat Under Contrasting Nitrogen
Treatments in South-Eastern Europe.

Front. Plant Sci. 12:682333.
doi: 10.3389/fpls.2021.682333

Variation for Nitrogen Use Efficiency
Traits in Wheat Under Contrasting
Nitrogen Treatments in
South-Eastern Europe
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Dario Novoselović1,2
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Wheat cultivars differ in their response to nitrogen (N) fertilizer, both in terms of its uptake
and utilization. Characterizing this variation is an important step in improving the N use
efficiency (NUE) of future cultivars while maximizing production (yield) potential. In this
study, we compared the agronomic performance of 48 diverse wheat cultivars released
between 1936 and 2016 at low and high N input levels in field conditions to assess the
relationship between NUE and its components. Agronomic trait values were significantly
lower in the low N treatment, and the cultivars tested showed a significant variation for all
traits (apart from the N remobilization efficiency), indicating that response is genotype-
dependent, although significant genotype × environment effects were also observed.
Overall, we show a varietal improvement in NUE over time of 0.33 and 0.30% year−1 at
low and high N, respectively, and propose that this is driven predominantly by varietal
selection for increased yield. More complete understanding of the components of these
improvements will inform future targeted breeding and selection strategies to support a
reduction in fertilizer use while maintaining productivity.

Keywords: Triticum aestivum, wheat breeding, nitrogen use efficiency, genetic variances and correlations,
heritability, indirect selection, genetic progress

INTRODUCTION

Climate change, competition for land, limited natural resources, and the co-occurrence of abiotic
and biotic stresses all threaten global wheat production. One option to address this is increasing
productivity through the adoption of cultivars with improved genetic potential (Reynolds et al.,
2012). Over the last 50 years, breeding and agronomic efforts have led to a reported tripling of
cereal yields (Pingali, 2012). However, wheat productivity is increasing at a global rate of 1.1%
per year (Dixon et al., 2009) against a predicted demand requirement of 1.7% year−1 until 2050
(Rosegrant and Agcaoili, 2010).
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Current wheat production demands a range of agrochemical
inputs, including nitrogen (N) fertilizer. Between 85 and 90
million tons of N fertilizers are added to agricultural soils
worldwide each year, and current predictions based on projected
food demand show that this could increase to 240 million tons by
2050 (Good et al., 2004). N fertilizer represents the single most
expensive input into wheat production and accounts for more
than 70% of its associated greenhouse gas emissions (Mortimer
et al., 2004). Excessive usage has a range of negative impacts on
the environment, and it is estimated that 50−70% of applied
N is lost from the plant–soil system through a combination
of leaching, surface run-off, denitrification, volatilization, and
microbial consumption (Peoples et al., 1995).

Plants use N as part of many biological processes (Masclaux-
Daubresse et al., 2008), and it is taken up primarily as nitrate
and ammonium, with nitrate being the predominant form in
most agricultural soils (Crawford and Forde, 2002). Several
physiological and biochemical changes occur in plants as adaptive
responses to N limitation, including an increase in N uptake
by high-affinity transporters, remobilization of N from older to
younger leaves and reproductive parts, retardation of growth
and photosynthesis, and increased anthocyanin accumulation
(Ono et al., 1996; Chalker-Scott, 1999; Ding et al., 2005; Diaz
et al., 2006). The effect of low N availability on plant biomass,
nitrate uptake, and root architecture has already been widely
studied, and it is known that plants modify their root architecture,
changing their lateral/primary root ratio and simultaneously
decreasing shoot/root ratio in order to forage soil nutrients
(Brouwer, 1962; Drew and Saker, 1975; Van der Werf and Nagel,
1996; Lea and Azevedo, 2007; Lemaître et al., 2008).

N use efficiency (NUE) is generally defined as the yield of grain
achieved per unit of N available to the crop from soil and applied
fertilizer, and it can be divided into two biological components,
N uptake efficiency (NUpE) and N utilization efficiency (NUtE)
(Moll et al., 1982). Wheat in Northern Europe is typically grown
at high N input levels, and N recovery and NUE have been
estimated to be between 30 and 65% and 25 kg of DM kg-1 N,
respectively (Raun et al., 2002; Sylvester-Bradley and Kindred,
2009; Gaju et al., 2011). A major challenge is optimizing N
use (e.g., selecting cultivars that make the best use of applied
N; termed here as N-efficient germplasm) while maintaining
yield in order to minimize negative environmental impacts and
production input costs (Kichey et al., 2007; Kant et al., 2011).
A recent study showed that modern cultivars have improved yield
performance along with enhanced nutrient use efficiency (Voss-
Fels et al., 2019), demonstrating that high NUE is likely to be
indirectly increased through selection for high yield.

A prerequisite for breeding and selection of N-efficient
germplasm is access to genetic variation. Previous work in wheat
field trials conducted under a range of N levels has shown
that significant genetic variability exists for NUE along with
the component traits (NUpE and NUtE) (Cox et al., 1985; Van
Sanford and MacKown, 1986; Dhugga and Waines, 1989; Ortiz-
Monasterio et al., 1997; Foulkes et al., 1998; Le Gouis et al.,
2000; Brancourt-Hulmel et al., 2003; Barraclough et al., 2010;
Gaju et al., 2011, 2014; Cormier et al., 2013; Guttieri et al., 2017;
Nehe et al., 2018).

However, the magnitude and relative contribution of the
components to overall genetic variability in NUE varies between
experiments. For example, NUpE has been shown to account for a
greater proportion of variation in NUE at low compared to high
N levels (Ortiz-Monasterio et al., 1997; Le Gouis et al., 2000) as
has NUtE (Gaju et al., 2011), although Dhugga and Waines (1989)
found NUpE to be equally important at both levels.

Breeding and cultivar registration trials are typically
conducted at high N levels to ensure maximum expression
of genetic potential (Hitz et al., 2016). Voss-Fels et al. (2019)
reported that this has also resulted in indirect selection for
optimal performance under reduced input scenarios. However,
trait heritability within production systems and the magnitude of
genotype × production system interaction are key factors when
comparing breeding strategies, i.e., direct or indirect selection
between conventional (high-input) and organic (or low-input)
farming systems (Annicchiarico et al., 2010).

Estimates of heritability at high- and low-input levels
together with genetic correlation between input levels have
been used for the prediction of relative efficiency of direct
vs. indirect selection in wheat to give recommendations for
selection programs, aimed at producing cultivars for low-input
or organic agriculture (Brancourt-Hulmel et al., 2005; Przystalski
et al., 2008; Annicchiarico et al., 2010; Cormier et al., 2013;
Šarčević et al., 2014).

Brancourt-Hulmel et al. (2005) and Cormier et al. (2013)
concluded that breeding programs aiming to produce N-efficient
cultivars for low-input environments should include testing and
selection at low input to maximize selection gains for grain yield
(GY). Przystalski et al. (2008) suggested combining information
from both organic (low input) and non-organic (high input)
experiments to optimize the selection of wheat cultivars for
organic farming systems, and Hitz et al. (2016) indicated that
selection at low N is necessary to identify high NUE genotypes.
However, Annicchiarico et al. (2010) found no advantage when
targeting organic production of direct selection for GY in organic
systems relative to indirect selection in conventional systems.
Similarly, Šarčević et al. (2014) reported high efficiency of
indirect selection under high N for performance under low N,
which was close to 1.0 for GY and for most studied bread-
making quality traits.

N use efficiency and its components have been widely
studied including in released CIMMYT wheat cultivars (Ortiz-
Monasterio et al., 1997), Northwestern European (Le Gouis et al.,
2000; Barraclough et al., 2010; Gaju et al., 2011, 2014; Cormier
et al., 2013), North American (Guttieri et al., 2017; Russell
et al., 2017), and Indian wheats (Nehe et al., 2018). However,
the information on variation for these traits is lacking for
wheat germplasm adapted to and selected within South-eastern
European production conditions.

The objectives of this study were to (1) evaluate the effect
of N treatment (low vs. high) on the agronomic performance
of a set of wheat cultivars predominantly originating from
South-eastern Europe; (2) to estimate variance components and
heritability for GY, NUE and its components under low and high
N, and related changes caused by breeding and selection; and (3)
to identify the relationship between NUE and its components
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in the cultivar panel to inform future selection and breeding
for N efficiency.

MATERIALS AND METHODS

Plant Materials and Field Experiments
Forty-eight winter wheat cultivars were evaluated in field trials
under two N fertilization levels over two consecutive seasons
(2016/2017 and 2017/2018) in three locations (Osijek, Zagreb,
and Poreč) representing different agro-ecological conditions
and soil types in Croatia. On average, in both seasons,
Osijek was the driest and coolest location, whereas Poreč
was the warmest and with the highest amounts of rainfalls
(Supplementary File 1_Meteo data 2016−2018).

The panel included current and historical cultivars released
between 1936 and 2016 from Croatian breeding institutes (33
cultivars) along with cultivars from breeding programs in seven
other countries. The panel was assembled to represent the
historical and current significance of cultivars in production
in Croatia and their pedigree contributions. Historical cultivars
included in the panel were: U-1, San Pastore, and Bezostaya-
1 developed in 1936, 1940, and 1959, respectively. The cultivar
list, year of registration and their country of origin, and breeding
institution are listed in Supplementary Table 1.

Each of the six field trials was set up in a split-plot factorial
design with three replicates with N fertilization levels [low N
(LN); high N (HN)] as main plots and 48 wheat cultivars as
subplots. The harvested plot size was 7.56 m2 at Osijek and Poreč
and 4.95 m2 at Zagreb. Seeding rate was 350 kernels m−2 in all
trials and for all cultivars. Buffer plots were planted between the
main N treatment plots.

The N-min analysis method (Krom, 1980) was used to
estimate residual N content in the soil by sampling at two soil
depths (30 and 60 cm) before planting. Basic fertilization of
74 kg N ha−1, 80 kg P2O5 ha−1, and 120 kg K2O ha−1 was
applied by adding 100 kg ha−1 of urea (46% N) and 400 kg ha−1

NPK (7:20:30). The N treatment comprised of two N fertilization
levels, 0 kg N ha−1 (LN) and 100 kg N ha−1 (HN), applied
as top-dressings of 50 kg N ha−1 at tillering (GS23-25 after
Zadoks et al., 1974) and stem extension (GS33-35) growth stages,
respectively. The HN level (treatment) corresponds to standard
N fertilization practice, whereas all other cultural practices,
including application of herbicides, insecticides, and fungicides
to control major weeds, insects, and foliar diseases, were typical
for commercial wheat production in South-eastern Europe.

Descriptions of the soil type, soil N content, and N fertilization
rates for HN and LN treatments for the 6-year location
combinations are given in Supplementary Table 2.

Agronomic Trait Measurements and
Statistical Analysis
A total of 15 traits were assessed across all trials in order to
determine their response to N treatment. All trials were harvested
at maturity using plots combine, and GY was adjusted to 0%
moisture content (grain dry matter; DM). In order to assess
DM, plant material was sampled at flowering (GS63-65) and at

harvest maturity (GS92) from middle rows of each experimental
plot by cutting samples at the ground level 1 m in length.
Fresh samples were weighed, and subsamples of approximately
100 g were dried for 2 days at 70◦C to a constant weight and
recalculated to 0% moisture basis. Information on dry and fresh
weights of whole subsamples and fresh weight of whole samples
from the first sampling (GS63-65) was used to calculate the total
aboveground dry matter per area at flowering (DMTA_F, kg DM
ha−1). In subsamples from the second sampling (GS92), spikes
were cut at the base and separated from the stems after drying.
Spikes were threshed using lab thresher, and chaff collected
was returned to the rest of the straw. Harvest index (HI,%)
was then calculated as the ratio between grain dry weight and
total biomass dry weight of the subsample. The aboveground
straw dry matter per area at maturity (DMSA, kg DM ha−1)
was calculated by dividing GY (kg DM ha−1) with HI. Whole
subsamples from flowering and straw subsamples from harvest
maturity were further subsampled for milling into fine powder
(sieves of < 200 µm) using a grinding mill and were used
for determination of aboveground plant N content at flowering
(NT_F) and straw N content at harvest maturity (NS) using
the Kjeldahl method (Kjeldahl, 1883). Grain protein content
(GPC) was measured at the Agricultural Institute Osijek using an
Infratec 1241 Grain Analyzer (FOSS, Denmark) from the grain
samples of 0.5 kg collected after the harvest in all experimental
plots. Plant height (PH, cm) was measured at harvest maturity
(GS92). Detailed trait descriptions and formulae are given in
Supplementary Table 3.

All statistical analysis was performed in R (R Development
Core Team, 2013). Detailed formulae and variable descriptions
are given in Supplementary Table 4. Three linear models
were employed as described by Cormier et al. (2013): first,
in all field trials (defined as a location-year-N treatment
combination), least squares means were calculated with cultivars
and replicates as fixed factors. These adjusted means were then
used in the subsequent analyses (second and third models)
to determine the contribution of main factors and interaction
effects where environment was defined as a combination of
years and locations (Supplementary Table 4). The estimation
of variance components and testing their significance was done
using lme4 package in R software. Calculations for generalized
heritability (H) using formula of Cullis et al. (2006), phenotypic
(r) and genetic (rg) correlations were done using R/sommer
(Covarrubias-Pazaran, 2016).

Predicted correlated response of a trait under LN with
selection based on a trait mean under HN (CRLN) relative
to the predicted response to direct selection under LN (RLN)
was calculated according to Falconer and Mackay (1996)
(Supplementary Table 4). To avoid bias, as proposed by Weber
et al. (2012), the estimates of genetic correlations were allowed to
exceed the upper limit of 1, whereas they were restricted to ≤ 1 to
get reasonable estimates of indirect selection.

Linear regressions between year of cultivar registration and
assessed traits were calculated based on adjusted means. Linear
regressions between NUE and its components (NUpE and NUtE)
and GY and GPC were calculated using best linear unbiased
prediction (BLUP) values. These calculations and respective
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plotting were done using R software (lm function and libraries
ggplot2, ggmisc, and ggpubr).

RESULTS

Agronomic Traits Vary Significantly
Between Low and High N Levels and
Between Testing Environments
The majority of trait means showed significant differences
between the LN and HN treatments across testing locations
and cultivars tested (Table 1). The difference (% of HN) for
production traits, including GY, GPC, GNY, and HI, were all
significantly higher at HN compared to LN, whereas NUE, NUtE,
NUtE_PROT, NUE_PROT, and BPE were reduced at HN. Two
derived traits exhibited the greatest relative differences between
treatments with NTA having the largest positive (+ 21.61%) and
BPE having the largest negative difference (− 19.43%) between
HN and LN. Only five traits (PH, NHI, NUpE, NRE, and
PANU) did not show any significant differences between LN
and HN treatments.

All traits were normally distributed regardless of N level,
although the degree of data dispersion varied by trait/N
combination (Supplementary Table 5). Trait means estimated
for the 48 cultivars varied at each location, having lower values
at LN for GY, GPC, GNY, NTA, and HI in all locations
(Supplementary Table 6). For PH, NHI, and BPE, the lowest
mean values were recorded in Osijek, whereas the highest values
were obtained in Zagreb with higher values of PH and NHI
recorded at LN compared to HN, as opposed to Osijek and

TABLE 1 | Trait means at low (LN) and high (HN) fertilization levels across six
environments and 48 wheat cultivars.

Trait (unit) N level Differencea

LN HN (% of HN)

GY (kg DM ha−1) 5980.8 6657.4 10.16**

PH (cm) 84.9 85.9 1.16ns

GPC (%) 11.2 13.0 13.85***

GNY (kg N ha−1) 119.6 150.2 20.37**

NTA (kg N ha−1) 143.3 182.8 21.61**

HI (% DM) 46.0 47.9 3.97*

NHI (% N) 83.2 82.4 −0.97ns

NUE (kg DM kg−1N) 33.1 29.3 −12.97**

NUpE (%) 78.0 80.0 2.5ns

NUtE (kg DM kg−1 N) 42.7 37.0 −15.41**

NUtE_PROT (% protein kg−1 N ha−1) 0.09 0.08 −12.50*

NUE_PROT (% protein kg−1 N ha−1) 0.063 0.059 −6.78*

NRE (%) 65.2 68.9 5.37ns

BPE (kg DM kg−1 N) 104.5 87.5 −19.43**

PANU (kg N ha−1) 59.6 59.6 0.0ns

ns: not significant.
*, **, and ***: significant at the level of probability p < 0.05, p < 0.01, and p < 0.001,
respectively.
aDifference calculated as [(trait mean at HN − trait mean at LN)/trait mean at
HN] × 100.

Poreč locations. The highest calculated mean values of BPE were
recorded in Poreč, followed by Zagreb and Osijek. Poreč had
the highest values for NUtE and NUtE_PROT at both LN and
HN followed by Osijek and Zagreb. Mean values of PANU were
found to be significantly higher at Osijek compared to Zagreb
(1.4- and 1.2-fold for LN and HN, respectively) and Poreč (1.9-
and 1.6-fold for LN and HN, respectively). Unlike the two other
locations, mean values of PANU in Osijek were higher under
LN compared to HN (Supplementary Table 6). The differences
between years at specific N treatment were consistent and
significant for PH, NUE, NUtE, NRE, and BPE and consistent
but not significant for GY, GNY, and NUpE (Supplementary
Table 7). Results by individual location and year were presented
in Supplementary Table 8.

Trait Correlations Are Generally
Consistent Across N Treatments and
Indicate Linked Responses
Positive correlations (r ≥ 0.60) between the analyzed traits
at LN and HN and based on varietal adjusted means across
the six environments were observed for GY with GNY, HI,
NHI, NUE, and NUtE, and at LN for NTA (r = 0.71) and
NUpE (r = 0.69). Strong-to-very-strong negative correlations
(r ≥ − 0.60) were detected between GY and PH, GPC,
NUtE_PROT, and NUE_PROT at both LN and HN levels. At
both N levels, GPC showed a positive correlation with PH
(r = 0.38), NUE_PROT (r = 0.95), and NUtE_PROT (r = 0.47
and 0.56, at LN and HN, respectively) and a negative correlation
with HI (r = −0.61 and − 0.64), NHI (r = −0.39 and − 0.44),
NUtE (r = −0.93 and − 0.94), and NUE (r = −0.74 and −0.70)
at LN and HN, respectively (Table 2). These values were under
strong environmental influence and varied depending on the
year and location. For example, GY was in correlation with
GPC varying from r = − 0.30 to r = −0.66 (Zagreb in 2018 at
LN and Osijek in 2018 at HN), GY with NUpE values varied
from the lack of correlation to r = 0.80 and with NUtE varied
from r = 0.46 to r = 0.74. GPC was in relatively stable and
high negative correlation with NUtE varying from r = −0.63
to r = − 0.93, whereas this relationship with NUpE was not so
consistent (Supplementary File_4 Linear correlations). HI was
positively correlated with GNY, NHI, NUE, NUtE, and NRE and
negatively correlated with PH, GPC, NUtE_PROT, NUE_PROT,
and BPE at both LN and HN.

Of the N-specific derived traits, NUE showed positive
correlation with NUtE at both N levels (r = 0.80 and r = 0.76,
at LN and HN, respectively) and with NUpE although the
correlation was stronger in LN conditions (r = 0.79 and r = 0.49,
at LN and HN, respectively). Weaker positive correlations were
found between NUE and NRE, and PANU at LN (r = 0.36
and r = 0.40, respectively) and HN (r = 0.29 and r = 0.36,
respectively). At both N levels, NUE was negatively correlated
with NUtE_PROT (r = − 0.63 and r = − 0.90) and NUE_PROT
(r = − 0.65) (Table 2).

Using BLUP means a significant negative correlation was
detected between GY and GPC at both N levels (R2 = 0.54
vs. 0.49 at LN and HN, respectively) (Figure 1A). For the
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TABLE 2 | Linear correlations (r) between analyzed traits at low (LN) and high (HN) nitrogen levels across environments (n = 48 cultivars).

N level PH GPC GNY NTA HI NHI NUE NUpE NUtE NUtE_ PROT NUE_ PROT NRE BPE PANU

GY LN –0.62** −0.74** 0.81** 0.71** 0.77** 0.62** 0.99** 0.69** 0.80** −0.61** −0.65** 0.34* −0.22 0.42**

HN –0.67** −0.70** 0.74** 0.48** 0.75** 0.60** 0.99** 0.49** 0.75** −0.89** −0.63** 0.29* −0.25 0.38**

PH LN 0.38** −0.59** −0.48** −0.75** −0.54** −0.59** −0.45** −0.49** 0.25 0.31* −0.25 0.52** −0.22

HN 0.38** −0.64** −0.29* −0.81** −0.68** −0.65** −0.28* −0.49** 0.50** 0.33* −0.38** 0.62** −0.42**

GPC LN −0.24 −0.12 −0.61** −0.39** −0.74** −0.11 −0.93** 0.47** 0.95** −0.29* −0.23 −0.16

HN −0.07 0.19 −0.64** −0.44** −0.70** 0.18 −0.94** 0.56** 0.95** −0.26 −0.28 0.08

GNY LN 0.93** 0.64** 0.63** 0.80** 0.90** 0.36* −0.49** −0.17 0.25 −0.54** 0.48**

HN 0.83** 0.50** 0.50** 0.73** 0.83** 0.17 −0.72** −0.01 0.18 −0.64** 0.64**

NTA LN 0.40** 0.31* 0.71** 0.99** 0.16 −0.46** −0.06 0.06 −0.53** 0.54**

HN 0.04 −0.06 0.46** 0.99** −0.21 −0.62** 0.22 −0.15 −0.57** 0.62**

HI LN 0.83** 0.75** 0.34* 0.77** −0.40** −0.56** 0.45** −0.40** 0.19

HN 0.85** 0.75** 0.05 0.78** −0.56** −0.58** 0.47** −0.38** 0.18

NHI LN 0.60** 0.25 0.64** −0.33* −0.32* 0.58** −0.29* 0.08

HN 0.59** −0.05 0.66** −0.35* −0.38** 0.62** −0.23 0.13

NUE LN 0.70** 0.80** −0.63** −0.65** 0.36* −0.20 0.40**

HN 0.49** 0.76** −0.90** −0.65** 0.29* −0.25 0.36*

NUpE LN 0.13 −0.48** −0.05 0.05 −0.50** 0.54**

HN −0.19 −0.65** 0.20 −0.15 −0.58** 0.61**

NUtE LN −0.47** −0.86** 0.46** 0.12 0.11

HN −0.55** −0.89** 0.42** 0.19 −0.08

NUtE_PROT LN 0.41** −0.19 0.25 −0.24

HN 0.51** −0.09 0.31* −0.38**

NUE_PROT LN −0.19 −0.24 −0.15

HN −0.27 −0.29* 0.09

NRE LN −0.10 −0.28

HN −0.11 −0.34*

BPE LN −0.09

HN −0.46**

* and **: Significance (df = 46) at the level of probability p < 0.05 and p < 0.01, respectively.
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NUE component traits, there was a positive moderate and
positive weak relationship with NUpE at LN (R2 = 0.48) and
HN conditions (R2 = 0.23) (Figure 1B) and moderate positive
relationship between GY and NUtE under both LN (R2 = 0.64)
and HN conditions (R2 = 0.57) (Figure 1C), and positive
moderate and positive weak relationship with NUpE at LN
(R2 = 0.48) and HN conditions (R2 = 0.23) (Figure 1B).

While GY is intrinsically in positive linear relationship with
NUE, GPC was in moderate negative relationship at both N levels
(R2 = 0.47 vs. 0.55 at LN and HN, respectively) (Supplementary
Figure 1A). Between NUE and its components, a moderate
positive relationship was observed for NUE and NUpE under
LN (R2 = 0.49), but a weak relationship was revealed under HN
conditions (R2 = 0.12, Supplementary Figure 1B). NUE was in
a strong-to-moderately strong positive relationship with NUtE
(R2 = 0.60 vs. 0.51 at HN and LN, respectively) (Supplementary
Figure 1C). NUpE was not linearly significant neither with
GPC, nor with NUtE at both LN and HN (Supplementary
Figures 2A,B). In contrast, NUtE was in a very strong negative
relationship with GPC at both N levels (R2 = 0.87 vs. 0.89 at LN
and HN, respectively; Supplementary Figure 3).

Decomposition of Phenotypic and
Genotypic Variance Shows
Genotype-Specific Trait Responses
Breakdown of total phenotypic variation (Table 3) shows
significant genotypic and genetic variance effects for all
traits, except for NRE. Genotypic effects were largest for PH
(69.71%), NUE (42.07%), NUtE (35.67%), and GPC (32.10%).
Environmental components of overall variation were highest
for BPE (78.54%), NTA (69.11%), GNY (64. 890%), and NRE
(63.53%). The G × E interaction was significant for the majority
of traits except NUtE_PROT, BPE, and PANU, whereas the
G × N interaction was non-significant for all traits. Interaction
between N treatment and environment was significant except for
NUtE_PROT (Table 3).

Trait Heritabilities Are Stable Across N
Treatments and Performance at High N
Predicts Low N Phenotypes
Trait heritabilities across N levels were variable ranging from
0.60 for NUtE_PROT to 0.98 for PH (Table 4) and generally
were higher under HN than LN, except for NRE and PANU, but
consistent among traits. Of the five directly measured traits, GY,
PH, and GPC had high heritability estimates (>0.90), whereas
GNY and NTA exhibited considerably lower heritabilities (0.79
and 0.69, respectively). Out of ten derived traits, five traits (HI,
NHI, NUE, NUtE, and NUE_PROT) showed higher heritability
estimates ranging from 0.88 to 0.95 than the other five traits
(NUpE, NUtE_PROT, NRE, BPE, and PANU), whose heritability
estimates were in the range from 0.67 to 0.83. Heritabilities at
HN and LN were similar for most traits except for NTA and
BPE, where a slightly higher heritability was observed at HN and
NUtE_PROT, whose heritability was much higher at HN (0.83)
than at LN (0.60).

In the present study, genetic correlations between HN and LN
were close to 1.0 for GY, PH, and GPC and for derived NUE
traits, except for NRE (rG = 0.42) and BPE (rG = 0.86). The
efficiency of indirect selection under HN for the performance
under LN relative to the predicted response to direct selection
under LN (CRLN/RLN) was near 1.0 for most studied traits,
except for NRE (0.41) (Table 4). This indicates that indirect
selection under optimal fertilization for these traits will be as
efficient as direct selection under reduced fertilization. In the
case of NUtE_PROT, indirect selection is expected to be even
more efficient than direct selection (CRLN/RLN = 1.18), mainly
due to considerably lower heritability under LN than under HN.
For NRE and BPE, indirect selection would be less efficient than
direct selection.

Breeding Effects Over Time Have a
Significant Impact on Trait Performance
at Different Nitrogen Levels
Based on simple linear regression of cultivar trait means on year
of registration (as a proxy for breeding progress), the majority of
traits showed significant increases over time at both LN and HN
(Table 5). A strong positive (increasing) linear relationship was
found for GY at both LN and HN (0.31% vs. 0.34% year−1), GNY
(0.23 vs. 0.25% year−1), HI (0.24 vs. 0.28% year−1), NHI (for
both N levels 0.07% year−1), and NUE (0.33 vs. 0.30% year−1).
A strong decreasing relationship was found for PH (− 0.38 vs.−0.
42% year−1) and medium negative relationship with BPE (− 0.13
vs.−0.11% year−1). For GPC and PANU, there was inconsistent,
significant and non-significant, association with year of release
under HN and LN. For NUE_PROT, NUtE_PROT, and NRE,
non-significant trends were found (results not shown). Slope of
regressions was mostly higher under HN, except for NTA and
BPE, and for NHI, which was the same (Table 5).

DISCUSSION

There are two routes to improving NUE in wheat: improving
fertilizer management and/or improving cultivars. The first
option is directed at optimizing the application of fertilizer N to
crop requirements and weather and soil conditions. The second
is to breed cultivars with improved N efficiency in terms of
enhanced N uptake and utilization (Barraclough et al., 2010).
The importance of these components in relation to NUE will
depend on the way of measuring and deriving these traits, the
level of N stress, and germplasm diversity used in the evaluation
(Han et al., 2015).

In this study, we evaluated the agronomic response of a
panel of 48 winter wheat cultivars in six South-eastern European
environments at two N levels [representing optimal/standard
field N availability (high, HN) and sub-optimal (low, LN)]. Yield
and protein significantly decreased by 10% and 14%, respectively,
at LN compared to HN. Reductions in grain N yield and
aboveground N per unit area were also reduced by approximately
20% at LN. In contrast, the majority of the derived NUE traits had
significantly higher mean values at LN compared to HN, ranging
from 7% for NUE_PROT to 19% for BPE.
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FIGURE 1 | Linear relationship between BLUP values for grain yield (GY in kg ha−1) and (A) grain protein content (GPC%); (B) NUpE and; (C) NUtE under LN and
HN. Each number represents a discrete cultivar (based on the list in Supplementary Table 1).

TABLE 3 | Contribution of different sources of variation (%) to total variation of analyzed traits across six environments and two nitrogen levels.

Sources of variation

Genotype (G) Environment (E) G × E G × N N × E Residual

GY 19.709*** 57.71** 6.39*** 0.00ns 4.21*** 11.98

PH 69.71*** 16.32*** 5.24*** 0.00ns 0.33* 8.40

GPC 32.10*** 40.44* 6.72*** 0.46ns 10.97*** 9.30

GNY 7.10*** 64.89* 3.70*** 0.04ns 13.27*** 10.99

NTA 4.85*** 69.11** 2.70* 0.19ns 8.16*** 15.0

HI 21.92*** 52.76*** 6.30*** 0.34ns 1.16* 17.52

NHI 12.64*** 36.19ns 18.56*** 0.35ns 2.75ns 29.53

NUE 42.07*** 3.41ns 12.21*** 0.00ns 13.97*** 28.34

NUpE 18.61*** 12.1* 10.3* 0.00ns 1.54* 57.45

NUtE 35.67*** 18.39ns 5.78*** 0.00ns 15.68*** 24.49

NUtE_PROT 5.51** 34.55** 0.14ns 0.00ns 0.97ns 58.82

NUE_PROT 12.76*** 66.86*** 3.47*** 0.00ns 6.85*** 10.06

NRE 0.85ns 63.53*** 3.97*** 1.30ns 11.62*** 18.74

BPE 3.59*** 78.54*** 1.63ns 0.60ns 2.54*** 13.10

PANU 4.41* 24.61* 6.44ns 0.00ns 3.05* 61.49

ns, not significant. *, **, and ***significant variance component at the level of probability p < 0.05, p < 0.01, and p < 0.001, respectively.

A previous report in Croatian growing conditions showed
similar reductions at LN for GY (10%), GPC (13%), and GNY
(21%) in a set of 19 European wheat cultivars (Šarčević et al.,
2014). Trait responses to reduced N were more pronounced in
a study of 225 European wheat cultivars, which showed ∼20%
reduction in GY and GPC and a corresponding 30% increase in
NUE and NUtE (Cormier et al., 2013). Although the difference
in applied N between HN and LN treatments were consistent
across studies, the magnitude of trait mean differences suggests
the presence of stronger N stress in experiments conducted
by Cormier et al. (2013) compared to that of Šarčević et al.
(2014) and the present study. Establishment of N stress earlier
in the season in the study of Cormier et al. (2013) could be an
explanation for the observed differences. These differences could
also reflect environmental difference between north-western
Europe (Cormier et al., 2013) and assessment in South-eastern
European conditions where the wheat growing season is shorter
and the more extreme weather conditions lead to lower average
yields and a wider gap in yield potential (Schils et al., 2018). In
addition to the environmental differences, there is a relationship

between yield and N uptake, reflected in the inverse relationship
between yield per unit of N uptake and grain protein content
(Sadras and Lemaire, 2014), which could explain the differences
between studies.

In this study, genotypic (G) variance was significant for all
traits, except for NRE, genotype × environment (G × E) variance
for all traits, except for NHI, NUtE_PROT, BPE, and PANU,
whereas genotype × nitrogen (G × N) interaction was not
significant for any trait. Previously, Cormier et al. (2013) reported
significant G × N for GY, GPC, and several NUE traits, and
significant G × N interactions for GY and other agronomic traits
have also been reported in several other wheat studies (Ortiz-
Monasterio et al., 1997; Le Gouis et al., 2000; Guarda et al.,
2004; Laperche et al., 2006; Barraclough et al., 2010; Gaju et al.,
2011). Hitz et al. (2016) suggested that the existence of G × N
interaction could be useful for breeders, allowing differentiation
of performance between two N environments. In the previous
Croatian study by Šarčević et al. (2014), G × N interaction was
not significant for GY, but it was significant for all grain quality
traits and for most rheological parameters, for which the negative
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TABLE 4 | Heritability and genetic correlations (rg) estimates of analyzed traits at two nitrogen levels and across six environments and 48 wheat cultivars and efficiency of
indirect selection under HN for performance under LN relative to the predicted response to direct selection under LN (CRLN/RLN ) for 15 traits.

Trait Heritability

Across N LN HN rg ± s.e.a CRLN/RLN

GY 0.94 ± 0.01 0.92 ± 0.02 0.92 ± 0.02 1.03 ± 0.02 1.00

PH 0.98 ± 0.00 0.97 ± 0.01 0.98 ± 0.00 1.00 ± 0.0041 1.01

GPC 0.91 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 1.00 ± 0.011 1.00

GNY 0.79 ± 0.07 0.84 ± 0.05 0.88 ± 0.03 1.07 ± 0.054 1.02

NTA 0.69 ± 0.17 0.75 ± 0.01 0.83 ± 0.05 1.12 ± 0.13 1.05

HI 0.95 ± 0.01 0.90 ± 0.02 0.93 ± 0.02 0.99 ± 0.032 1.01

NHI 0.88 ± 0.03 0.84 ± 0.05 0.85 ± 0.04 1.00 ± 0.087 1.01

NUE 0.96 ± 0.01 0.93 ± 0.02 0.94 ± 0.02 1.03 ± 0.023 1.01

NUpE 0.83 ± 0.05 0.81 ± 0.05 0.85 ± 0.06 1.12 ± 0.12 1.02

NUtE 0.91 ± 0.02 0.92 ± 0.02 0.94 ± 0.01 1.00 ± 0.026 1.01

NUtE_PROT 0.75 ± 0.1 0.60 ± 0.45 0.83 ± 0.05 1.21 ± 0.57 1.18

NUE_PROT 0.93 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.96 ± 0.041 0.97

NRE 0.67 ± 0.2 0.69 ± 0.17 0.65 ± 0.24 0.42 ± 0.40 0.41

BPE 0.78 ± 0.08 0.77 ± 0.09 0.87 ± 0.03 0.86 ± 0.13 0.91

PANU 0.73 ± 0.12 0.63 ± 0.29 0.62 ± 0.033 1.22 ± 0.61 0.99

as.e.: standard error of genetic correlation.

TABLE 5 | Linear regression between year of cultivar registration (1936–2016) and analyzed traitsa at LN and HN levels (N of cultivars = 48).

Trait b-(Year of registration) Unit % Of change per year R2

GY-LN 18.36*** kg DM ha−1 0.31 0.32

GY-HN 22.81*** 0.34 0.37

PH-LN −0.321*** cm −0.38 0.31

PH-HN −0.358*** −0.42 0.34

GPC-LN −0.011ns % −0.10 0.07

GPC-HN −0.013* −0.10 0.08

GNY-LN 0.277*** kg N ha−1 0.23 0.35

GNY-HN 0.382*** 0.25 0.33

NTA-LN 0.236*** kg N ha−1 0.16 0.26

NTA-HN 0.215* 0.12 0.09

HI-LN 0.111*** % 0.24 0.28

HI-HN 0.133*** 0.28 0.33

NHI-LN 0.06*** % 0.07 0.21

NHI-HN 0.06*** 0.07 0.21

NUE-LN 0.102*** kg DM kg−1 N 0.33 0.35

NUE-HN 0.098*** 0.30 0.29

NUpE-LN 0.098*** % 0.15 0.23

NUpE-HN 0.102*** 0.12 0.09

NUtE-LN 0.065** kg DM kg−1 N 0.15 0.14

NUtE-HN 0.098** 0.20 0.35

BPE-LN −0.135* kg DM kg−1 N − 0.13 0.10

BPE-HN −0.095* − 0.11 0.08

PANU-LN 0.226ns kg N ha−1 0.38 0.08

PANU-HN 0.301*** 0.51 0.25

aTraits where slope coefficients (b) are not statistically significant, at both LN and HN, were not presented.
% of change per year—percent change expressed relative to the average trait value.
***, **, and *: significance of slope coefficients (b) at the level of probability p < 0.001, p < 0.01, and p < 0.05; ns: non-significant.
R2: R-squared value of regression model.

effect of reduced N fertilization was much stronger as compared
to its effect on GY. Other recent studies by Guttieri et al. (2017)
and Russell et al. (2017) found no significant G × N interactions

for GY or any NUE traits for wheat grown in field experiments in
the United States. A recent study showed that G × N interactions
for GY in wheat were more frequently observed when three or
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more N rates were used in the experimental design (Brasier et al.,
2020), indicating that further experimentation is likely required
to robustly dissect G × N interactions.

In the present study, genetic correlations between HN and LN
were high for GY, GPC, and for derived NUE traits, reflecting
the absence of significant G × N interaction for these traits
(Table 4). Heritability estimates for analyzed traits were either
similar for the two N fertilization levels or higher at HN
than LN. Reflecting this, the efficiency of indirect selection at
HN for performance at LN relative to direct selection at LN
(indirect selection efficiency, ISE) was ≥ 1 for most traits.
Therefore, we conclude that indirect selection for GY, GPC, and
most other studied traits under optimal fertilization will be at
least as efficient as direct selection under reduced fertilization.
This is in agreement with previous assessments of Croatian
(Šarčević et al., 2014) and northern European (Voss-Fels et al.,
2019) wheat and has major implications for the selection of
wheat cultivars for N efficiency. Previous studies have reported
lower ISE estimates, although these have been in high N stress
comparisons, which exhibit much larger reductions between
LN and HN for GY and/or GPC (Brancourt-Hulmel et al.,
2005; Cormier et al., 2013). This is in line with the conclusion
of Cormier et al. (2016), who found that indirect selection is
efficient in moderate N stresses, but it does not surpass direct
selection in extreme low N conditions. Similarly, Hitz et al.
(2016), studying NUE and related traits in US winter wheats
under contrasting N fertilization rates, which resulted in severe
N stress, concluded that without screening breeding lines in
low N environments concurrently, it will not be possible to
identify high NUE genotypes. However, in a European context,
it is unlikely that the target environment will be characterized
as low N outside of specialist organic production. However, the
occurrence of moderate N stress is much more likely within
the current production and breeding framework in areas with
generally low soil fertility, decreased water availability due to
drought or adverse weather conditions or in zones, which have
restrictions on N fertilizer use due to run-off concerns. This is
also confirmed in the present study, where the effect of location
(Poreč vs. two other locations) was more pronounced than the
effect of LN treatment in reducing GY (Supplementary Table 6).
A similar pattern was observed in the study of Gaju et al.
(2011), who reported that in four out of seven environments,
mean GY of 16 European wheat cultivars grown at LN was
significantly higher than the corresponding GY means at both
HN and LN in the lowest yielding environment, although the
difference in the amount of N fertilizer applied between HN
and LN treatments was as high as 200 kg N ha−1. In a later
study, Gaju et al. (2014) compared the N accumulation in crop
components at anthesis between the highest and lowest yielding
location from the same experiment and found significantly
higher content of N in leaf lamina, stem-and-leaf-sheath, and
ear at the highest yielding location, regardless of the level of
N fertilization. Similarly, in the study of Brasier et al. (2020),
including 12 US soft red winter wheat lines and cultivars, the
effect of year on GY was more pronounced than the effect
of N fertilization applied in the range from 45 to 134 kg
N ha−1.

In practical terms, promising breeding material is trialed
across multiple environments, and it is likely this exposes lines
to a mix of HN and moderate LN environments (Cormier et al.,
2013). This is likely to explain the similarity in genetic progress
at HN and LN seen in this, and previous studies (Voss-Fels
et al., 2019). Further optimization of the multi-environment
framework could incorporate a reduced N fertilizer rate at a
limited number of locations in order to increase the frequency
of stress environments.

This has been previously explored as a component of a
NUE selection framework by Cormier et al. (2013) and would
give better insight into the production yield stability of a
genotype. This would be particularly useful for evaluating
bread-making quality properties, which have been shown
to be more sensitive to reduced N fertilization than GY
(Šarčević et al., 2014).

Our analysis shows that significant genetic (breeding) progress
has been made for yield and the majority of analyzed traits
at both LN and HN in the 48 cultivars assessed. Genetic
improvement in GY was estimated at 0.31 and 0.34% year−1, with
concomitant decreases in PH (− 0.38 and−0. 42% year−1) and
BPE (−0.13 and −0.11% year−1) at LN and HN, respectively.
As a consequence of reducing PH and BPE while increasing
GY, HI was increased by 0.24 and 0.28% year−1 at LN and
HN, respectively.

From the perspective of genetic improvement for NUE,
Cormier et al. (2013) estimated NUE progress in European wheat
between 1985 and 2010 to be 0.37 and 0.30% year−1, respectively,
at LN and HN. Ortiz-Monasterio et al. (1997) reported genetic
progress for NUE at 0.4–1.1% year−1 depending on the N levels
in CIMMYT’s spring wheat released between 1962 and 1985.

In the present study, NUE progress between 1936 and
2016 was 0.33 and 0.30% year−1, which translates to genetic
improvement in NUE of 8.26 and 7.94 kg of DM kg−1 N or in
total 26.7 and 24.3% at LN and HN, respectively.

Similar levels of genetic gain have been recorded in Canadian
spring wheat (Kubota et al., 2018; 0.34% year−1 in NUE
under HN). As NUE is a complex trait and is defined as
the product of NUpE and NUtE (Moll et al., 1982), its
improvement should be realized through selection on one of its
components. In this study, we found that NUtE had a stronger
effect on NUE than NUpE based on estimated correlation
coefficients (0.80 vs. 0.70 at LN, and 0.76 vs. 0.49 at HN).
This is in agreement with other authors who found genetic
variation in NUE more related to NUtE (Brancourt-Hulmel
et al., 2003; Gaju et al., 2011; Uzik et al., 2012; Cormier et al.,
2013). However, several other studies have reported similar
contributions (Van Sanford and MacKown, 1986) or dominance
of NUpE (Dhugga and Waines, 1989), particularly at LN (Ortiz-
Monasterio et al., 1997; Le Gouis et al., 2000). We found both
positive impacts of breeding on both NUpE (an annual increase
of 0.15 and 0.12%), and for NUtE (0.15 and 0.20% at LN and
HN, respectively).

As in other reports (e.g., Voss-Fels et al., 2019), NUE measured
under LN was higher than that measured under HN in our dataset
(Table 1). This suggests that the cultivars selected thus far have
an inherent capacity for greater NUE, which declines under HN
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conditions. Identifying cultivars that can maintain high NUE in
HN conditions should enable yield improvement with a lower
environmental impact. An alternative target to NUE has been
proposed by Sylvester-Bradley and Kindred (2009), who defined
the economic N optima as the N level necessary to achieve a high
yield with the lowest input cost to maximize profits. Although
the economic N optima cannot be used as a breeding target
per se, it highlights the relevance of N responsiveness to the
improvement of NUE (Swarbreck et al., 2019). Cultivars showing
high N responsiveness that is maintained under high N show
lower economic N optima. Here, selection under varying N levels
evaluates a genotype’s N responsiveness (Sylvester-Bradley et al.,
2015), potentially allowing for the selection of cultivars that are
highly responsive to both low N and high N conditions. The
ideal genotype should possess high genetic N efficiency and high
N responsiveness, so traits for N efficiency and responsiveness
should not be genetically linked in order to select genotype that
performs better under both conditions (Han et al., 2015). For
producers, on the other side, De Oliveira Silva et al. (2020) found
that genotypes with high mean response and high variability in
their response to higher N levels across years could offer greater
opportunities to maximize yield.

In summary, we report that while agronomic and N-related
traits vary significantly between N levels and environments,
traits are consistently correlated irrespective of N level. All
of the cultivars tested showed a common directional response
at LN and HN, and performance at HN generally predicted
performance at LN although direct selection offers opportunities
to optimize some N-related traits. Analysis of breeding progress
revealed improvements in NUE over time linked to yield
improvement. Our results are significant for informing future
selection and breeding for N efficiency in South-eastern
European wheat and add further evidence confirming that
selection at optimal N is most relevant for delivering enhanced
N efficiency in wheat.
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