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The continuous and indiscriminate use of insecticides has been responsible for the

emergence of insecticide resistant vector insect populations, especially in Aedes aegypti.

Thus, it is urgent to find natural insecticide compounds with novel mode of action

for vector control. The goal of this study was to investigate the larvicidal activity of

essential oils (EOs) from Piper species against A. aegypti characterized as resistant

and susceptible strains to pyrethroids. The EOs from leaves of 10 Piper species

were submitted to the evaluation of larvicidal activity in populations of A. aegypti

in agreement with the (World Health Organization, 2005) guidelines. The resistance

of the strains characterized by determining the lethal concentrations (LCs) with the

insecticide deltamethrin (positive control). The major compounds of the EOs from Piper

species was identified by GC-MS. The EOs from Piper aduncum, P. marginatum,

P. gaudichaudianum, P. crassinervium, and P. arboreum showed activity of up to

90% lethality at 100 ppm (concentration for screening). The activities of the EOs

from these 6 species showed similar LCs in both susceptible strain (Rockefeller) and

resistant strains (Pampulha and Venda Nova) to pyrethroids. The major compounds

identified in the most active EO were available commercially and included β-Asarone,

(E)-Anethole, (E)-β-Caryophyllene, γ-Terpinene, p-Cymene, Limonene, α-Pinene, and

β-Pinene. Dillapiole was purified by from EO of P. aduncum. The phenylpropanoids

[Dillapiole, (E)-Anethole and β-Asarone] and monoterpenes (γ-Terpinene, p-Cymene,

Limonene, α-Pinene, and β-Pinene) showed larvicidal activity with mortality between

90 and 100% and could account for the toxicity of these EOs, but the sesquiterpene

(E)-β-Caryophyllene, an abundant component in the EOs of P. hemmendorffii and P.

crassinervium, did not show activity on the three populations of A. aegypti larvae at a

concentration of 100 ppm. These results indicate that Piper’s EOs should be further

evaluated as a potential larvicide, against strains resistant to currently used pesticides,

and the identification of phenylpropanoids and monoterpenes as the active compounds

open the possibility to study their mechanism of action.
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INTRODUCTION

Aedes aegypti (Linnaeus, 1762) (Mattingly et al., 1962) is a
mosquito species known to transmit arboviruses such as dengue,
chikungunya, and zika virus worldwide. It is a diurnal mosquito
extremely adapted to urban and domestic environments (Maciel-
de-Freitas et al., 2012). The rapid increase in rates of urbanization
in tropical regions, lack of basic infrastructure and limited
or non-existent sanitation, associated with favorable climatic
conditions for the mosquito’s development, have contributed
to the expansion of the occurrence range of arboviruses
transmitted by females of A. aegypti (Rebêlo et al., 1999;
Carvalho and Moreira, 2016). Therefore, we have witnessed the
increasing transmission of Dengue (DENV), Zika (ZIKV), and
Chikungunya (CHIKV) virus in these regions.

Despite the FDA approval of a dengue vaccine (Dengvaxia)
in 2019, its efficiency is restricted to people who have
been previously infected by dengue and not as disease
prevention for a large portion of the population. Therefore,
the control of A. aegypti populations still represents the best
line of defense. This strategy has focused on controlling
the mosquito’s population by means of using insecticides
such as the larvicide Pyriproxyfen (Juvenil Hormone Analog–
JHA), the adulticides malathion (organophosphate) and Cielo R©,
an insecticide containing imidacloprid (neonicotinoid) and
paletrine (pyrethroid) (Valle et al., 2019). Themain larvicide used
worldwide was the organophosphate temephos, but by the end of
1990’s, it led to the development of resistance inA. aegypti. In fact,
in the last decades, the indiscriminate use of synthetic insecticides
(for example, domestic use of pyrethroid insecticides available in
the retail market, especially in epidemic periods), together with
the lack of coordinated programs in multi-endemic areas, have
led to the emergence of populations of A. aegypti resistant to
different insecticides used (Maciel-de-Freitas et al., 2012; Macoris
et al., 2018).

The resistance of A. aegypti in Brazil studied from 2005 to
2012 was characterized by the frequency and distribution of
the resistance of this vector (Valle et al., 2019). The phenotypes
for populations resistant to pyrethroids throughout the country
have been characterized and are associated to the changes in
biochemical and target site mutations V410L, G923V, I1011M,
V1016I, and F1534C (Brengues et al., 2003; Saavedra-Rodriguez
et al., 2007; Martins et al., 2009a,b; Lima et al., 2011; Araújo et al.,
2013; Lins et al., 2014; Maciel-de-Freitas et al., 2014; Bellinato
et al., 2016; Collet et al., 2016; Dolabella et al., 2016; Haddi et al.,
2017; Viana-Medeiros et al., 2017; Garcia et al., 2018; Valle et al.,
2019; Costa et al., 2020).

In the case of larval resistance in A. aegypti, two studies
were carried out in the city of Belo Horizonte (MG, Brazil)
(Belinato et al., 2013; Valle et al., 2019). The resistance ratio 95
(RR95) to the insecticide Temephos was quantified in mosquito
populations in 2005 (Belinato et al., 2013) and 2008 (Valle et al.,
2019), in which resistance was observed (RR95 = 5.4 and RR95 =

10.8, respectively).
Essential oils (EOs) are odoriferous and volatile compounds

found stored in plants structures, such as glands, secretory

trichomes, secretory ducts, secretory cavities, or resin ducts
(Ciccarelli et al., 2008; Bezić et al., 2009; Liolios et al., 2010;
Morone-Fortunato et al., 2010). The production of these volatiles
in plants is associated with the ecological role they display
in nature, such as protecting plants against pathogens and
herbivores and attraction of pollinating insects (Grodnitzky and
Coats, 2002; Csekea et al., 2007; Bakkali et al., 2008). The
emission of plant volatiles is associated with several messages
they convey to the surrounding interacting organisms, such as
volatiles used in the attraction of pollinating insects, kairomones
in response to herbivores, attraction of parasitoids when
damaged by herbivores, controlling the growth of pathogens
in aerial parts or roots, and so forth (Grodnitzky and Coats,
2002; Csekea et al., 2007; Bakkali et al., 2008; Raveau et al.,
2020). EOs from the plants Cymbopogon spp., Ocimum spp.
and Eucalyptus spp. are well-known for their application as
insect repellents and the active principles are associated with
the presence of α-Pinene, Limonene, Citronellol, Citronellal,
Camphor and Thymol (Nerio et al., 2010). Additionally, some
plant species have been adopted in push-pull strategies for
controlling insect pests in agricultures thanks to their emission
of specific volatile compounds with repellent or attractive
properties that lead pests away from cultivated plants and
onto toxic “trap crops” (Cook et al., 2007; Alkema et al.,
2019).

Several applications of volatiles of Piper species have been
suggested because of their high potential for pest control, and
due to the green technologies involved in the extraction process
and the expected low environmental impact (da Silva et al.,
2017; Salehi et al., 2019). The evaluation of the larvicidal
activity of EOs of species of the genus Piper in A. aegypti
has already been studied for the species: Piper humaytanum,
P. permucronatum, P. hostmanianum, P. gaudichaudianum (de
Morais et al., 2007), P. augustum, P. corrugatum, P. curtispicum,
P. darienense, P. grande, P. hispidum, P. jacquemontianum, P.
longispicum, P. multiplinervium, P. reticulatum, P. trigonum
(Santana et al., 2016), P. marginatum (Autran et al., 2009;
Santana et al., 2015), P. klotzschianum (Nascimento et al., 2013),
P. aduncum (de Almeida et al., 2009; Oliveira et al., 2013;
Santana et al., 2015; Scalvenzi et al., 2019), P. corcovadensis
(da Silva et al., 2016), P. sarmentosum (Hematpoor et al.,
2016), P. betle (Vasantha-Srinivasan et al., 2018; Martianasari
and Hamid, 2019), P. arboreum (Santana et al., 2015), and
P. capitarianum (França et al., 2021). Besides, non-volatile
compounds from Piper species such as amides and lignans have
also been described as larvicidal (Cabral et al., 2009; Kanis et al.,
2018).

Despite the large number of studies with EOs from Piper
species against larvae of A. aegypti, there is no assessment of their
effect on strains of mosquitoes resistant to synthetic insecticides.
Therefore, considering the limited number of safe chemical
approaches for controlling A. aegypti as vectors in the field, the
aim of this work is to investigate the larvicidal activity of essential
oils of Piper species and to identify the active principle against
populations of A. aegypti that are either susceptible or resistant
to pyrethroids.
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TABLE 1 | Voucher number, sampling site, and yield of essential oil from Piper

species.

Species Voucher # Sites EO yield (%)a

P. aduncum L. K-0057 Campus–USPb 2.5

P. marginatum Jacq. K-0223 Campus–USP 1.10

P. gaudichaudianum

Kunth

K-0031 Serra do Japic 0.98

P. crassinervium

H.B.and K.

K-0091 Campus–USP 1.80

P. arboreum Aubl. K-0053 Campus–USP 0.74

P. hemmendorffii C.

DC.

K-1086 Campus–USP 0.86

P. cernuum Vell. K-0137 Campus–USP 0.69

P. lucaenum var.

grandifolium Kunth.

K-0486 Campus–USP 0.70

P. lindbergii C.DC. K-2325 Serra do Japi 0.65

P. amalago L. K-0110 Serra do Japi 0.66

#K (Voucher number Kato-XXXX).
aFrom fresh leaves.
bUniversity of São Paulo.
cParque Municipal Serra do Japi, Jundiaí, Brazil.

MATERIALS AND METHODS

Plant Material
The leaves of 10 species of plants belonging to the genus
Piper: Piper aduncum, P. marginatum, P. gaudichaudianum,
P. crassinervium, P. arboreum, P. hemmendorffii, P. cernuum,
P. lucaenum var. gradifolium, P. lindbergii, and P. amalago,
were collected in the period of January to June 2018. The
vouchers were deposited at the Herbarium of USP–University
of São Paulo for identification (Table 1). All collections were
made under permits #59161-1 and 010/2018-R from the Sistema
de Autorização e Informação em Biodiversidade–SISBIO and
Fundação Serra do Japi, respectively.

Collection and Insect Rearing
In this study, three strains of A. aegypti larvae were used. The
Rockefeller strain is a susceptible reference lineage (SRL) for
all assays. Two other strains were collected in the regions of
Pampulha (19◦ 51′ 04′′ S; 43◦ 58′ 46′′ W) and Venda Nova
(20◦ 11′ 51′′ S; 44◦ 1′ 40′′ W) in Belo Horizonte, Minas Gerais,
Brazil in the period of June 2018. The strains Pampulha (Pamp)
and Venda Nova (VN) were evaluated and certified as resistant
to pyrethroids.

The mosquitoes were kept and raised in the insectarium
of the Laboratory of Physiology of Hematophagous Insects of
the Federal University of Minas Gerais in accordance with
the recommendations of the Ethics Committee (CEUA-UFMG)
(protocol number 01/2017). The insects were maintained under
controlled conditions of temperature (27 ± 1◦C), photoperiod
12:12 h (L:D), and relative humidity (75%).

After the eggs hatched in dechlorinated water, the larvae and
pupae were kept in plastic vats, containing fish food ad libitum.
The adult insects were kept in cylindrical cages 30 × 90 cm
with mesh on the top and with continuous access to cotton

soaked in 10% sucrose solution. The females’ blood meals were
performed weekly on hamsters (Mesocricetus auratus) previously
anesthetized with 0.2mL of Thiopental R© (50 mg/mL) and placed
with the trichotomized abdomen on the screen of the cages so
that the females could perform the blood meal for 1 h. The eggs
were obtained 2 days after the meal using filter paper soaked in
dechlorinated water in dark plastic pots, from which they were
removed and kept in new plastic pots until the hatching time
for testing.

Extraction of Essential Oils
The essential oils (EOs) were extracted from fresh leaves of
each species, submitted to hydrodistillation in a Clevenger type
apparatus for 4 h, using 300–500 g of fresh leaves and 500mL
of distilled water (Santos et al., 2012; Fanela et al., 2015). The
EOs were collected and dried with anhydrous sodium sulfate
and stored in amber bottles in a refrigerator at 4◦C until the
experiments were performed. The yield of EOs from Piper species
are shown in Table 1.

Analysis of Essential Oils and Fractions by
GC-MS
EOs samples were diluted 20 times in ethyl acetate (HPLC grade,
Honeywell) and analyzed using a Shimadzu GCMS- QP2010
equippedwith anHP-5ms column (length 30m, ID 0.25mm, film
thickness 0.25µm, Agilent) using Helium as a carrier gas (1.55
mL/min) and 1 µL of each sample was injected at 250◦C with a
1:20 split. Detector temperature was set at 260◦C with electron
impact ionization energy of 70 eV and a scan range ofm/z35-400
Da at 2500 spectra s−1. The oven program started at 40◦C for
2min, and the temperature was increased at 5◦Cmin−1 to 260◦C
and held for 2min. Individual volatile compound peaks were
identified using extracted ion traces of three specific reference
ions and quantified by the peak area of the most abundant ion
trace per compound using a custom-made analysis method in
the GC-MS Postrun Analysis software (Shimadzu). Relative %
of each compound was calculated by comparing the % peak
area in relation to the total sum of peak areas within a sample.
The identification of compounds was conducted by calculating
Arithmetic retention indexes (RIs) in relation to a series of alkane
standards (C8-C40, Supelco) injected using the same GC-MS
method as used for the samples, according to Van Den Dool and
Kratz (1963). Compound mass spectra and RIs were compared
to those available in the Adams and Wiley databases (Adams,
2007), in previous studies of these Piper species, and confirmed
by comparison to authentic standards, when available.

LC50 and LC95 for Larvicidal Activity of
Deltamethrin Insecticide
The characterization of the larvae to be used in the tests as
susceptible or resistant was made by assaying them with the
technical grade insecticide deltamethrin (Bayer Brazil, 99.1%).
The dose-response tests were performed in the range of 10–90%
mortality. Thirty L3-L4 larvae (F1 generation) were separated
per dose (in triplicate), requiring a minimum of 8 doses to
perform the curve. The larvae were placed in 500ml cups
containing 249ml of dechlorinated water, along with 1ml of the
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insecticide in the desired concentration, diluted in ethanol P.A.
For the control group, 30 L3-L4 larvae were used in 250mL of
dechlorinated water. The concentrations of pyrethroid used for
assaying Rockefeller, Venda Nova and Pampulha strains were
0.2–0, 9, 2.0–9.5, and 1.0–8.0 mg/mL, respectively.

Mortality was recorded every 10min during the first hour
and 24 h after the start of the test, as recommended by
the World Health Organization (1981). Larvae that did not
spontaneouslymove, even if subjected tomechanical stimulation,
were considered dead. The LC calculation was performed using
the Polo Plus program (see item on statistical analysis). The
LC of the field population was divided by the LC of the
Rockefeller strain to obtain the Resistance Ratio. The population
was considered resistant when RR95 was >3 (Valle et al., 2019).

Qualitative Larvicidal Bioassays of Piper
Essential Oils
The tests were performed in accordance with World Health
Organization (2005), with modifications. The EOs of 10 species
of Piper were diluted in a final volume of 100ml of dechlorinated
water with 2% dimethyl sulfoxide (DMSO), in a concentration
of 100 ppm of each oil. Then, 30 larvae (L3–L4) from the three
strains, Rockefeller, Venda Nova, and Pampulha were placed in
the containers. Each experiment was carried out in three bottles
(technical triplicate), being repeated five times on different days
(five biological repetitions). The larvae of the control and vehicle
control groups were exposed only to dechlorinated water and
with 2% DMSO, respectively. Mortality was recorded at 24 h
after the start of the test. Larvae not responding to mechanical
stimulation were considered dead and the EOs with 90 to 100%
larvicidal activity were considered active (Cheng et al., 2003; Dias
et al., 2014; Intirach et al., 2016; Muturi et al., 2017).

Determination of LC50 and LC90 of Piper
Essential Oils
EOs that showed preliminary larvicidal activity (90 to 100%)
had their lethal concentrations (LCs) determined. Thus, 30
larvae L3-L4 from the three strains were submitted to different
concentrations in a range of 10–90%, in a final volume of 100mL
of dechlorinated water. Each dose was assayed in duplicate, with
three repetitions (biological triplicate) on different days. The
larvae of the control and vehicle-control groups were exposed to
dechlorinated water and with 2% DMSO, respectively, and the
mortality was recorded 24 h after the start of the test.

Assays With the Major Compounds From
the EOs
The major compounds from EOs characterized by GC-MS,
E-Anethole (Sigma-Aldrich: 4180-23-8), γ-Asarone (Cayman
Chemical: 11681) and (E)-β-Caryophyllene (Cayman Chemical:
21572), γ-Terpinene (Sigma-Aldrich: 86478), p-Cymene (Sigma-
Aldrich: 121452), Limonene (Sigma-Aldrich: 45423), α-Pinene
(Sigma-Aldrich: 147524), and β-Pinene (Sigma-Aldrich: 402753)
were acquired commercially. Pure Dillapiole was obtained by
fractionation using the Isolera Flash Chromatography system
(Biotage INC). The EO of P. aduncum (0.5ml) was loaded on

the silica samplet and the flash chromatography was performed
in the SNAP Ultra 25 g silica column using a gradient of hexane
and ethyl acetate. The gradient started with 20% of ethyl acetate,
after 2min increased to 28% and in a linear increase reached
33% 12min. Sixty fractions were collected and dillapiole was
present in the fractions 30–35. The samples obtained from this
fractionation were analyzed by GC-MS and a fraction with purity
higher than 98% was selected for the assays.

For the larvicidal assays (qualitative bioassays), the pure
compounds were diluted in dechlorinated water and 2% DMSO,
in a final volume of 50mL, to a final concentration of 100 ppm
(screening concentration), containing 15 larvae of A. aegypti
L3-L4 per cup. For the determination of LC50 and LC90, the
methodology was used as described above, using 15 larvae of
A. aegypti L3-L4 per cup.

Statistical Analysis
The data were organized in spreadsheets using Microsoft Excel
software (Office 2007). Lethal concentrations (LC) 50%, 90%,
95% and slope were obtained through Probit analysis with the
aid of the Polo Plus software (Raymond, 1985). Significant
differences in the LC50 and LC90 values were based on non-
overlap of 95% confidence intervals (Hematpoor et al., 2017;
Wang et al., 2019).

RESULTS

Determination of LC50 and LC95 for the
Insecticide Deltamethrin
Based on the bioassays with Deltamethrin, the strains of
Pampulha and Venda Nova were shown to be resistant to
this insecticide, with the population of Pampulha (RR95 =

26.073) being more resistant than the population of Venda Nova
(RR95 = 20.512). The resistance observed in these populations
of A. aegypti for Deltamethrin is expected for pyrethroids in
general, because of the similarity of the mode of action. The
Rockefeller strain, defined as the susceptibility reference strain
(LRS), has been maintained in the laboratory since 1881, without
contact with insecticides and genetically isolated from external
populations (Organização Pan-americana de Saúde (OPAS),
2005). The values of LC50 and LC95 with their 95% confidence
intervals are listed in Table 2.

Larvicidal Activity of Essential Oils
The EOs of the leaves of 10 species of the genus Piper obtained
from hydrodistillation were tested against the three strains
(resistant and susceptible) of A. aegypti. EOs from 5 out of 10
species were considered active: Piper aduncum, P. marginatum,
P. gaudichaudianum, P. crassinervium, and P. arboreum, with
larvicidal activity of 90–100% at 100 ppm (Table 3).

EOs of these five species had their lethal concentrations,
LC50 and LC90 investigated. Thus, the L3-L4 larvae of the two
populations and LRS were submitted to different concentrations
to achieve larval mortality in a range of 10–90%. After 24 h of
exposure the EOs from P. aduncum, P. gaudichaudianum, and P.
marginatum had the lowest LC50 compared to P. crassinervium
and P. arboreum. The EOs from P. aduncum was the most

Frontiers in Plant Science | www.frontiersin.org 4 June 2021 | Volume 12 | Article 685864

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Pereira Filho et al. Larvicidal Essential Oils From Piper

TABLE 2 | LC50 and LC95 for the technical grade deltamethrin insecticide (Bayer Brazil, 99.1%) in larvae of Aedes aegypti.

Strains LC50 (mg/L) (95% CI) RR50 (95% CI) LC95 (mg/L) (95% CI) RR95 (95% CI) Slope (SD)

Rockefeller* 0.16 (0.14–0.189) 1 0.751 (0.55–1.22) 1 3.55 ± 0.45

Venda Nova 3.65 (3.21–4.08) 21.94 (18.36–26.23) 9.905 (8.29–12.80) 20.51 (14.44–29.12) 3.79 ± 0.41

Pampulha 2.94 (2.42–3.47) 17.67 (14.17–22.02) 12.590 (9.20–21.13) 26.07 (16.07–42.28) 2.60 ± 0.36

95% CI, 95% confidence interval; LC50, 50% lethal concentration; LC95, 95% lethal concentration; RR95, 95% resistance ratio; SD, standard deviation. *SRL—susceptibility

reference lineage.

TABLE 3 | Mortality percentage of Aedes aegypti larvae in resistant and

susceptible strains to pyrethroids treated with essential oils of Piper species.

Species Strains

Susceptible Resistant

Rockefeller Venda Nova Pampulha

P. aduncum L. 100.00 100.00 100.00

P. marginatum Jacq. 100.00 97.11 98.44

P. gaudichaudianum Kunth 99.33 90.22 94.88

P. crassinervium H.B. and K. 96.22 91.11 92.66

P. arboreum Aubl. 93.11 90.66 90.00

P. hemmendorffii C. DC. 66.44 43.11 36.00

P. cernuum Vell. 45.11 42.00 30.44

P. lucaenum Kunth. 16.22 18.88 24.00

P. lindbergii C. DC. 12.00 13.55 10.22

P. amalago L. 2.66 6.22 2.22

active with LC50 (23.50 ppm) for Rockefeller, and LC50 of 25.11
ppm and 26.39 ppm to Venda Nova and Pampulha, respectively
(Table 4).

Identification of Essential Oil Compounds
by GC-MS
The EOs of the 10 species were analyzed by GC-MS and
main constituents were identified based on library search,
retention index (RI), and use of standard compounds when
available, and expressed as relative percentage of each constituent
(Table 5). In summary, the major compounds were identified
as phenylpropanoids, sesquiterpenes and monoterpenes. The
complete list of all compounds, the retention indexes, and the
relative percentage of each one, for all 10 species of Piper analyzed
is shown in Table 6 and the GC-MS chromatograms for all
species is shown in the Supplementary Figures 1–3.

Evaluation of the Larvicidal Activity of the
Main Compounds in the EOs
The commercially available compounds (E)-Anethole, β-
Asarone, (E)-β-Caryophyllene, γ-Terpinene, p-Cymene,
Limonene, α-Pinene and β-Pinene and Dillapiole, obtained by
fractionation of EO of P. aduncum using flash chromatography
were submitted to further evaluation to determine whether
they were involved as the active compounds in the EOs. Thus,
pure standards were diluted in water and 2% DMSO, in a final

volume of 50mL, to a final concentration of 100 ppm (screening
concentration). Out of the nine compounds evaluated, only
(E)-β-Caryophyllene did not show activity on A. aegypti larvae in
the three strains at the screening concentration. Nevertheless, the
phenylpropanoids (Dillapiole, (E)-Anethole and γ-Asarone) and
monoterpenes (γ-Terpinene, p-Cymene, Limonene, α-Pinene
and β-Pinene) showed larvicidal activity in the range of 90–100%
(Table 7). Additionally, when comparing the LC50 and LC90 of
the three phenylpropanoids, Dillapiole displayed the lowest LC50

for the three strains, followed by (E)-Anethole and γ-Asarone
(Table 8). Among the five monoterpenes tested, Limonene
and γ-Terpinene showed the lowest LC50 for the three strains
(Table 8).

DISCUSSION

Studies focusing on the investigation of EOs from plants from the
perspective of discovering new ovicides, larvicides, adulticides
and repellents have been an important strategy for controlling
agricultural pests, vectors of medical-veterinary importance or
urban viruses (Santos et al., 2012; Phukerd and Soonwera, 2014;
Govindarajan et al., 2016; Benelli et al., 2017; Muturi et al.,
2017; Luz et al., 2020a). Regarding the urban diseases in tropical
regions, A. aegypti is considered one of the main targets since
it has great dispersal capacity, is the vector of DENV, ZIKV,
CHIKV viruses, and has developed a remarkable resistance to
commercially available insecticides (Smith et al., 2016).

The availability of two strains of A. aegypti resistant to
Deltamethrin (Table 1) prompted us to seek alternatives to
control these populations by screening bioactive EOs from plant
species. Despite Deltamethrin not having been used to control
A. aegypti in Brazil, it is a stable molecule with a well-known
mechanism of action, and it is a standard pyrethroid in studies
with insecticide resistance.

In this article, we adopted the WHO methodology (2005) to
perform larvicidal tests against A. aegypti (Dias et al., 2015; Luz
et al., 2020a). However, as the World Health Organization does
not establish criteria to recognize larvicidal activity, in the present
study, we choose the level of 90–100% of larvicidal activity for
selecting active EOs as previously suggested (Cheng et al., 2003;
Dias et al., 2014; Intirach et al., 2016; Muturi et al., 2017). Based
on this criterion, EOs from five Piper out of 10 species tested
showed larvicidal activity (Table 3). The efficiency of EOs from
Piper species as botanical insecticides against various arthropods,
including mosquito larvae of the species A. aegypti has been
previously demonstrated. For instance, EOs of P. marginatum
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TABLE 4 | Lethal concentrations of essential oil of Piper species against Aedes aegypti larvae resistant and susceptible strains to pyrethroids, during 24 h of exposure.

Species Strains Slope ± SD LC50 (ppm) (95% CI) LC90 (ppm) (95% CI)

P. aduncum Rockefeller 4.5 ± 0.2 23.50 (20.92–26.60) 45.25 (37.46–62.61)

Venda Nova 4.2 ± 0.2 25.11 (22.92−27.80) 50.29 (42.37–65.56)

Pampulha 4.3 ± 0.2 26.39 (24.69–28.40) 52.08 (45.58–62.60)

P. gaudichaudianum Rockefeller 4.3 ± 0.2 37.88 (29.58–46.21) 75.20 (58.19–142.75)

Venda Nova 5.6 ± 0.3 54.01 (49.50–58.95) 91.41 (79.56–115.2)

Pampulha 3.9 ± 0.2 41.35 (34.57–49.01) 86.61 (67.51–148.57)

P. marginatum Rockefeller 4.1 ± 0.2 39.91 (34.94–45.11) 80.85 (66.94–112.42)

Venda Nova 5.0 ± 0.2 41.72 (37.05–46.80) 87.27 (72.22–120.23)

Pampulha 4.0 ± 0.2 45.77 (43.65–48.05) 96.06 (87.07–108.70)

P. arboreum Rockefeller 5.4 ± 0.3 51.63 (47.68–55.72) 89.13 (78.69–108.22)

Venda Nova 5.6 ± 0.3 54.01 (49.50–58.95) 91.41 (79.56–115.27)

Pampulha 5.5 ± 0.3 56.22 (52.16–60.82) 96.01 (84.15–118.36)

P. crassinervium Rockefeller 4.9 ± 0.3 59.03 (53.36–66.47) 106.81 (88.43–152.98)

Venda Nova 5.1 ± 0.3 63.55 (58.34–70.79) 113.21 (95.01–154.04)

Pampulha 5.1 ± 0.3 62.96 (57.94–69.77) 112.10 (94.58–150.34)

95% CI, 95% confidence interval; LC50, 50% lethal concentration; LC90, 90% lethal concentration; SD, standard deviation.

(Autran et al., 2009), P. aduncum (de Almeida et al., 2009;
Oliveira et al., 2013), P. gaudichaudianum (de Morais et al.,
2007), P. arboreum (Santana et al., 2015), and P. capitarianum
(França et al., 2021) have displayed an efficient larvicidal action
on A. aegypti.However, to the best of our knowledge, the present
study is the first to demonstrate the bioactivity of EOs of the
genus Piper and the main active compounds in essential oils in
strains of pyrethroid-resistant A. aegypti larvae.

Among the five species that showed larvicidal activity against
A. aegypti, P. aduncum had a lower LC50 compared to the other
four Piper considered active, and previous reports for P. aduncum
EO activity against larvae of A. aegypti led to variable values
of LC50: 46 ppm (Santana et al., 2015); 50.9 ppm (de Almeida
et al., 2009), and up to 289.9 ppm (Oliveira et al., 2013). Our
average LC50 value of 25 ppm for EO from P. aduncum against
the resistant strains (VN and PAMP) and SRL, is similar to that
described by Scalvenzi et al., 2019 which was 23.73 ppm.

The analysis of the LC50 and LC90 of the five Piper species
active against PAMP, VL, and SRL strains (Table 4) indicated
comparable LCs values among them, indicating activity of Piper
sp. EOs regardless of insect resistance to commercial pyrethroids.
Such similar larvicidal activity, in populations of A. aegypti
resistant and susceptible to the organophosphate temephos, was
observed with EOs of Syzygium aromaticum (Myrtaceae) and
Citrus sinensis (Rutaceae) (Araújo et al., 2016), while a study of
EO from Petroselinum crispum (Apiaceae) showed no significant
differences of the LC50 for EO larvicidal activity against the
pyrethroid resistant and susceptible strains ofA. aegypti (Intirach
et al., 2016). Our results agree with previous studies of plant
EOs and highlights their potential of acting as efficient larvicides
on mosquito strains that are resistant to different types of
insecticides, whose use has already led to the development
of resistant populations in Brazil (for e.g.: Temephos–Valle
et al., 2019; pyrethroids—this study and Costa et al., 2020)
and elsewhere.

TABLE 5 | Major constituents of the EOs of Piper species.

Species Major compounds (class)a RI % rel.

P. aduncum Dillapiole (P) 1632 81.01

P. arboreum Germacrene D (S) 1484 18.58

δ-Elemene (S) 1339 14.53

P. crassinervium α-Pinene (M) 932 13.95

β-Pinene (M) 975 12.09

(E)-β-Caryophyllene (S) 1422 8.01

P. gaudichaudianum α-Humulene (S) 1457 15.50

Bicyclogermacrene (S) 1500 13.53

P. marginatum (E)-Isoosmorhizole (P) 1462 35.23

(E)-Anethole (P) 1286 21.67

P. hemmendorffii Limonene (M) 1039 30.99

β-Pinene (M) 975 10.08

(E)-β-Caryophyllene (S) 1422 9.65

P. amalago α-Pinene (M) 932 28.80

(E)-Nerolidol (S) 1566 9.2

p-Cymene (M) 1024 8.4

P. lindbergii α-Pinene (M) 932 61.67

α-Copaene (S) 1378 6.4

Limonene (M) 1039 5.3

P. cernuum α-Pinene (M) 932 16.6

β-Pinene (M) 975 11.5

Bicyclogermacrene (S) 1500 10.7

P. lucaenum Bicyclogermacrene (S) 1500 27.47

(E)-Cadina-1,4-diene (S) 1527 21

β-Myrcene (M) 992 10.7

RI, retention index; % rel., relative percentage.
aP, Phenylpropanoid; S, Sesquiterpene; M, Monoterpene.

Although Piper species (e.g., P. hemmendorffii, P. lindbergii,
P. amalago, P. cernuum) did not show any larvicidal activity, in
previous studies their major compounds such as α-Pinene (Ali
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TABLE 6 | Chemical composition of the essential oils of Piper species.

Compounds RIa RIb PAD PAR PAB PCR PGA PAM PHE PLB PAP PCE PLU

α-PineneS 932 932 0.2 1.0 1.5 14.0 – 0.8 3.2 28.8 61.7 16.6 –

CampheneS 947 946 – – – – – 0.4 – – 1.7 0.1 2.2

β-PineneS 975 974 0.3 0.6 – 12.1 – 0.7 10.1 3.0 1.4 11.5 –

Sulcatone 989 981 – – – 6.2 – – – – – – –

β-MyrceneS 992 988 – 1.7 – 0.6 – – 0.7 5.9 0.3 1.0 10.7

α-PhellandreneS 1,004 1,002 0.1 0.5 3.7 0.5 – – – 0.7 – 0.2 1.4

2-CareneS 1,010 1,008 0.1 0.7 – 1.5 – 0.8 0.5 0.7 – 0.2 0.1

α-Terpinene 1,016 1,014 – 6.8 – – – – – – – 4.5 –

p-CymeneS 1,024 1,020 0.1 3.0 1.5 0.5 – – 0.3 8.4 1.0 9.2 –

LimoneneS 1,039 1,024 0.1 – 2.1 1.2 0.2 0.1 30.9 – 5.3 0.8 1.9

(Z)-β-OcimeneS 1,039 1,032 1.6 – 8.5 0.1 0.5 0.1 0.3 2.1 – 0.1 4.6

(E)-β-OcimeneS 1,049 1,044 3.4 – 4.9 0.1 0.7 0.2 3.2 0.3 – 0.3 –

γ-Terpinene 1,059 1,054 0.2 22.6 – 0.1 – – – – – 9.9 0.3

α-TerpinoleneS 1,088 1,086 0.4 11.5 – 0.1 – – 0.1 – – 2.7 0.2

2-Nonanone 1,092 1,087 – 3.1 – – – – – – – – –

LinaloolS 1,100 1,095 – – 0.6 2.4 0.7 – – 2.0 1.6 – 5.9

(E)-4,8-dimethyl-1,3,7-nonatriene

(DMNT)S
1,117 1,114 – – 1.1 0.7 – – 0.6 – – 0.3 –

Camphor S 1,144 1,141 – – – – – 0.2 – – 1.1 – –

Terpinen-4-ol 1,178 1,174 – – – – – – – – 0.1 0.3 1.0

α-Terpineole 1,191 1,186 – – – 0.6 0.4 – 0.7 – 2.3 0.3 1.1

Methyl-chavicol 1,198 1,195 – – – – – 0.2 – – – – –

Oxygenated monoterpene 1* 1,201 – – – – – 0.1 – – – – – –

Oxygenated monoterpene 2* 1,209 – 0.1 – – – 0.3 – – – 0.1 – –

Verbenone 1,209 1,204 – – – – – – – – – – –

(Z)-Anethole 1,253 1,249 – – – – – 6.1 – – – – –

(+)-Piperitone 1,255 1,249 0.7 – – – – – – – – – –

(E)-anetholeS 1,286 1,282 – – – – – 21.7 – – – – 0.1

SafroleS 1,289 1,285 – 4.1 – – 1.4 – – – – – –

δ-Elemene 1,339 1,335 0.1 0.5 14.5 2.1 0.6 – 0.1 1.7 1.1 0.4 1.5

α-Cubebene 1,352 1,345 – – 0.3 0.7 0.7 – 0.3 – 0.1 0.3 1.7

α-Ylanglene 1,374 1,373 0.1 – – 1.1 0.4 – 0.1 – – – –

α-CopaeneS 1,378 1,374 0.2 – 1.4 2.9 2.8 1.4 4.1 0.2 6.4 2.1 0.7

β-Bourbonene 1,387 1,387 – 0.5 0.3 0.5 0.1 0.2 – 2.2 0.2 0.6 2.4

β-Elemene 1,394 1,389 0.2 0.2 1.4 1.0 1.8 0.5 0.6 3.3 0.3 4.4 –

(E)-Caryophyllene 1,404 1,408 – – – – – – 0.5 – – – –

Methyl-eugenolS 1,406 1,403 – 4.0 – – – 0.1 – – – – –

α-GurjuneneS 1,412 1,409 0.1 – – 0.3 0.7 – 0.2 1.0 – 0.1 0.2

(E)-β-CaryophylleneS 1,422 1,417 0.8 0.3 8.1 8.0 4.8 2.7 9.6 0.1 0.5 7.0 2.7

β-Gurjunene 1,432 1,431 0.2 0.2 1.0 2.2 1.4 0.2 0.9 4.1 0.6 0.5 0.3

α-Guaiene 1,436 1,437 – – 0.4 0.2 0.8 – – 0.8 – – 0.2

(+)-AromadendreneS 1,442 1,439 – – 0.5 1.5 4.4 – 0.4 0.3 0.2 0.4 0.9

α-Himachalene 1,446 1,449 – – – – 0.8 – – – – – 0.1

α-HumuleneS 1,457 1,452 0.9 – 4.9 2.8 15.5 0.9 2.7 1.2 0.2 2.1 0.5

Isoosmorhizole± 1,462 1,466 – – – – – 15.4 – – – – –

Croweacin 1,463 1,457 1.1 10.4 – – – – – – – – –

(-)-AlloaromadendreneS 1,464 1,458 – – – 0.4 – – 0.5 0.5 0.9 0.1 0.3

Dehydro-aromadendrane 1,466 1,460 – – – 0.4 1.6 – – 1.9 0.9 – 0.3

γ-Muurolene 1,480 1,479 – – 2.1 – 2.8 0.1 1.3 0.8 1.3 0.5 0.2

Germacrene D 1,484 1,481 2.7 2.1 18.6 – 4.0 0.1 2.7 2.8 – 5.2 3.4

β-Selinene 1,490 1,490 – – – – 1.2 1.1 1.0 – 0.3 0.5 –

(Continued)
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TABLE 6 | Continued

Compounds RIa RIb PAD PAR PAB PCR PGA PAM PHE PLB PAP PCE PLU

α-Selinene 1,500 1,498 1.4 1.2 2.4 – – 0.2 1.7 2.4 0.1 – –

Bicyclogermacrene 1,500 1,500 2.3 2.0 3.8 4.3 13.5 0.1 1.7 – – 10.7 27

α-Muurolene 1,503 1,500 0.1 0.6 1.3 3.0 4.2 0.4 0.9 1.9 1.0 – 0.5

α-Bulnesene 1,510 1,509 0.2 – 2.1 – – – – 0.4 – 0.7 –

(E)-Isoosmorhizole± 1,512 1,517 – – – – – 35.2 – – – – –

γ-Cadinene 1,517 1,513 0.1 – – 5.1 5.7 – 1.3 2.5 1.2 0.4 –

δ-Cadinene 1,522 1,522 1.2 – 1.2 – – 1.0 – – – – –

Myristicin 1,524 1,518 1.1 – – – – – – – – – –

(E) Cadina-1,4-diene 1,527 1,533 – – – 4.3 10.1 – 7.1 – 1.3 0.3 21

α-Cadinene 1,537 1,537 – – – – – – – – – – –

Germacrene B 1,561 1,559 0.2 – 2.1 0.4 1.2 – 0.6 – – 0.1 –

(E)-NerolidolS 1,566 1,561 0.1 – 1.0 5.2 0.6 – 0.9 9.2 – 0.9 –

Palustrol 1,572 1,567 – – – – 0.3 – 0.3 – – 0.1 0.2

γ-AsaroneS 1,577 1,572 – 22.0 – – – – – – – – –

Spathulenol 1,581 1,577 0.1 – 0.3 0.2 1.9 – 0.8 2.2 0.3 0.7 3.1

(-)-Caryophyllene oxideS 1,587 1,582 – – 0.6 0.8 – 0.1 4.3 1.1 3.4 0.8 0.9

Veridiflorol 1,596 1,592 0.3 – 0.3 0.4 1.5 – 0.3 0.7 0.5 0.6 0.9

Guaiol 1,601 1,600 – – – 5.2 – – – 1.5 – – 0.9

Humulene epoxide II 1,613 1,608 – – – – 1.0 – 0.3 0.2 – – –

β-Asarone 1,623 1,616 – – – – – 0.4 – – 0.3 – –

Methoxy-4,5-(methylenedioxy)-

propiophenone

isomer±

1,627 1,627 – – – – – 2.3 – – – – –

DillapioleS 1,632 1,620 81.0 – 2.2 1.7 – – – – – 0.1 –

epi-α-Muurolol 1,646 1,640 0.3 – 1.5 1.1 3.2 – 1.1 1.8 0.6 0.6 0.5

Torreyol 1,650 1,644 – – 0.6 3.3 2.6 – 1.1 0.4 0.3 0.4 0.2

α-Cadinol 1,659 1,652 – 0.1 2.9 – 5.3 – 1.7 3.1 0.9 1.2 0.5

α-AsaronaS 1,682 1,675 – – – – – 0.9 – – – – –

ApioleS 1,686 1,677 0.2 – – – – – – – – – –

2-Methoxy-4,5-(methylenedioxy)-

propiophenone±
1,717 1,713 – – – – – 4.7 – – – – –

RIa, Retention Index calculated against C8-C40 n-alkanes on the HP-5m column; RIb, Retention index from literature (Adams, 2007); PAD, Piper aduncum; PAR, Piper auritum; PAB,

Piper arboreum; PCR, Piper crassinervium; PGA, Piper gaudichaudianum; PMA, Piper marginatum; PHE, Piper hemmendorffii; PAM, Piper amalago; PLB, P. lindbergii; PCE, Piper

cernuum; PLU, Piper lucaenum; sCompound identity confirmed with an authentic standard, the remaining compounds were identified by comparing the RI and mass spectra with the

Adams and Wiley databases (see text for details). ±Compound IR corresponds to those found for Piper marginatum in Andrade et al. (2008). *Unidentified compounds.

et al., 2014), β-Pinene (Lee and Ahn, 2013; Ali et al., 2014), (E)-
Nerolidol (Ali et al., 2013), Limonene (Cheng et al., 2013; Lee
and Ahn, 2013; Rocha et al., 2015; Nascimento et al., 2017), (E)-
β-Caryophyllene (Ali et al., 2014, 2015), and β-Myrcene (Cheng
et al., 2013; Lee and Ahn, 2013) presented larvicidal activity
against A. aegypti. This suggests that minor compounds might
negatively interfere with oil larvicidal activity, opening new
possibilities to study synergisms between compounds, as their
interactions are long-lasting and complex, especially because
minor compounds often present biological effects.

Out of the major phenylpropanoid compounds tested,
Dillapiole, (E)-Anethole and γ-Asarone (Table 7), only (E)-
Anethole was previously reported as an active compound in
essential oils against A. aegypti larvae. The LC50 interval found
to (E)-anethole (28.0–30.6 ppm) (Rocha et al., 2015), overlaps
the confidence interval found for the three strains in the present
study (25.60–44.52 ppm) (Table 8). However, in a study carried

out by Pandiyan et al. (2019) the LC50 confidence interval, was
48.89–51.50 ppm for the (E)-anethole, which is a higher value
than that found in our study.

The sesquiterpene (E)-β-Caryophyllene was the only
compound that did not show potential larvicidal activity
(Table 7). In fact, this data is in accordance with that found by
Luz et al. (2020b), but different to the LC50 values found by Ali
et al. (2014) (26, µg/mL), Lee and Ahn (2013) (38.58µg/mL),
and Borrero-Landazabal et al. (2020) (29.28 µg/mL).

Larvae treated with Piper EOs that showed larvicidal activity,
were completely damaged, compared with control groups,
particularly in the chest and segments of the abdominal region.
Specifically, the midgut region was destroyed, and content
became dark. These visual observations after the exposure
period to Piper’s EOs or to major active compounds, indicate
morphological (structural) changes in the larva. Therefore, the
similar values of LCs in resistant and susceptible strains suggest
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a mode of action unrelated to the known biochemical and target
site mutations in resistant strains.

The chemical profile of the compounds described in the
EOs of the Piper species investigated here (Table 6) has already
been described in previous studies. For instance, Dillapiole is
a typical compound for P. aduncum (Pino et al., 2004; de

TABLE 7 | Percentage of dead larvae after 24 h of exposure to major compounds

of the studied Piper species at concentration 100 ppm.

Major compounds of

the studied Piper

species

Strains

Susceptible Resistant

Rockfeller Venda Nova Pampulha

Dillapiole 100 100 100

E-Anethole 98.89 96.67 100

γ-Asarone 98.89 96.67 97.78

(E)-β-Caryophyllene 0 0 0

γ-Terpinene 94.44 93.3 100

p-Cymene 91.1 92.2 90

Limonene 100 100 100

α-Pinene 90 91.1 100

β-Pinene 95.5 97.7 91.1

Almeida et al., 2009; Guerrini et al., 2009; Volpe et al., 2016;
Scalvenzi et al., 2019); Germacrene D for P. arboreum (Machado
et al., 1994; Mundina et al., 1998; Navickiene et al., 2006;
Perigo et al., 2016; Santana et al., 2016); α-Pinene, β-Pinene,
and (E)-β-Caryophyllene for P. crassinervium (Morandim et al.,
2010; Morandim-Giannetti et al., 2010; Perigo et al., 2016); α-
Humulene and Bicyclogermacrene for P. gaudichaudianum (Von
Poser et al., 1994; Andrade et al., 1998; Morandim-Giannetti
et al., 2010; Sperotto et al., 2013); α-Pinene for P. amalago
(Potzernheim et al., 2006; Perigo et al., 2016) and P. cernuum
(Bernuci et al., 2016; Perigo et al., 2016).

In case of P. lucaenum, the major compound
Bicyclogermacrene described in our study was replaced by
α-pinene in another study (Marques et al., 2015). In fact, large
chemical variability in EOs of Piper species has already been
reported (Andrade et al., 2008). For instance, EOs from 22
samples of P. marginatum leaves collected in different areas and
ecosystems of the Brazilian Amazon, separated by up to 1000 km,
exhibited different major compounds depending on the place
of origin. In our study, while the species P. marginatum had
(E)-Anethole as a major compound, analysis of other specimens
led to the characterization of 3,4-methylenedioxy propiophenone
(Macêdo et al., 2020), and (Z)- or (E)-Asarone, and Patchouli
alcohol (Autran et al., 2009) as major compounds. Such
variability can result from different environmental conditions,

TABLE 8 | Evaluation of lethal concentrations of major compounds in Aedes aegypti larvae of resistant and susceptible strains to pyrethroids during 24 h exposure to

major compounds of Piper species.

Compounds Strains Slope ± SD LC50 (ppm) (95% CI) LC90 (ppm) (95% CI)

Dillapiole Rockfeller 2.6 ± 0.2 15.06 (11.94–18.33) 46.16 (35.62–68.71)

Venda Nova 2.6 ± 0.2 15.75 (12.01–19.74) 47.96 (35.21–77.11)

Pampulha 2.6 ± 0.1 17.60 (14.24–21.28) 54.56 (41.77–82.48)

E-Anethole Rockfeller 4.0 ± 0.3 34.41 (25.60–42.10) 71.03 (54.85–136.85)

Venda Nova 4.3 ± 0.3 38.20 (29.33– 47.26) 75.39 (57.74–153.58)

Pampulha 3.9 ± 0.3 38.98 (33.57–44.52) 82.72 (67.24–120.97)

γ-Asarone Rockfeller 3.7 ± 0.3 32.65 (29.91–35.20) 71.92 (64.20–83.85)

Venda Nova 3.3 ± 0.1 37.85 (34.73–40.96) 92.52 (79.59–114.69)

Pampulha 3.3 ± 0.3 36.23 (31.02–41.20) 88.34 (71.06–130.59)

Rockfeller 2.7 ± 0.2 25.29 (21.25–29.30) 74.77 (59.26–108.25)

γ-Terpinene Venda Nova 2.6 ± 0.2 24.58 (21.87–27.26) 76.33 (64.23–96.71)

Pampulha 2.7 ± 0.2 25.00 (22.41–27.58) 72.55 (61.87–89.92)

Rockfeller 3.6 ± 0.3 44.80 (41.23–48.48) 100.71 (88.53–119.53)

p-Cymene Venda Nova 3.4 ± 0.3 49.25 (45.30–53.52) 115.51 (99.70–141.21)

Pampulha 3.5 ± 0.3 47.39 (43.60–51.43) 109.83 (95.47–132.59)

Rockfeller 3.1 ± 0.2 21.86 (18.43–25.33) 55.02 (45.22–72.76)

Limonene Venda Nova 3.2 ± 0.2 23.23 (18.76–27.97) 57.94 (45.53–85.24)

Pampulha 3.0 ± 0.2 21.92 (17.01–27.27) 58.38 (44.19–93.46)

Rockfeller 4.2 ± 0.2 44.17 (37.68–50.50) 71.92 (74.59–112.61)

α-Pinene Venda Nova 4.1 ± 0.2 45.17 (37.72–52.43) 92.52 (76.84–124.16)

Pampulha 3.9 ± 0.2 45.70 (39.48–51.80) 96.49 (82.01–122.45)

β-Pinene Rockfeller 2.8 ± 0.1 32.97 (26.97–38.92) 93.11 (75.49–126.12)

Venda Nova 2.8 ± 0.1 33.35 (26.31–40.40) 95.70 (75.13– 138.87)

Pampulha 2.6 ± 0.1 35.13 (26.02–44.53) 105.59 (78.01–179.01)

95 % CI, 95% confidence interval; LC50, 50% lethal concentration; LC90, 90% lethal concentration; SD, standard deviation.
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soil composition, development, biotic factors, and plant genetic
diversity (Gobbo-Neto and Lopes, 2007; Silva et al., 2019; Mollaei
et al., 2020).

CONCLUSION

Our results suggest the promising role of the EOs of
these five species of Piper as an alternative in controlling
A. aegypti mosquito larvae of susceptible and insecticide
resistant strains. The efficacy of these EOs suggest their use
as alternative bioinsecticides in the management of insecticide
resistant mosquitoes. Despite the ease of obtaining EOs by
hydrodistillation, which is an advantage together the green
appeal of such products, their high chemical variability may
represent a potential drawback for product development
unless a rigorous cultivation control or full understanding
of the regulatory processes in the biosynthesis of these
phenylpropanoids are achieved.
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