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In maize, doubled haploid (DH) line production capacity of large-sized maize breeding

programs often exceeds the capacity to phenotypically evaluate the complete set of

testcross candidates in multi-location trials. The ability to partially select DH lines based

on genotypic data while maintaining or improving genetic gains for key traits using

phenotypic selection can result in significant resource savings. The present study aimed

to evaluate genomic selection (GS) prediction scenarios for grain yield and agronomic

traits of one of the tropical maize breeding pipelines of CIMMYT in eastern Africa, based

on multi-year empirical data for designing a GS-based strategy at the early stages of

the pipeline. We used field data from 3,068 tropical maize DH lines genotyped using

rAmpSeq markers and evaluated as test crosses in well-watered (WW) and water-stress

(WS) environments in Kenya from 2017 to 2019. Three prediction schemes were

compared: (1) 1 year of performance data to predict a second year; (2) 2 years of pooled

data to predict performance in the third year, and (3) using individual or pooled data plus

converting a certain proportion of individuals from the testing set (TST) to the training

set (TRN) to predict the next year’s data. Employing five-fold cross-validation, the mean

prediction accuracies for grain yield (GY) varied from 0.19 to 0.29 under WW and 0.22

to 0.31 under WS, when the 1-year datasets were used training set to predict a second

year’s data as a testing set. The mean prediction accuracies increased to 0.32 under

WW and 0.31 under WS when the 2-year datasets were used as a training set to predict

the third-year data set. In a forward prediction scenario, good predictive abilities (0.53

to 0.71) were found when the training set consisted of the previous year’s breeding data

and converting 30% of the next year’s data from the testing set to the training set. The

prediction accuracy for anthesis date and plant height across WW and WS environments

obtained using 1-year data and integrating 10, 30, 50, 70, and 90% of the TST set to

TRN set was much higher than those trained in individual years. We demonstrate that by

increasing the TRN set to include genotypic and phenotypic data from the previous year

and combining only 10–30% of the lines from the year of testing, the predicting accuracy

can be increased, which in turn could be used to replace the first stage of field-based

screening partially, thus saving significant costs associated with the testcross formation

and multi-location testcross evaluation.
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INTRODUCTION

Breeding improved maize germplasm with tolerance to multiple
abiotic and biotic stresses that occur in the tropics has been
a major objective of the International Maize and Wheat
Improvement Center (CIMMYT) since the 1960’s (Vasal et al.,
1999; Bänziger et al., 2006; Prasanna et al., 2021). CIMMYT’s
Eastern Africa maize breeding program has effectively released
several high-yielding stress-tolerant hybrids and improved
open-pollinated varieties suitable for target populations of
environments in this region (Beyene et al., 2017b; Cairns
and Prasanna, 2018; Worku et al., 2020). Among the various
conventional breeding methods, pedigree breeding and the
doubled haploids (DH) have been extensively used to develop
fixed inbred lines with good per se performance and general
combining abilities under stress and non-stress conditions. The
recurrent selection method was widely used to increase the
frequency of favorable alleles and maintain genetic variability
under drought and optimum moisture conditions (Bolaños and
Edmeades, 1996).

Currently, most of CIMMYT’s maize breeding efforts are
devoted to developing elite lines from biparental populations.
Since the inception of the hybrid maize breeding program at
CIMMYT in the mid-1980’s, a total of 615 elite inbred lines
have been released as CIMMYT Maize Lines (CMLs), which are
international public goods (CIMMYT Global Maize Program,
2021). The CMLs can be accessed freely through the standard
material transfer agreement and are used worldwide (Braun
et al., 2010; Wu et al., 2016). These inbred lines have been
used by maize breeders from CIMMYT, national agricultural
research, and private seed companies to develop high-yielding
and stress tolerance hybrids adapted to the different agro-
ecologies of SSA (Bänziger et al., 2006; Beyene et al., 2017b;
Makumbi et al., 2018; Prasanna et al., 2020; Worku et al.,
2020).

The DH technology has been used in the CIMMYT maize
breeding programs since 2012, gradually replacing conventional
inbreeding to derive inbred lines (Prasanna et al., 2012, 2021).
The establishment of maize DH facilities at CIMMYT in Mexico
(2010–2011) and Kenya (2013) using tropicalized inducer lines
(TAILs) has enabled large-scale development and utilization
of DH lines in tropical maize breeding programs in both
Latin America and Africa (Chaikam et al., 2019). Since 2011,
CIMMYT has developed more than 400,000 DH lines from
1,280 diverse maize populations primarily targeted for mid-
altitude/subtropics and lowland tropics of Africa and Latin
America. Tropical DH lines with superior characteristics for per
se performance (Worku et al., 2016; Beyene et al., 2017a),
combining ability for stress tolerance (Beyene et al., 2013, 2017a;
Ertiro et al., 2017; Sserumaga et al., 2018), and resistance to
maize lethal necrosis (MLN) (Beyene et al., 2017b). Several
DH-based elite maize hybrids from CIMMYT have also been
released by partners in eastern and southern Africa (Beyene et al.,
2017a).

Inbred line development starts with selecting parents
possessing desirable traits, followed by the formation of
segregating populations that allow for the selection of individuals

possessing trait combinations relevant to target product profiles
delineated for each breeding hub through recombination of
novel alleles. Culling was also practiced opportunistically on
disease resistance and lodging. A large number of selected
candidates are tested on a single tester in relatively few
environments during the initial testing phase, while a smaller
number of selected candidates are tested on two or more
testers in a larger number of environments in later testing
phases. The experimental hybrids are evaluated under abiotic
stresses and in the absence of acute stress to develop
hybrids with stable performance across stressful and favorable
growing conditions.

Currently, phenotyping accounts for the largest percentage of
operational costs associated with breeding. Until recently, maize
breeders at CIMMYT depended mostly on phenotypic selection
to choose parents in the hybrid breeding program. The ability
to select partially based on genotypic data while maintaining
or improving genetic gains achieved using phenotypic selection
alone can result in a significant cost saving.

Genomic selection (GS, Meuwissen et al., 2001) is being
increasingly used in animal and plant breeding programs
to predict the breeding value of untested genotypes using
phenotypic and genotypic data from related genotypes. Beyene
et al. (2015) reported that the average genetic gain per year
in tropical maize grain yield using the GS approach was
three times higher than that of conventional pedigree-based
phenotypic selection (PS) in drought-stressed environments.
A similar finding was reported by Vivek et al. (2017), in
which the genetic gain in grain yield under drought using
GS was up to 43% higher than the advanced version using
conventional PS.

The effectiveness of GS is a product of the quality of the
training population (TRN), with both genotypic and phenotypic
data used to estimate the marker effects in the predicted
population (TST). The strategy of test-half-and-predict-half
based on marker data has been piloted in specific product
profiles in eastern and southern Africa, as well as in Latin
America, with highly encouraging results (Beyene et al., 2019;
Santantonio et al., 2020; Wang et al., 2020; Atanda et al.,
2021). The main objective of this study was to evaluate the
potential of genomic prediction using breeding data from 1
year to predict the performance of phenotypically untested lines
at an early testing stage to directly advance the best selection
candidates to a second-year equivalent phenotypic trial, saving
a year in the process of developing new elite hybrids and
high potential breeding parents. We used data from a total of
3,068 lines genotyped using repetitive Amplification Sequencing
(rAmpSeq) markers and phenotyped as test crosses over 3 years
under well-watered (WW) and water-stressed (WS) conditions in
SSA. The DH lines are from CIMMYT’s Africa maize breeding
program and are being used to develop hybrids adapted to
rainfed, mid-altitude environments. The objectives were to (1)
evaluate GS prediction abilities using historical breeding data to
predict untested lines of the subsequent breeding year; and (2)
compare with the predictive abilities when a selected portion of
individuals from the testing set (or year) are converted into the
training set.
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MATERIALS AND METHODS

Plant Material
We used testcross hybrids from the ongoing CIMMYT’s eastern
Africa maize breeding program. A total of 3,068 DH lines were
used in this study, derived from 54 bi-parental populations, and
the test crosses were evaluated in 2017, 2018, and 2019. The
54 bi-parental populations were obtained by crossing elite lines
with drought tolerance and other farmer-preferred traits with
satisfactory combining abilities. These populations represented
the eastern Africa mid-altitude germplasm, and the developing
hybrids were targeted for mid-altitude environments of eastern
and southern Africa (Beyene et al., 2013).

Field Experiments
Each year, each selected DH line was crossed with a single
tester from the opposite heterotic group and phenotyped in WW
and WS environments. The number of hybrids (trials) planted
in 2017, 2018, and 2019 was 923 (14), 1,423 (34), and 722
(17), respectively. Four to six common checks connected the
trials each year, including benchmark commercial hybrids and
CIMMYT internal genetic gain checks. Each trial was planted in
an alpha-lattice design with two replications per entry. The WW
experiments were conducted during the rainy season (March to
July), applying supplemental irrigation. The managed drought
stress experiments were conducted during the dry (rain-free)
season (June to October), and irrigation was suspended 2 weeks
before flowering until harvest. Each entry was planted in two
rows of 5m long. The rows were spaced 0.75m apart, and the
space between hills was 0.25m. Two seeds per hill were initially
planted, and 3 weeks after emergence, thinned to one plant
per hill to obtain a final plant population density of 53,333
plants/ha. Fertilizers were applied at 60 kg N and 60 kg P2O5/ha,
as recommended for the area. Nitrogen was applied at planting
and 6 weeks after emergence. Fields were kept free of weeds by
hand weeding. Grain yield (GY, tons ha−1), anthesis date (AD,
days), and plant height (PH, cm) traits were recorded. Plots were
manually harvested, and GY was corrected to the moisture of
12.5%. AD was measured from planting to the day when 50% of
the plants in a plot shed pollen. PH was measured from the soil
surface to the flag leaf collar on five representative plants in each
plot, and the average was used for the analysis.

Genotypic Data
The 3,068 DH lines were panted in the greenhouse, and leaf
samples were taken 2–3 weeks after emergency and sent to
Intertek, Sweden, for DNA extraction. The DNA sample plates
were forwarded to Cornell Life Science Core Laboratory Center,
Ithaca, NY, the USA for genotyping with rAmpSeq markers
described by Buckler et al. (2016). The rAmpSeq genotyping
platform is based on the whole-genome sequences of repetitive
sequences to identify polymorphisms using bioinformatics tools
(Buckler et al., 2016, http://www.biorxiv.org/content/early/2016/
12/24/096628). The rAmpSeq platform provides dominant
markers, and a total of 9,155 markers coded as 0 (absence) and 1
(presence) were filtered by minor allele frequency (MAF<0.05),
from which 5,173 were used for GS.

Phenotypic Data Analysis
All the phenotypic analyses were done for each location
and across locations within and across years to obtain the
variance components and best linear unbiased estimates (BLUEs)
described by Rezende et al. (2020). The BLUEs across locations
for each trait were generated using the following linear mixed
model using META-R software (Alvarado et al., 2020):

Yijrk = µ + Lj + Rr
(

Lj
)

+ Bk
[

Rr
(

Lj
)]

+ Gi + GLij + εijrk (1)

where Yijrk is the mean value of genotype i at location j in
replicate r within the block k; µ is the general mean; Lj is the
fixed effect of the location j; Rr

(

Lj
)

is the fixed effect of the
replicate r within location j; Bk

[

Rr
(

Lj
)]

is the random effect of
the incomplete block k within replicate r and location j assumed
to be independent and identically normally distributed with
mean zero and variance σ

2
B(RL); Gi is the fixed effect of genotype

i; GLij is the fixed effect of the genotype × location interaction;
and εijrk is the random residual error assumed independent and
identically normally distributed with mean zero and variance σ

2
ε
.

Broad-sense heritability (H2) was estimated based on the entry
mean according to:

H2 =
σ
2
g
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g +

σ
2
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l
+
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ε

lr

(2)

where σ
2
g is the genotype variance; σ 2

gl
is the genotype× location

interaction variance; and σ
2
ε
is the error variance for l locations

and r replicates of the genotypes at each site. The analysis across
trials was performed using a similar model as those shown above
and including the trial as a fixed effect.

Genomic Prediction Models and Methods
The 3,086 DH lines (training set, TRN) were evaluated across
locations under WW and WS. GEBVs were calculated for GY,
AD, and PH using the BGLR statistical R-package (Pérez and de
los Campos, 2014) within and across years for WW andWS sites
using the BLUEs of entries within and across years. For genome-
enabled prediction, a total of 5,173 markers that passed quality
control were selected. For GS, the G-BLUP model was employed
as follows:

yij = µ + Ei + gj + gEij + εij, (3)

where yij is the response trait for the jth hybrid in the ith
environment, µ is an intercept, and Ei is the random effect
of the Environment (year-location-management combination,
with management, is WW or WS), Ei are assumed to be
normally and independently distributed with zero mean and
variance parameter σ

2
E . Here, gj represents a random additive

effect of the jth line, we assume g =
(

g1, . . . , gl
)′

follows a
multivariate normal distribution with zero mean and variance–
covariance matrix σ

2
g G, where l is the number of lines, G is

a genomic relationship matrix computed using the matrix of
marker genotypes centered and standardized by columns (Lopez-
Cruz et al., 2015) and σ

2
g is a variance parameter associated
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to lines. gEij represents the interaction between location i and
hybrid j, we assume that gE = {gEij} follows a multivariate
normal distribution with zero mean and variance covariance
matrix σ

2
gE(ZgGZg)#(ZEZE), where Zg is a matrix that connects

response variable with hybrids, ZE is a matrix that connects
the response variable with environments, σ

2
gE is the variance

parameter associated to the interaction between genotypes and
environment and # represents the Hadamard product (cell
by cell) between two matrixes. Finally, we assume that εij

are normal, independent, and identically distributed random
variables with zero mean and variance σ

2
ε
. The model described

above corresponds to a reaction norm model which has been
used in context of genomic prediction before (Jarquín et al.,
2014).

Cross-Validation and Prediction Accuracy
Estimation
We used four scenarios for predictions. Scenario (i)
data from 2017 is used as TRN set, and 2018 as a TST set,
(ii) data from 2017 is used as a TRN set and predict 2019 data,
(iii) data from 2018 was used as a TRN set and predict 2019
data and (iv) both 2017 and 2018 trait data were used as TRN
set and 2019 as TST set. A cross-validation scheme with 20
replications was used to generate the TRN and TST sets and
assess the prediction accuracy. In each of the 20 replications, the
observations were randomly selected and assigned to the training
(TRN) and testing (TST) sets. Furthermore, the TST population
was randomly partitioned into 10, 30, 50, 70, and 90%, and the
remaining 90, 70, 50, 30, and 10% of the TST population was
combined with the corresponding TRN set and predicted the
remaining TST populations (Supplementary Table 1).

RESULTS

Variance Components and Broad-Sense
Heritability
All traits under WW and WS followed a normal distribution
(Figure 1). Heritability of GY for each year ranged from 0.64
to 0.91 under WW and 0.17 to 0.50 under WS conditions
(Table 1). Combined across the 3 years, heritability for GY
was 0.91 under WW and 0.96 under WS. Under WW, the
heritability of PH and AD for each year was high and ranged
from 0.67 to 0.95 and 0.82 to 0.96, respectively, while under
WS, it ranged from 0.23 to 0.57 and 0.57 to 0.67, respectively.
Under WW, combined across 3 years, heritability was high
for all traits and ranged from 0.91 to 0.96, while under WS,
it ranged from 0.96 to 0.97 (Table 1). Under WW conditions,
mean GY ranged from 6.05 t/ha in 2017 to 8.02 t/ha in 2018,
while under WS, it ranged from 2.29 t/ha in 2019 to 3.28
in 2017. Drought stress reduced GY by 45.8, 61.2, and 63.9%
in 2017, 2018, and 2019 seasons, respectively (Table 1), while
PH was reduced by 11.4, 15.9, and 13.5% in 2017, 2018, and
2019, respectively.

Prediction Accuracy of 1-Year Breeding
Data From the Independent Validation
Schemes of Another Year of Breeding Data
The genotypic matrix of 3068 DH lines is depicted in
Supplementary Figure 1. As shown in Supplementary Figure 1,
there was some overlap between the three datasets, which
suggests that individuals from a 1-year dataset can be predicted
using the other year data set. The prediction accuracy of 1-
year performance data using data from another year varied
across traits and management conditions, as summarized in
Figures 2–4. The predictive ability of GY using 1-year data to
predict performance in a separate year ranged from 0.19 to 0.29
under WW and 0.22 to 0.31 under WS (Figure 2). Under WW,
the predictive ability for AD ranged from 0.36 to 0.46, while for
PH, it ranged from 0.01 to 0.45. Under WS, the predictive ability
for AD ranged from 0.21 to 0.34, and for PH, it ranged from 0.01
to 0.30 (Figures 3, 4).

The Predictive Ability of 1-Year Data by
Using a Certain Proportion of Individuals
From the Prediction Set as Part of the
Training Set
In addition to using 1-year data to predict the other year data,
we also converted 10, 30, 50, 70, and 90% of the data from the
prediction set to the training set to understand the impact on
prediction accuracy. With 2017 data combined with 10% of the
data from 2018 and predicting the remaining 90% of 2018 data
revealed an increase in prediction accuracy to 0.62 and 0.29 for
GY; 0.64 and 0.56 for AD; and 0.70 and 0.63 for PH under WW
and WS conditions, respectively (Figures 2–4). Similarly, while
predicting 90% of 2019 data by using 2017 data and 10% of
2019, data revealed an accuracy of 0.43 and 0.63 for GY; 0.64
and 0.53 for AD; and 0.50 and 0.70 for PH under WW and
WS, conditions, respectively (Figures 2–4). Prediction of 90% of
2019 data by using 2018 data combined with 10% of 2019 data
showed an accuracy of 0.45 and 0.63 for GY; 0.67 and 0.53 for
AD; and 0.48 and 0.69 for PH under WW and WS conditions,
respectively (Figures 2–4). Incorporating the proportion of 30,
50, 70, and 90% of lines from the year of testing to TRN set
showed a gradual increase in accuracy for GY from 0.69 to 0.74
underWWand from 0.38 to 0.45 underWS conditions. Similarly,
accuracy was increased from 0.64 to 0.75 for AD and 0.70 to
0.80 for PH under WW conditions, while under WS conditions,
accuracy was increased from 0.56 to 0.71 for AD and 0.63 to 0.74
for PH (Figures 3, 4). Prediction accuracy for 2019 data by using
2018 data and converting a certain proportion of 2019 data also
revealed an increase in accuracy for GY from 0.55 to 0.64 under
WW and from 0.71 to 0.77 under WS conditions.

High prediction accuracy for GY across WW and WS
environments was obtained when using 1-year data in
combination with 30% data from the year of testing, whose
predictive ability ranged from 0.55 to 0.69 and 0.38 to 0.71,
respectively—much higher than those trained in individual
years. Integrating 50, 70, and 90% of the data from the TST
set to the TRN set did not significantly increase the prediction
accuracy for GY compared to integrating 30% of the data
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FIGURE 1 | Phenotypic distribution of GY, AD, and PH under optimum (top) and managed drought (bottom) conditions. GY, grain yield; AD, anthesis date; PH,

plant height.

from TST to TRN set in all years (Figure 2). The prediction
accuracy for agronomic traits (AD and PH) across WW and WS
environments obtained using 1-year data and integrating 10, 30,
50, 70, and 90% of the data from TST set to TRN set under both
WW and WS conditions was much higher than those trained in
individual years.

Predictive Ability of Pooled Data and
Integrating a Certain Proportion of
Individuals From the Prediction Set as Part
of the Training Set
Across-year predictive ability was investigated using pooled data
(2017+2018), and the predicting 2019 data performance showed
a slight improvement (0.32) for GY under WW and 0.31 under
WS (Figure 5).While prediction accuracy for ADwas 0.37 (WW)
to 0.40 (WS), for PH, it was 0.01 under WS to 0.13 under WW
(Figure 5). The prediction accuracies were further improved by
integrating 10, 30, 50, 70, and 90% of the TST set to the TRN set
(Figure 5). Using 2 years’ data (2017 and 2018) and integrating
10% of 2019 data to the TRN set, the prediction accuracy for GY
was increased to 0.45 under WW and 0.62 under WS conditions.
Using pooled data and incorporating 30, 50, 70, and 90% of 2019
data to TRN set, the mean prediction accuracy for GY was 0.74
and ranged from 0.71 to 0.77 under WS, while the prediction

accuracy was 0.58 and ranged from 0.53 to 0.62 under WW
conditions. The mean prediction accuracy for ADwas 0.61 under
WS and 0.73 underWW by using pooled data and integrating 10,
30, 50, 70, and 90% of the data from TST to TRN set.

DISCUSSION

Maize improvement in the tropics has been successful in
improving grain yield under stress and non-stress conditions
and has contributed to the food security and livelihoods of
smallholder farmers (Renkow and Byerlee, 2010; Krishna et al.,
2021; Prasanna et al., 2021). To keep up with the growing food
demand, new tools and technologies must be used to increase
genetic gains, especially in stress-prone tropical environments
(Prasanna et al., 2021). Reducing cycle time is one of the key
factors responsible for increasing genetic gains in crop breeding
programs without greatly increasing the program size (Atlin
et al., 2017; Cobb et al., 2019). Reduction of breeding cycle
time can be achieved by recycling the lines at an earlier stage
as breeding parents, coupled with the implementation of GS to
improve selection accuracy when selecting breeding parents with
fewer years of phenotypic data available.

CIMMYT Global Maize Program has evaluated various
strategies to implement GS in maize breeding pipelines with
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TABLE 1 | Estimation of variance components for grain yield and agronomic traits assessed in 3 years and across trials under optimum and drought conditions.

Optimum Drought Optimum Drought

GY AD PH GY AD PH GY AD PH GY AD PH

Year-2017 Year-2019

σ
2
G 0.17** 1.07** 34.30** 0.08* 1.94** 34.56** 0.12** 0.57** 17.10** 0.07* 1.39** 27.82**

σ
2
T 0.48 143.25 1072.14 - - - 0.24 115.35 538.31 - - -

σ
2
GT 0.00 0.00 1.08** - - - 0.05** 0.05** 17.46** - - -

σ
2
e 2.23 3.78 227.62 0.76 1.88 190.87 2.19 4.12 251.28 0.61 2.12 187.59

H2 0.68 0.89 0.81 0.17 0.67 0.27 0.64 0.82 0.67 0.18 0.57 0.23

Mean 6.05 64.24 236.04 3.28 63.41 209.03 6.34 65.75 247.28 2.29 67.48 213.87

CV (%) 7.98 1.57 2.57 10.95 1.79 3.42 7.11 1.32 2.15 14.60 1.64 3.07

LSD0.05 0.95 1.97 11.90 0.70 2.23 14.01 0.88 1.70 10.42 0.66 2.17 12.87

Year-2018 Across 3 years

σ
2
G 0.36** 1.33** 63.68** 0.25 2.08 79.27 0.19** 0.80** 35.26** 0.12** 0.94** 40.82**

σ
2
T 1.11 149.85 39.00 - - - 0.00 83.11 509.71 0.25 21.97 0.00

σ
2
GT 0.21** 0.63** 30.58** - - - 0.14** 0.59** 25.12** 0.04* 1.08** 12.46**

σ
2
e 1.91 2.68 172.82 0.50 2.40 117.84 2.10 3.33 210.71 0.61 2.05 159.48

H2 0.91 0.96 0.95 0.50 0.63 0.57 0.91 0.96 0.95 0.96 0.97 0.97

Mean 8.02 66.68 252.11 3.11 72.79 212.09 6.69 65.55 243.96 2.89 67.90 211.91

CV (%) 8.58 1.75 3.29 16.24 1.76 3.91 8.07 1.55 2.83 14.41 1.68 3.56

LSD0.05 1.35 2.29 16.28 0.99 2.51 16.26 1.06 1.99 13.53 0.82 2.24 14.77

GY, grain yield; AD, anthesis date; PH, plant height.

* and ** indicate significance at P < 0.05 and P < 0.01, respectively.

FIGURE 2 | Prediction accuracies for GY estimated using 1-year data to predict another year’s data and converting 10, 30, 50, 70, and 90% of the data from the

testing population to the training population under WW and WS conditions. GY, grain yield; WW, well-watered; WS, water-stressed.

promising results (Beyene et al., 2015, 2019; Ceron-Rojas et al.,
2015; Vivek et al., 2017; Wang et al., 2020). Crossa et al.
(2017) reported that GS is better than phenotypic selection to

reduce breeding cycles and operational costs. Beyene et al. (2015)
reported that the average gain from the rapid cycle of GS across
eight populations was 0.086 Mg ha−1.
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FIGURE 3 | Prediction accuracies for anthesis date estimated from independent validation schemes using 1-year data to predict another year’s data and converting

10, 30, 50, 70, and 90% of the data from the testing population to the training population under optimum and managed drought conditions.

FIGURE 4 | Prediction accuracies for plant height estimated from independent validation schemes using 1-year data to predict another year’s data and converting 10,

30, 50, 70, and 90% of the data from the testing population to the training population under optimum and managed drought conditions.

In this study, we used large data sets of 3,068 DH lines
genotyped and phenotyped as test crosses across 3 years in WW
andWS conditions in Kenya to evaluate the potential of genomic

prediction using existing breeding data from previous years to
predict untested lines at an early testing stage to bypass the first-
year phenotyping stage, saving a year in the process. This study
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FIGURE 5 | Prediction accuracies for grain yield and agronomic traits assessed estimated from independent validation schemes using a training population (TRN)

consisting of 2017- and 2018-years breeding data and 10, 30, 50, 70, and 90% of 2019 data converted from the testing population (TST) to the training population

under optimum and managed drought conditions. GY, grain yield; AD, anthesis date; PH, plant height.

showed that the average prediction accuracies were 0.32 under
WW and 0.31 under WS conditions when the pooled 2-year
datasets were used as TRN to predict the third-year data set.
Similar results were also reported byWang et al. (2020) using data
from the CIMMYT Latin America breeding program, where the
average prediction accuracies ranged from 0.31 to 0.42 when 2-
year datasets were used as TRN to predict the third year TST set
data. Beyene et al. (2019) reported higher prediction accuracy for
GY (0.67 under well-watered and 0.65 under managed drought
conditions) using the training and prediction set within a single
year (phenotyping half and predicting half). The same study also
showed that the performance of lines advanced using GEBVs
or phenotypic values showed similar performance in the second
stage of field testing under optimum and managed drought

conditions. Inclusion of full-sib families in the TRN set has
previously been shown to increase prediction accuracy when
compared with prediction where no full-sib families are included
(Brauner et al., 2020), consistent with the finding in this study
that prediction accuracy improves when including a sample of
selected candidates from within the group of candidates being
predicted. Additionally, the testing year environments for the
materials being predicted in the testing set are represented within
the TRN phenotypic data set, contributing to an increase in
the prediction accuracy when using 5-fold validation since the
independent year and pooled year TRN sets alone by nature do
not sample environments in the TST set.

One problem when using historical data is the limited
connectivity of selection candidates evaluated across multiple
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years. To improve prediction accuracy, we integrated a certain
proportion of the lines from the prediction set to the training
set. Results showed that by using 1-year data and merging 10%
of data from the year of testing to TRN, a mean prediction
accuracy for GY was increased to 0.52 under WS and 0.50
under WW conditions. Using 1-year data combining with 30%
of data from the year of testing, the predictive ability for GY
increased further (0.60 under WS and 0.59 under WW) more
thanmodel training in the individual year. Integrating 50, 70, and
90% of the data from the year of testing to TRN demonstrated
diminishing returns in terms of increased prediction accuracy for
GY (mean 0.64 under WS and WW) compared to integrating
30% of the data from TST to TRN in all years (Figures 3–5).
These results conformed with those from the previous studies,
which indicated that prediction accuracy could be improved
by strengthening the relationship between the training and
prediction sets (Daetwyler et al., 2013; Crossa et al., 2017;
Zhang et al., 2017; Brandariz and Bernardo, 2019; Atanda et al.,
2021). Our results demonstrated that using a training set from
existing variety development pipelines that had genotypic and
phenotypic data is useful in the routine implementation of GS.
This approach will significantly reduce the cost of performing test
crosses and field evaluation of large numbers of stage 1 data in
the breeding pipelines. As shown in Beyene et al. (2019), when
the objective is to discard lines with poor breeding values from
advancing to resource-demanding multi-location yield trials,
moderate genomic prediction accuracy should suffice without
losing selection accuracy.

Benefits of genomic prediction using historical datasets from
the ongoing variety development pipelines as training sets have
been reported (Wang et al., 2020; Atanda et al., 2021). Gaynor
et al. (2017) reported that GS reduced cycle time from 4 to 3 years
per cycle of genetic improvement compared to a conventional
breeding scheme without GS, even though it may be less accurate
than phenotypic selection. In a forward prediction scenario, good
predictive abilities (0.53 to 0.71) were observed in our study when
the TRN consists of breeding data from two previous years and
30% of data from a third year’s data than using individual year-
based predictions. The observed predictive ability is promising,
especially under drought, considering the low heritability and
that the training set differed from those sets used to evaluate the
prediction set. Beyene et al. (2019) compared GS to phenotypic
selection in CIMMYT’s eastern Africa maize breeding program
and reported that there was no significant difference between
the mean of hybrids advanced through phenotypic and GS both
under optimum and managed drought stress conditions, but that
GS reduced the cost by 32% over PS. This strategy consisted of
testing half and predicting the remaining half based on marker
data currently being implemented in CIMMYT’s eastern Africa
and Latin America breeding hubs (Beyene et al., 2019; Wang
et al., 2020). However, the use of historical data in this study
suggests that this strategy can be further refined to test 10–
30% and predict the remaining 70–90% of the lines, using the
historical data also as a part of the TRN in the predictions.
This will save resources without affecting the selection accuracy.
Further integration of different designs like sparse testing and/or
partially replicated trials can further help evaluate the selected

10–30% of lines tested in more environments to get the high-
quality data with the same amount of resources. Using strong
historical data, the evaluation step of eliminating early-stage
breeding lines is an objective of a long-term breeding goal.
Nevertheless, with 3 years of historical data, based on the results
from this study, we propose to reduce the TRN from the current
50 to 10–30% in the future, especially as the historical data
increases; more related lines joining this can help to fulfill this
long-term goal of eliminating the phenotyping of whole early-
stage testing and extending it to other breeding pipelines.

If the primary goal is to reduce the breeding cycle time and
accelerate the identification of elite new hybrids, a practical
strategy change could be made to the breeding program design
to take advantage of the lower prediction accuracies using pooled
historical data simply by reallocating resources from the large and
expensive first-year testing scheme into an expanded second-year
test equivalent trialing system. In the traditional breeding scheme
used before 2018, ∼65–70% of the phenotyping costs of the
Stages 1 and 2 trial systemwere spent on Stage 1 evaluation, while
in the test-half-predict-all scheme, this was reduced to around
50%. Although further reduction of the Stage 1 trials component
to 35% of the total Stages 1 and 2 trial system can deliver cost
savings while maintaining relatively similar prediction accuracy.
If the primary goal is to reduce cycle time rather than reduce
overall cost, then the lower prediction accuracy using historic
data could be offset by eliminating the Stage 1 phenotyping
costs and testing more candidates selected on GEBVs in Stage 2
equivalent trials. It would be possible to double the number of
selection candidates advanced based on GEBV using historical
data within our current budgets instead if no selection candidates
were being evaluated in Stage 1 equivalent trials. Although we
would expect the cohort of materials advancing into Stage 2
equivalent trials each year to have a lower mean performance
value because of the reduction in prediction accuracy, the
likelihood of identifying the best new lines from each population
could be improved simply by testing more of them. This simple
strategy shift at cost equivalency would shorten both the breeding
cycle time and market with elite new varieties. Furthermore,
continued expansion of the multi-year TRN data will enable
further refinement and improvement of prediction accuracy as
this will enable more effective predictions within heterotic groups
or sub-groups within a heterotic group and across product-
profile-based breeding pipelines.

CONCLUSIONS

Genomic selection could help predict the breeding value of newly
developed DH lines for the next stage of testing. Prediction by
using historical data alone yielded relatively low accuracy for GY
and other agronomic traits. However, by combining only 10%
to 30% of the lines from the year of testing, we could achieve a
significant increase in prediction accuracy. CIMMYT’s Eastern
Africa maize breeding program is currently implementing GS at
an early stage of testing using a test-half-predict-all strategy, as
Beyene et al. (2019) described. With the historical data, we can
reduce the current training population size from 50 to 10–30% to
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achieve the same or even higher level of accuracy. This could save
costs associated with the testcross formation and multi-location
evaluation. Nevertheless, the time required for completion of the
breeding cycle remains the same, as the limited historical data
available from one breeding program with one or two seasons
of data provides prediction accuracy of approximately half of
what can be achieved with the inclusion of some full sibs in
the training set. Nevertheless, the time required to complete
the breeding cycle remains the same, as historical data alone
does not yield promising accuracy both under optimum and
drought stress conditions. However, with careful planning, it is
possible to skip the whole stage I testing with only historical
data in predictions. There is a need to have some proportion
of parental lines shared between the historical data set and
the current prediction set. Further research is warranted to
know what proportion of lines should be common between
historical data and prediction. However, we theorize that even
with the modest prediction accuracies found when using one
or 2 years of historical data within a single breeding program,
the use of GS using only historical data to advance a larger
number of selected candidates directly to a Stage 2 equivalent
trial should yield similar overall performance gains from the
breeding program at the same cost with 1 year lesser time.
Further, it seems plausible that prediction accuracies when using
historic data could improve by the inclusion of additional years
of data assuming reasonable genetic relationships across cohorts
of selection candidates over time.
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