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A growing body of evidence indicates that extracellular fragmented self-DNA (eDNA),
by acting as a signaling molecule, triggers inhibitory effects on conspecific plants and
functions as a damage-associated molecular pattern (DAMP). To evaluate early and
late events in DAMP-dependent responses to eDNA, we extracted, fragmented, and
applied the tomato (Solanum lycopersicum) eDNA to tomato leaves. Non-sonicated,
intact self-DNA (intact DNA) was used as control. Early event analyses included
the evaluation of plasma transmembrane potentials (Vm), cytosolic calcium variations
(Ca2+

cyt), the activity and subcellular localization of both voltage-gated and ligand-gated
rectified K+ channels, and the reactive oxygen species (ROS) subcellular localization
and quantification. Late events included RNA-Seq transcriptomic analysis and qPCR
validation of gene expression of tomato leaves exposed to tomato eDNA. Application of
eDNA induced a concentration-dependent Vm depolarization which was correlated to
an increase in (Ca2+)cyt; this event was associated to the opening of K+ channels, with
particular action on ligand-gated rectified K+ channels. Both eDNA-dependent (Ca2+)cyt

and K+ increases were correlated to ROS production. In contrast, application of intact
DNA produced no effects. The plant response to eDNA was the modulation of the
expression of genes involved in plant–biotic interactions including pathogenesis-related
proteins (PRPs), calcium-dependent protein kinases (CPK1), heat shock transcription
factors (Hsf), heat shock proteins (Hsp), receptor-like kinases (RLKs), and ethylene-
responsive factors (ERFs). Several genes involved in calcium signaling, ROS scavenging
and ion homeostasis were also modulated by application of eDNA. Shared elements
among the transcriptional response to eDNA and to biotic stress indicate that eDNA
might be a common DAMP that triggers plant responses to pathogens and herbivores,
particularly to those that intensive plant cell disruption or cell death. Our results
suggest the intriguing hypothesis that some of the plant reactions to pathogens and
herbivores might be due to DNA degradation, especially when associated to the plant
cell disruption. Fragmented DNA would then become an important and powerful elicitor
able to trigger early and late responses to biotic stress.

Keywords: tomato, transmembrane potential, calcium signaling, ROS, ion channel activity, RNA-seq, receptor-
like kinase, ethylene-responsive elements
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INTRODUCTION

Although it is not fully understood how it is generated,
extracellular fragmented DNA (eDNA) contributes to the species-
specific discrimination of self- versus non-self (Duran-Flores and
Heil, 2018) and can be used by plants to build resistance against
the surrounding environment (Gallucci and Maffei, 2017). One
of the most stimulating perspectives in plant crop production is
the application of self-eDNA to drive responses similar to the
intrinsic DNA damage response. A growing body of evidence
indicates that extracellular fragmented self-DNA, by acting as
a signaling molecule, might be able to trigger inhibitory effects
on conspecific plants and function as a damage-associated
molecular pattern (DAMP) (Mazzoleni et al., 2015). To explain
eDNA action, two general mechanisms have been proposed:
the presence of membrane receptors able to trigger a signal
transduction cascade of events or the possibility that fragmented
DNA may enter somehow into the cytosol and interfere with
some biological processes (Duran-Flores and Heil, 2015). In
support of the first hypothesis are results showing that eDNA can
trigger very early events, like the membrane depolarization and
the cytosolic influx of calcium ions in a dose-dependent manner
(Barbero et al., 2016). Moreover, the persistence of a membrane
depolarization after the washing out of eDNA suggested that
eDNA might interact with either membrane receptors or ligand-
gated ion channels (Barbero et al., 2016). However, to date, no
plant receptors able to recognize fragments of eDNA with a level
of sequence-specificity have been reported.

An open question remains whether eDNA acts directly on
the plant cell and provokes growth-inhibition effects (Mazzoleni
et al., 2015) or acts as a DAMP and plays a role as an
elicitor. In plant roots, DNA is excreted and released to the
root cap environment by lytic processes (Driouich et al., 2019),
but DNA could also be degraded by infection and disruption
of root cap cells (Monticolo et al., 2020). In the latter case,
eDNA might be involved in plant responses to biotic stress and
could be released along with other elicitors in the extracellular
environment (Plancot et al., 2013). Interesting, pathogen’s eDNA
also plays a role, as recently reported by Serrano-Jamaica et al.
(2021), who found that the foliar application of eDNA from
the pathogens Phytophthora capsici, Fusarium oxysporum, and
Rhizoctonia solani triggers plant defense pathways. Therefore, it
appears that both plant and pathogen eDNAs can prompt plant
responses both above and belowground.

Although with different strategies and rates, by feeding on
plants, some herbivore and pathogens disrupt cell integrity
and generate the leakage of ions, the delivery of lytic enzymes
from lysosomes, and the degradation of organelles and their
content. A common reaction to this devastating event is the
alteration of the plasma transmembrane potential (Vm), the
production of reactive oxygen species (ROS), and the triggering
of calcium signaling, that eventually leads to local and systemic
modulation of biotic stress-responding genes (Maffei et al., 2007;
Bricchi et al., 2012, 2013; Zebelo and Maffei, 2015). Several
elicitors of plant responses to biotic stress have been characterized
(Maffei et al., 2012) and specific receptors have been described
(Iida et al., 2019); however, since most of the biotic stress causes

cell disruption, DNA degradation, and fragmentation cannot be
excluded and eDNA might interfere with elicitors and receptors.

The current knowledge on eDNA effects on plants still lacks
the demonstration that application of self-eDNA to a plant may
trigger both early events (mostly involving the plant cell plasma
membrane) and the signal transduction pathway that leads to
gene expression. Therefore, the aim of this work is to assess
whether plant eDNA can elicit specific plant reactions as found
in response to biotic stress. In order to verify this hypothesis, we
extracted and fragmented tomato (Solanum lycopersicum) DNA
and tested its effects on tomato leaves by evaluating early (Vm,
calcium, and potassium channel activity, ROS generation) and
late events (gene expression by RNA-Seq and qPCR analyses).
Here we show that application of eDNA can induce tomato early
and late events, with pattern similar to those described for plant
responses to biotic stress.

MATERIALS AND METHODS

Plant Material and Sampling
Tomato S. lycopersicum L. seeds cv “cuore di bue” (Franchi seed
company, Italy) were sown in glass plates with wet filter paper and
incubated in a growth chamber (25◦C, 16/8 h light/dark, PPFD
100 µmol m−2 s−1) for 5 days. Seedlings were then transferred
in polyethylene plastic pots (8 cm ∅) containing a mixture of
peat, soil (Klasmann-Deilmann, Germany), sand, and vermiculite
(Unistara, Italy) and grown in plant growth chambers with a
light intensity of 120 µmol m−2 s−1. Plants were watered three
times a week and fertilized twice a week with a 0.1% solution
containing N:P:K (12:10:10). Experiments were conducted with
20- to 30-day-old seedlings by sampling expanded leaves.

For all studies, we used mechanical damage in order to allow
eDNA to penetrate the leaf tissues, as reported earlier (Barbero
et al., 2016). In particular, for Vm analyses, plant responses
were induced on mechanically damaged tomato leaves by tomato
eDNA. A pattern wheel was used to simulate a mechanical
damage for all microscopic studies. As negative controls,
undamaged leaves were used, and in order to compare the effect
of eDNA with controls, we defined the timing of wounding at
30 min. That is, the application was performed continuously
for 30 min, while mechanical damage was performed once. For
molecular studies, plants were exposed to eDNA for 1 h, and then
the total RNA was extracted from control and treatments.

DNA Extraction and Sonication
Leaves of tomato were collected and dried in oven at 60◦C
for 72 h. For DNA extraction, 800 mg of dried material were
ground to powder in liquid nitrogen with mortar and pestle.
Total DNA was isolated using both cetyl trimethyl ammonium
bromide (CTAB) method, according to Wilke’s protocol (Wilke,
1997) and a DNeasy Plant Mini Kit as described by the
manufacturer (Qiagen, Valencia, CA, United States1). Briefly,
PVPP (Polyvinylpolypyrrolidone, Sigma, Milan) powder was
added to the tissue before grinding. Tissues were homogenized

1 http://www.qiagen.com/
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with 10 ml of extraction buffer (100 mM Tris–HCl, pH 8.0, 1.4 M
NaCl, 0.02 mM EDTA, 2% CTAB, and 0.2% β-mercaptoethanol).
After centrifugation (13,000 rpm for 10 min), an equal volume of
chloroform:isoamyl alcohol (24:1) was added, and samples were
centrifuged again (13,000 rpm for 20 min). We repeated this step
and, after incubation for 30 min with a 1:100 volume of RNAse,
the DNA was precipitated with isopropanol. Then samples were
centrifuged at 13,000 rpm for 10 min, and the DNA pellet was
washed twice with 76% aqueous ethanol, 0.2 M sodium acetate,
and 70% aqueous ethanol subsequently. Finally, the pellet was
air-dried and resuspended in PE buffer (5 mM Tris/HCl, pH 8.5).

DNA from tomato leaves was fragmented by sonication using
a Bandelin Sonopulse HD2070 (Bandelin, Berlin, Germany)
at 90% power with a 1 s pulse for 15 min. Following the
manufacturer’s recommendation, samples were maintained in a
layer of ice during the sonication process (see Barbero et al., 2016
for further details on the protocol). Capillary gel electrophoresis
with the Agilent 2100 Bioanalyzer (Agilent Technologies) was
used to assess quality and length of sonicated band sizes,
according to manufacturer’s instructions. DNA extract was
spectrophotometrically quantified at 260 nm on a NanoDrop ND
1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE, United States) and visually verified on 1.2% agarose gel using
Gel Doc EZ System (Bio-rad, CA, United States).

Determination of Transmembrane
Potentials
The transmembrane potential (Vm) was determined in leaf
segments with glass micropipettes with a tip resistance of
4–10 M� and filled with 3 M KCl as previously detailed (Maffei
and Bossi, 2006). Leaf segments were settled for 60–120 min in
5 mM Mes-NaOH (pH 6.0). Perfusion of the buffer was obtained
by a multichannel Ismatec Reglo (Ismatec SA, Glattbrugg,
Switzerland) peristaltic pump (flow rate 1 ml min−1). Based on
the topographical and temporal determination of Vm performed
previously, the electrode was inserted between 0.5 and 1.5 mm
from the leaf edge zone. Vm variations were recorded through
a PC digital port with a data logger. eDNA was assayed at 50
and 100 µg ml−1. 0.05 M KCl was used as a control of Vm
depolarization, according to Barbero et al. (2016).

Evaluations of Intracellular Calcium
Variations by Confocal Laser Scanning
Microscopy (CLSM) and Calcium Orange
Calcium Orange dye (stock solution in DMSO, Molecular Probes,
Leiden, Netherlands) was diluted in 5 mM MES-Na buffer (pH
6.0) to a final concentration of 5 µM. This solution was applied
to tomato leaves attached to the plant, as previously reported
(Maffei et al., 2004; Bricchi et al., 2010; Barbero et al., 2016). After
1 h incubation with Calcium Orange, the leaf was mounted on a
Leica TCS SP2 (Leica Microsystems Srl, Milan, Italy) multiband
confocal laser scanning microscopy stage without separating the
leaf from the plant in order to assess the basic fluorescence
levels as a control. Then 50 µl of 200 µg ml−1 of eDNA was
applied and after 30 min the calcium signature was observed.
The microscope operates with a Krypton/Argon laser at 543

and 568 nm wavelengths: the first wavelength excites Calcium
Orange, resulting in green fluorescence and the second mainly
excites chlorophyll, resulting in red fluorescence. All images were
obtained with an objective HCX APO 40× in water immersion
with an NA of 0.8. Scan speed was set at 400. The microscope
pinhole was 0.064 mm and the average size depth of images
was between 65 and 70 µm; the average number of section per
image was 25 and the pictures were represented as the merging
of stacks. Image format was 1024 × 1024 pixels, 8 bits per
sample and 1 sample per pixel. At least five plants were used
for each experiment and the CLSM analyses were performed on
different leaves.

CLSM Localization of Voltage- and
Ligand-Gated K+ Channels Using
FluxORTM

Voltage-gated K+ channels were assayed by using the FluxORTM

potassium ion channel kit from Invitrogen (Molecular Probes).
Non-detached tomato leaves were gently placed on a glass
slide and incubated in the dark for 1 h with 100 µl of
loading buffer (deionized water, FluxORTM assay buffer, and
probenecid) by following the manufacturer’s instructions. Plants
were treated with 50 µl of 200 µg ml−1 of eDNA as above. Just
before observation 50 µl of stimulus buffer (deionized water,
FluxORTM chloride-free buffer, K2SO4, and Tl2SO4) were added
by following the manufacturer’s instructions. CLSM fluorescence
was assayed by a Leica TCS SP2 microscope equipped with
an argon laser (excitation wavelength of 488 nm). Fluorescence
was visible after about 50 min from treatment. Emissions
were recorded using a 520–535 nm bandpass filter as detailed
previously (Bricchi et al., 2013).

CLSM Subcellular Localization of H2O2
and Active Peroxidases by Using
10-Acetyl-3,7-Dihydroxyphenoxazine
(Amplex Red)
Tomato leaves from rooted plants in pot were treated with
50 µl of 200 µg ml−1 of eDNA after incubation with the dye
10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red) as described
earlier (Maffei et al., 2006). The Molecular Probes Amplex Red
Hydrogen Peroxide/Peroxidase Assay kit (A-22188) was used.
The Assay Kit contains a sensitive, one-step assay that uses
the Amplex R© Red reagent (10-acetyl-3,7-dihydroxyphenoxazine)
to detect hydrogen peroxide (H2O2) or peroxidase activity.
The Amplex R© Red reagent, in combination with horseradish
peroxidase (HRP), was used to detect H2O2 released from
eDNA treated leaves or generated in enzyme-coupled reactions
after eDNA application. The reagent was dissolved in MES-
Na buffer 50 mM (pH 6.0) containing 0.5 mM calcium sulfate
to obtain a 50 µM solution. Leaves were then mounted on a
Leica TCS SP2 microscope as described above. Scannings were
recorded after 180 min using the HCX PL APO 63×/1.20 W
Corr/0.17CS objective. The microscope was operated with a
Laser Ar (458 nm/5 mW; 476 nm/5 mW; 488 nm/20 mW;
514 nm/20 mW), a Laser HeNe 543 nm/1.20 mW, and a Laser
HeNe 633 nm/10 mW.
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RNA-Seq Data Processing and Analysis
To assess the effect of eDNA on tomato gene expression, four
plants were treated with 200 ng µl−1 eDNA as described
above. Four controls were represented by intact DNA. After 1 h
treatment, leaves were immediately harvested in liquid nitrogen
and stored at−80◦C for subsequent analysis.

Total RNA was isolated using TRIzol kit (Invitrogen),
according to the manufacturer’s protocol. Quantity and quality
of the starting RNA were checked by Qubit and Bioanalyzer
(Agilent), and libraries were prepared using the TruSeq RNA
Sample Prep Kit (Illumina), following the manufacturer’s
instructions. Sequencing was performed on the Illumina NextSeq
500 platform. After quality controls with FastQC,2 sequencing
reads were aligned to S. lycopersicum (tomato) 2.50 genome
reference (SL2.50) using TopHat v2.0.13 (Kim et al., 2013). Gene
expression levels were quantified with the “HTSeq” framework
v0.6.1 (Anders et al., 2015), using the International Tomato
Genome Sequencing Project (ITAG) v2.4 gene/transcripts
annotation. Differential expression analysis was carried out with
the DESeq2 (Love et al., 2014) R/Bioconductor package.

Validation of RNA-Seq Gene Expression
by qRT-PCR
Samples as above were used for the qPCR analyses which were
run on a QUANTSTUDIO 3 Real-Time System (Thermo Fisher
Scientific, Waltham, MA, United States) using SYBR green I
with ROX as an internal loading standard. The reaction mixture
was 10 µL, comprising 5 µL of 2X MaximaTM SYBR Green
qPCR Master Mix (Maxima SYBR Green/ROX qPCR Master
Mix 2X, Thermo Fisher Scientific, United States), 0.5 µL of
1:10 diluted cDNA and 100 nM primers (Integrated DNA
Technologies, Coralville, IA, United States). Furthermore, non-
templates were run as a negative control using only total RNA
without reverse transcription to monitor for genomic DNA
contamination and the same was done by using water with water.
Primers were designed using Primer 3.0 software (Rozen and
Skaletsky, 2000) as reported in Supplementary Table 1. The
thermal conditions for all genes were: 10 min at 95◦C, 40 cycles
15 s at 57◦C, and 20 s at 72◦C. Fluorescence was read following
each annealing and extension phase. All runs were followed by
a melting curve analysis from 55 to 95◦C. The linear range of
template concentration to threshold cycle value (Ct value) was
determined by preparing a dilution series, using cDNA from
three independent RNA extractions analyzed in three technical
replicates. Primer efficiencies for all primer pairs were calculated
using the standard curve method. All amplification plots were
analyzed with the QUANTSTUDIO 3 software to obtain Ct values
(Pfaffl, 2001).

The following groups of genes were analyzed: Calcium-related
genes: calcium-binding EF hand family protein (Solyc10g006700),
calmodulin (Solyc04g058160), calcium-binding phospholipase
D (Solyc01g091910). Oxidative stress-related genes: ubiquinol
oxidase (Solyc08g075550), polyphenol oxidase F, chloroplastic,
PPO (Solyc08g074630), peroxidase (Solyc03g025380), catalase

2https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

(Solyc01g100630). Proton pump-related genes: V-type
proton ATPase subunit a (Solyc11g072530), proton pump
interactor 1 (Solyc08g068850), proton pump interactor
1 (Solyc05g008780). Defense-related genes: 4-coumarate-
CoA ligase-like protein (Solyc06g035960), β-1,3-glucanase
(Solyc01g060020), chymotrypsin inhibitor-2 (Solyc09g084450),
Kunitz-type protease inhibitor (Solyc03g098780), multidrug
resistance protein ABC transporter family (Solyc05g014500),
pathogenesis-related protein 1a (Solyc01g106620), pathogenesis-
related protein P2 (Solyc01g097240), pathogenesis-related
protein-1 (Solyc01g106610), polygalacturonase (Solyc12g096730),
sesquiterpene synthase (Solyc07g052130), trypsin inhibitor-
like protein precursor (Solyc11g022590), wound induced
protein (Solyc07g054780), wound/stress protein lipoxygenase,
LH2 PLAT domain-containing protein (Solyc03g096550),
wound-induced proteinase inhibitor 1 (Solyc09g084470). Heat
shock proteins (Hsps) and chaperones: heat shock protein
Hsp90 (Solyc07g047790), heat shock protein (Solyc03g117630),
heat shock protein 22 Mitochondrial (Solyc08g078700), heat
shock protein 70 (Solyc03g082920), heat shock transcription
factor 1 (Solyc02g079180), hsc1 heat shock protein 70 kDa
(Solyc06g076020), hsc70.3 er21 ethylene-responsive heat shock
protein cognate 70 (Solyc04g011440), hsp40 Chaperone protein
(Solyc11g071830), hsp90 heat shock protein 90 (Solyc06g036290),
NEF Heat shock protein 4 (Solyc07g043560), SHsfA7 Heat stress
transcription factor A3 (Solyc09g065660). DNA binding:
DNA primase/helicase (Solyc02g022830), DNA-directed
RNA polymerase (Solyc02g083350). Receptor-like genes:
receptor-like serine/threonine-protein kinase (Solyc03g025130),
serine/threonine-protein kinase (Solyc03g112950), TIR-
NBS-LRR resistance protein Toll-Interleukin receptor
(Solyc00g294230), TIR-NBS-LRR disease resistance-like
protein (Solyc07g052790), CC-NBS-LRR, resistance protein
(Solyc10g047320). Phytohormone-related genes: ACC
oxidase (Solyc09g008560), auxin-induced SAUR-like protein
(Solyc01g111000), ethylene-responsive nuclear protein
(Solyc02g070040), ethylene-responsive transcription factor
4 (Solyc12g009240), ethylene-responsive TF1 pathogenesis-
related transcriptional factor (Solyc03g093550). Photosynthesis:
chloroplastic RuBisCO small subunit 3B (Solyc02g085950),
RuBisCO activase 1 (Solyc09g011080).

Four different reference genes TC194780a, actin 1 (ACT1);
X14449, elongation factor 1α (EF1); DQ205342, β-tubulin (TUB),
and TC193502a, ubiquitin (UBI) (see Supplementary Table 1
for primers), according to Løvdal and Lillo (2009). The best
of the four genes was selected using the NormFinder software
(Andersen et al., 2004). The relative expression mRNA levels of
each gene were calibrated and normalized with the level of the
most stable reference genes, EF1 and UBI [in agreement with
(Løvdal and Lillo, 2009)]. For each treatment, three biological
replicates and three technical replicates were analyzed.

Statistical Analyses
A stem-and-leaf function of SYSTAT 10 was used to treat
Vm data to extract the lower and upper hinge from the
Gaussian distribution. After filtering the data, the mean value
was calculated along with the SE. At least five samples per
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treatment group were used for the statistical analysis of all
other experimental data. Overall variations in the abundance
of Calcium were assessed on Log-transformed data using the
analysis of variance (ANOVA), while Tukey’s post hoc test was
used to account for pairwise differences. Data are expressed as
mean values± SE.

RESULTS

Tomato eDNA Induces a Transmembrane
Potential Depolarization in Tomato
Leaves
Sonication of DNA yielded fragments of different bp, in line
with previous studies (Barbero et al., 2016). In particular,
tomato eDNA consisted of fragments in the range between
250 and 1000 bp (data not shown). This eDNA was then
used as a treatment.

We first assessed the effect of the application of tomato
eDNA on tomato mesophyll cells by measuring variations in
the leaf plasma transmembrane potential (Vm). We found that
tomato leaves have an average mesophyll cell Vm ranging
between 113 and 118 mV. Upon perfusion with non-fragmented
tomato self-DNA (intact DNA), tomato Vm did not show
any significant changes (Figure 1). To evaluate the tomato
cell response to a Vm depolarizing agent, we perfused tomato
leaves with a 0.05 M KCl solution. The effect was a sudden
and constant Vm depolarization, which lowered the Vm at
about 80 mV (Figure 1), as expected (Wakeel, 2013). We

then perfused tomato cells with increasing concentrations of
eDNA. The effect was a Vm depolarization directly correlated
to the eDNA concentration, with 50 µg eDNA producing a
17 mV depolarization and 100 µg eDNA producing a 28 mV
Vm depolarization, with respect to intact eDNA (Figure 1).
While washing leaves with a fresh buffer returned the Vm
value of KCl-induced Vm depolarization to almost initial
values, the removal of the eDNA at both concentrations
caused a Vm hyperpolarization that never reached the initial
values. eDNA backwashed treatments at 50 µg eDNA and
100 µg eDNA reached a value of about −108 and −103 mV,
respectively (Figure 1).

Application of Tomato eDNA Is
Associated With Increased Tomato
Cytosolic Calcium Concentration
Membrane depolarization depends on the differential
distribution of ions across the plasma membrane (Maffei
et al., 2007). To assess the response of tomato plants to self-
eDNA on tomato cytosolic calcium (Ca2+

cyt), we analyzed both
localization and semi-quantitative evaluation of Ca2+

cyt by
CLSM, using Calcium Orange as a selective calcium indicator
(Kanchiswamy et al., 2014). A preliminary dose-dependent
analysis allowed to assess that 200 µg ml−1 eDNA could induce
a significant response (data not shown). Figure 2 shows the
chlorophyll and calcium orange fluorescence as well as the
merging of the two signals in controls (where no treatment is
applied) and in leaves treated with 200 µg ml−1 of either intact
DNA or eDNA. The images clearly show that only after eDNA

FIGURE 1 | Plasma membrane potential (Vm) depolarization in response to different concentrations of tomato fragmented self-DNA (eDNA) on tomato leaves. No
effect on Vm was found after non-fragmented self-DNA (intact DNA) application. 0.05 M KCl caused an expected and almost completely reversible Vm
depolarization. Vm depolarization was dependent on eDNA concentration. Washing eDNA treated leaves with fresh buffer was unable to recover the tomato leaf Vm
completely. A time scale is indicated. Error bars represent SE (n = 8–10). IN, timepoint when tomato cells were perfused with either KCl, eDNA, or intact DNA; OUT,
timepoint when fresh buffer was perfused to wash out molecules.
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FIGURE 2 | Intracellular calcium variations in tomato leaves in controls (no treatment) and upon treatments with tomato intact DNA and eDNA. False-color image
analysis reconstructions from confocal laser-scanning microscope observations, and fluorochemical intracellular Ca2+ localization. Fifty microliters of 200 µg ml−1 of
either eDNA or intact DNA were applied and after 30 min a calcium signature was observed. Pictures represent portions of the tomato leaf blade where the green
fluorescence refers to the binding of calcium orange with Ca2+, whereas the chloroplasts are evidenced by a bright red color caused by chlorophyll fluorescence.
Scale bar (250 µm) is indicated at the bottom of the figure. Pictures are the results of the merging of 25 individual optical sections.

application a strong fluorescence is associated with the Ca2+
cyt

signature, whereas the signal observed after intact DNA had a
similar fluorescence as the Calcium Orange control (Figure 2).

Tomato Ligand-Gated and Voltage-Gated
Potassium Channels Are Activated by
the Application of Tomato eDNA
To gain more insight into the possible causes of Vm
depolarization, we tested the activity of both voltage- and

ligand-gated K+ channels using the potassium indicator
FluxORTM. The assay is based on the use of a stimulus buffer
containing a low level of thallium ions (Wible et al., 2008).
Thallium ions freely flow through open K+ channels, acting
as a surrogate for K+. When the K+ channel is stimulated
by the presence of tomato eDNA, thallium flows into the
cell and binds the FluxORTM dye, generating a fluorescent
signal, proportional to channel activity. The fluorescent indicator
measures ion flux in both voltage- and ligand-gated potassium
channels. Voltage gated potassium channels are opened by the

Frontiers in Plant Science | www.frontiersin.org 6 July 2021 | Volume 12 | Article 686121

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-686121 July 20, 2021 Time: 15:31 # 7

Barbero et al. eDNA and Biotic Stress

co-administration of potassium and thallium in the stimulus
buffer. Resting and inward rectifier potassium channels are
assayed by adding stimulus buffer with thallium alone. Figure 3
shows the localization of voltage-gated K+ channel activity.
These channels are activated by variations in the Vm potential.
We found that these channels’ activity followed in time the
calcium signature and could be classified as inwardly rectifying
(allowing K+ influx to the cell) (Cherel, 2004). A strong activity
of these channels was found only after treatment with eDNA,
whereas the intact DNA showed a signature similar to the
control (Figure 3).

We also evaluated the localization and activity of ligand-gated
K+ channels. A strong and diffuse fluorescence was detected after
treatment with eDNA (Figure 4). However, a low level of activity
was also detected in both controls and treatment with intact
DNA (Figure 4).

Tomato Responses to eDNA Are
Associated to the Generation of ROS
Having assessed that the Vm depolarization is associated
to a K+ influx and an influx of calcium in the cytosol, we

FIGURE 3 | Intracellular potassium voltage-gated variations in tomato leaves in controls (no treatment) and upon treatments with tomato intact DNA and eDNA.
False-color image analysis reconstructions from confocal laser-scanning microscope observations and fluorochemical evidence of voltage-gated activity. Fifty
microliters of 200 µg ml−1 of either eDNA or intact DNA were applied and after 50 min the K+ signature was observed. Pictures represent portions of the tomato
leaf blade where the green fluorescence refers to FluxORTM associated to voltage-gated K+ channel activity, whereas the chloroplasts are evidenced by a bright red
color caused by chlorophyll fluorescence. Scale bar (250 µm) is indicated at the bottom of the figure. Pictures are the results of the merging of 25 individual optical
sections.
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FIGURE 4 | Intracellular potassium ligand-gated variations in tomato leaves in controls (no treatment) and upon treatments with tomato intact DNA and eDNA.
False-color image analysis reconstructions from confocal laser-scanning microscope observations, and fluorochemical evidence of ligand-gated K+ channel activity.
Fifty microliters of 200 µg ml−1 of either eDNA or intact DNA were applied and after 50 min the K+ signature was observed. Pictures represent portions of the
tomato leaf blade where the green fluorescence refers to FluxORTM associated to ligand-gated K+ channel activity, whereas the chloroplasts are evidenced by a
bright red color caused by chlorophyll fluorescence. Scale bar (250 µm) is indicated at the bottom of the figure. Pictures are the results of the merging of 25
individual optical sections.

assessed one of the characteristic responses following these
early events: the activity of peroxidases and the production
of a typical ROS, hydrogen peroxide (H2O2) (Zebelo and
Maffei, 2015; Camejo et al., 2016). The Amplex R© Red reagent,
combined with HRP, was used to detect H2O2 released
from tomato leaves upon treatment with tomato eDNA.
Application of intact DNA prompted a faint fluorescence
reaction indicating the activity of peroxidases and the production
of H2O2 (Figure 5). However, a stronger fluorescence,
which appeared to be associated mostly with chloroplasts,
was observed after applying tomato eDNA (Figure 5).

Amplex R© Red reagent was also used as an ultrasensitive
assay for peroxidase activity by using H2O2 in excess (data
not shown), and the results were the same as with the
use of HRP.

The Tomato Response to eDNA Is
Associated to the Modulation of Gene
Expression
To assess the tomato responses to eDNA, we performed a
transcriptomic analysis by RNA-Seq of fully expanded tomato

Frontiers in Plant Science | www.frontiersin.org 8 July 2021 | Volume 12 | Article 686121

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-686121 July 20, 2021 Time: 15:31 # 9

Barbero et al. eDNA and Biotic Stress

FIGURE 5 | Intracellular variations of H2O2 production in tomato leaves in controls (no treatment) and upon treatments with tomato intact DNA and eDNA. The
Amplex R© Red reagent, in combination with horseradish peroxidase (HRP), was used to detect H2O2 released or generated in enzyme-coupled reactions. False-color
image analysis reconstructions from confocal laser-scanning microscope observations, fluorochemical H2O2, and peroxidase localization. Fifty microliters of
200 µg ml−1 of either eDNA or intact DNA were applied and after 180 min the ROS signature was observed in close association with chloroplasts (arrows). Pictures
represent portions of the tomato leaf blade where the green fluorescence refers to the binding of Amplex R© Red with peroxidase-produced H2O2, whereas the
chloroplasts are evidenced by a bright red color caused by chlorophyll fluorescence. Scale bar (250 µm) is indicated at the bottom of the figure. Pictures are the
results of the merging of 25 individual optical sections.

leaves from 25 day-old plants grown in pots and treated with
200 µg ml−1 eDNA. Controls were represented by plants
growing in the same conditions (i.e., temperature, gravity,
atmospheric pressure, and Photosynthetic Flux Density) and
treated with 200 µg ml−1 intact DNA. For significant analysis,
genes were filtered based on their adjusted (FDR corrected)
P-values calculated from the bioinformatic analysis. In general,
almost all biological replicates analyzed were retained in the
analysis and the genes satisfying a corrected P-value cut-off of
0.05 and fold change ≥ 2 ranged from 2 to 3% out of the total

gene number (Supplementary Table 2). A total of 34,725 reads
provided 845 DEGs of which 574 were downregulated and 271
upregulated. Several classes of genes were modulated including
receptors, among them the TIR-NBS-LRR Toll-Interleukin
receptor (Solyc00g294230).

We then analyzed the gene ontology (GO) of the biological
processes of downregulated and upregulated genes and
calculated the fold enrichment (FE) (i.e., the ratio between
input data – i.e., the number of down/upregulated genes –
versus the number of expected genes for each GO category,
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see Supplementary Table 3). Most of the downregulated
genes (90%) showed a FE > 2, with particular reference
among others to myo-inositol biosynthetic and metabolic
processes (GO:0010264 and GO:0033517; >100 FE), nitric
oxide biosynthetic and metabolic processes (GO:0006809 and
GO:0046209; >70 FE), ROS biosynthetic process (GO:1903409;
>70 FE), cell wall biosynthetic processes (GO:0031506 and
GO:0000032; >47 FE), jasmonic acid biosynthetic process
(GO:0009695; >47 FE), and sucrose transport (GO:0015770;
>47 FE) (Supplementary Figure 1).

Many upregulated genes (47%) showed a GO FE > 2.
Among these, oxygen transport (GO:0015671; >66 FE), defense
response to Gram-negative bacterium (GO:0050829; >66 FE),
lactate biosynthetic process (GO:0019249; >66 FE), adenine
biosynthetic, metabolic, and salvage processes (GO:0046084,
GO:0046083, GO:0006168; >33 FE), auxin influx (GO:0060919;
>33 FE), and several cellular ion homeostasis processes
(GO:0030002, GO:0072501, GO:0030320, GO:0030643,
GO:0072502, GO:0072505, GO:0055083, GO:0055062,
GO:0072506; all > 33 FE as well as GO:0046916, GO:0055076,
GO:0006875, GO:0055065, GO:0055082, GO:0019725,
GO:0098771, GO:0030003, GO:0050801, GO:0030001; all > 2
FE) (Supplementary Figure 2).

We then processed the downregulated and upregulated
genes by using Genevestigator (performed on February 2021)
to obtain a hierarchical clustering by comparing the genes
modulated in response to treatment with eDNA against all
available data from the database of S. lycopersicum. In the
group of genes downregulated after treatment with eDNA,
almost all downregulated genes are also downregulated in
two clusters of genes (Supplementary Figure 3, CL1 and
CL2) which are involved in the processes of columella,
pericarp, placenta, collenchyma, and parenchyma development.
In contrast, several genes downregulated after treatment with
eDNA are also downregulated by Pseudomonas syringae pv.
tomato (Supplementary Figure 3, CL3). With regards to genes
upregulated after treatment with eDNA, the Genevestigator
analysis returns the presence of three clusters (Supplementary
Figure 4, CL1, CL2, and CL3) which show upregulation in
S. lycopersicum processes involved in epidermic, parenchyma,
vascular tissues development (Supplementary Figure 4, CL4),
and seed development (Supplementary Figure 4, CL5).

The Response of Tomato Leaves to
Tomato eDNA Is the Modulation of Many
Genes That Respond to Biotic Stress
Having assessed the involvement of ion homeostasis and tissue
development, two important aspects involved in plant responses
to pathogens and herbivores, we focused our attention on the
analysis of genes expressed in S. lycopersicum responses to biotic
stress. The hierarchical clustering of eDNA downregulated genes
against the S. lycopersicum database of Genevestigator shows
a high expression potential for genes involved in responses
to P. syringae pv. tomato (Supplementary Figure 5, CL1),
nematodes (Supplementary Figure 5, CL2), other pathogens
(Supplementary Figure 5, CL3), and responses to pathogen

elicitors (Supplementary Figure 5, CL4). The same situation
was observed for genes upregulated after treatment with
eDNA, with a high expression potential for genes involved
in pathogen interactions (Supplementary Figure 6, CL1 and
CL3), nematodes (Supplementary Figure 6, CL2), and pathogen
elicitors (Supplementary Figure 6, CL4).

Validation of RNA-Seq Gene Expression
by qPCR Reveals a Quantitative
Modulation of Biotic Stress-Related
Genes Upon Treatment With eDNA
The gene expression obtained by RNA-Seq analysis was validated
by qPCR. We selected groups of downregulated and upregulated
genes related to different categories related to genes coding for
proteins involved in channel activity (Vm variations) and to
calcium, potassium, and ROS (CLSM analyses) as well as plant
responses to biotic stress.

The first group of genes is related to calcium, ROS, and
proton pumps (Figure 6A). A calcium-binding EF hand family
protein (Solyc10g006700) and calmodulin (Solyc04g058160)
were upregulated, whereas the calcium-binding phospholipase
D (Solyc01g091910) was downregulated by treatment with
eDNA. Oxidative stress-related genes included ubiquinol
oxidase (Solyc08g075550) and catalase (Solyc01g100630)
that were downregulated by treatment with eDNA, whereas
the chloroplastic polyphenol oxidase F (Solyc08g074630)
and a peroxidase (Solyc03g025380) were upregulated. With
regards to proton pump-related genes, V-type proton
ATPase subunit a (Solyc11g072530) and two proton pump
interactor 1 (Solyc08g068850 and Solyc05g008780) were
downregulated (Figure 6A).

Several genes involved in plant defense were regulated by
treatment with eDNA (Figure 6B). Downregulation was found
for 4-coumarate-CoA ligase-like protein (Solyc06g035960),
a multidrug resistance protein ABC transporter family
(Solyc05g014500), polygalacturonase (Solyc12g096730),
and a sesquiterpene synthase (Solyc07g052130). On
the other hand, β-1,3-glucanase (Solyc01g060020),
chymotrypsin inhibitor-2 (Solyc09g084450), Kunitz-type
protease inhibitor (Solyc03g098780), pathogenesis-related
protein 1a (Solyc01g106620), pathogenesis-related protein
P2 (Solyc01g097240), pathogenesis-related protein-1
(Solyc01g106610), a trypsin inhibitor-like protein precursor
(Solyc11g022590), a wound-induced protein (Solyc07g054780),
a wound/stress protein lipoxygenase, LH2 PLAT domain-
containing protein (Solyc03g096550), and a wound-induced
proteinase inhibitor 1 (Solyc09g084470) were all upregulated. In
particular, a strong upregulation was found for chymotrypsin
inhibitor-2, a trypsin inhibitor-like protein precursor and a
wound/stress protein lipoxygenase (Figure 6B).

Among the genes regulated in response to eDNA, several Hsps
and chaperones were downregulated with particular reference to
the mitochondrial heat shock protein 22 (Solyc08g078700) and
heat shock transcription factor 1 (Solyc02g079180) (Figure 6C).

A large number of receptor-like kinases (RLK) was
downregulated in response to application of eDNA, including
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FIGURE 6 | Differential gene expression of tomato selected genes in response to eDNA. The data are expressed as fold change in relation to controls (intact DNA).
To emphasize the visualization of data, fold change values below 1 were plotted as –1/value, in order to obtain negative fold change values (indicating
downregulation). (A) Gene expression of calcium-, ROS-, and proton pump-related genes. (B) Genes involved in plant defense. (C) Gene expression of heat shock
proteins and heat shock factors. (D) Gene expression of DNA binding-, receptor like-, phytohormone-, and photosynthesis-related genes. In all figures, the red
dotted lines represent the control (intact DNA) level; metric bars indicate standard deviation (N = 3).

several serine/threonine-protein kinases, leucine-rich repeat
(LRR), tyrosine protein kinases as well as toll-interleukin
receptors (Supplementary Table 2). Downregulation
was confirmed for DNA binding DNA primase/helicase
(Solyc02g022830) and DNA-directed RNA polymerase
(Solyc02g083350) as well as for receptor-like serine/threonine-
protein kinase (Solyc03g025130), serine/threonine-protein
kinase (Solyc03g112950), TIR-NBS-LRR resistance protein
Toll-Interleukin receptor (Solyc00g294230), TIR-NBS-LRR
disease resistance-like protein (Solyc07g052790), and CC-NBS-
LRR, resistance protein (Solyc10g047320) (Figure 6D). Among
phytohormones, ethylene was involved in the upregulation of
ACC oxidase (Solyc09g008560), ethylene-responsive nuclear
protein (Solyc02g070040), ethylene-responsive transcription
factor 4 (Solyc12g009240), and ethylene-responsive TF1

pathogenesis-related transcriptional factor (Solyc03g093550),
whereas an auxin-induced SAUR-like protein (Solyc01g111000)
was downregulated in response to application of eDNA
(Figure 6D). Finally, a strong downregulation was found for
chloroplastic RuBisCO small subunit 3B (Solyc02g085950)
followed by a twofold downregulation of RuBisCO activase 1
(Solyc09g011080) (Figure 6D).

DISCUSSION

In this work, we provide evidence that the application of
extracellular fragmented self-eDNA (eDNA) to tomato leaves
induces a typical response to biotic stress, supporting the
stimulating hypothesis that some plant responses to pathogens
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and herbivores might be triggered by the degradation of the
plant DNA. Evidence was supported by evaluating both early
(Vm variations, calcium and potassium channel activity, and ROS
generation) and late events (gene expression).

eDNA Induces Early Tomato Events
Which Are Typical of the Biotic Stress
Response
In plants, early events occur within seconds to minutes upon
biotic/abiotic stress perception (Maffei et al., 2007). One of
the early events in plant interactions with the surrounding
environment is the variation in the plasma transmembrane
potential (Vm) (Zebelo and Maffei, 2015). The application of
eDNA caused a consistent increase of Ca2+

cyt in treated tomato
plants, which is a typical response of plants to both pathogens
and herbivores (Bricchi et al., 2012; Singh and Pandey, 2020),
including tomato (Zebelo et al., 2012). As a consequence, the
Vm was depolarized and a possible calcium-dependent Vm
depolarization was followed by the activation of potassium
channels, as it is typical in plant–insect and plant–pathogen
interactions (Amborabe et al., 2008; Bricchi et al., 2013). The
increase of both Ca2+ and K+ cellular concentrations are
associated with the observed Vm depolarization. Moreover,
we found that the tomato response to eDNA was a stronger
fluorescence of the ligand-gated K+ channels, with respect to
voltage-gated channels. In plants, K+ conductance by ligand-
gated channels is restricted in the presence of millimolar
concentrations of Ca2+ (Leng et al., 2002) and this might explain
the reason for the higher activity. This ligand-gated fluorescence
could also explain the reason why Vm depolarization is not fully
recovered after washing eDNA treated leaves with a fresh buffer
solution. We hypothesize that eDNA might bind or interfere with
the binding activity of K+ channels.

The generation of ROS is another early event in plant–
pathogen (Camejo et al., 2019), plant–herbivore interactions
(Zebelo and Maffei, 2015), systemic signaling (Fichman and
Mittler, 2020), and plant immune response (Kuzniak and
Kopczewski, 2020). ROS act as important signal transduction
molecules and may act downstream or upstream of several signal
transduction pathways (Foyer and Noctor, 2005). Moreover,
increases in the production, accumulation, and signaling of ROS
are one of the main causes of programmed cell death (Farooq
et al., 2019). We observed that the tomato response to eDNA was
a ROS production which was localized mainly in the chloroplasts.
Besides being involved in biotic stress-induced Ca2+ signals
(Nomura et al., 2012), during pathogen and herbivore attack,
chloroplasts are important sources of ROS (Maffei et al., 2006;
Camejo et al., 2016), and the generation of ROS may interfere
with several plant cell functions, including photosynthetic and
other metabolic processes (Sierla et al., 2012). Interestingly, the
strong chloroplastic-localized ROS production was associated to
a strong downregulation of the RuBisCO (Solyc02g085950) gene
expression. Furthermore, the ROS biotic-induced production
is transmitted to chloroplasts via calcium ions that play an
important role in regulating nuclear gene expression, making
ROS important modulators of the plant immune response

(Zabala et al., 2015). Therefore, we can conclude from our
results that the tomato response to eDNA involves most of the
early events triggered by biotic stress, including the alteration of
the membrane potential due to the increased levels of Ca2+

cyt,
which causes the opening of voltage-gated K+ channels and the
regulation of ligand-gated K+ channels; these early events are
followed by a ROS production which are mainly localized in the
plant cell chloroplasts.

The Tomato Early Responses to eDNA
Treatment Are Followed by Modulation of
Biotic Stress-Related Genes
Transcriptomic analyses of leaves treated with eDNA reveal
a significant modulation of tomato genes. A consistent
downregulation was found for most of the processes involved
in the plant–biotic response, including the generation of ROS
and jasmonate involvement, but other important processes
were also affected like the cell wall biosynthetic process and
the sucrose transport (see Supplementary Figure 1). In
contrast, ion homeostasis and responses to pathogens were
upregulated (Supplementary Figure 2). A deeper search in the
Genevestigator database confirmed the correlation between up-
and down-regulation of genes in response to eDNA and plants’
responses to pathogens, pathogens’ elicitors and nematodes
(Supplementary Figures 3–6).

The validation of RNA-Seq analysis allowed us to focus
on specific biotic stress-related genes. The positive correlation
between the CLSM calcium signature (Figure 2) and the
upregulation of both calcium-binding EF-hand family protein
member (Solyc10g006700) that is homologous to a S. tuberosum
calcium-binding protein which is involved in resistance to
Phytophthora infestans (Muktar et al., 2015) and calmodulin
(Solyc04g058160) (Figure 6A) is interesting. EF-hand motifs
in the hydrophilic C-terminal domain of tomato have been
correlated to Ca2+

cyt regulation of ROS production (Amicucci
et al., 1999), whereas calmodulin, a calcium-binding protein
with a helix-loop-helix (EF-hand) motif and one of the key
mediators in plant immune responses (Cheval et al., 2013), is
required for a successful defense response to pathogens (Zheng
et al., 2018) and is upregulated by Botrytis cinerea infection
(Yu and Du, 2018) a plant pathogen that causes cell disruption
and death (Camejo et al., 2016; Oren-Young et al., 2021). On
the other hand, the downregulation of the calcium-binding
phospholipase D (Solyc01g091910), a protein that hydrolyses
different membrane phospholipids and that is implicated in
plant–pathogen interactions (Zhao, 2015), has also been shown to
interfere with ethylene signaling regulation (Dek et al., 2018). The
ROS signals work downstream from Ca2+ (Farooq et al., 2019)
and the Ca2+

cyt increase was associated with the upregulation
of chloroplastic polyphenol oxidase F (Solyc08g074630) and a
peroxidase (Solyc03g025380). Polyphenol oxidase upregulation
is involved in tomato resistance to herbivory (Lin et al., 2021)
and pathogens (Zhang and Sun, 2021), whereas peroxidase
activity was associated to tomato resistance to early blight disease
(Alizadeh-Moghaddam et al., 2020). On the opposite, ubiquinol
oxidase (Solyc08g075550) and catalase (Solyc01g100630) were
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downregulated in response to eDNA treatment. In plants, the
alternative oxidase catalyzes the oxidation of ubiquinol and
reduces oxygen avoiding the proton translocation by bypassing
some steps in the respiratory pathway (Finnegan et al., 2004).
Since the ubiquinol oxidase activity reduces the ATP production,
we suppose that the downregulation of this gene might be a plant
cell strategy to cope with the altered homeostasis due to eDNA
action and provide more ATP for proton pump activity. On the
other hand, the catalase downregulation is directly correlated to
the increased ROS production, being catalase one of the major
ROS scavengers in plants (Fones and Preston, 2012).

The plant cell Vm is maintained by the activity of the proton
pump (Falhof et al., 2016). We recently showed that during plant–
herbivore interactions, the Vm depolarization is sustained by
the strongly reduced effects of insect’s oral secretions on the
interaction between H+-ATPase and 14-3-3 proteins, suggesting
that one of the leading players in biotic stress-dependent Vm
depolarization is the inhibition of the proton pump (Camoni
et al., 2018). The V-type proton ATPase (Solyc11g072530)
interacts with 14-3-3 proteins (Klychnikov et al., 2007) while
the tomato proton pump interactors (Solyc08g068850 and
Solyc05g008780) are regulated by abiotic stress (Garcia et al.,
2011). The downregulation of these genes in response to eDNA
treatment was positively correlated with the Vm depolarization
caused by application of eDNA (Figures 1, 6A).

The Tomato Response to eDNA Involves
the Modulation of the Expression of
Genes Involved in Plant Late Responses
to Biotic Stress
The signal transduction pathway that uses calcium and ROS as
second messengers eventually leads to the regulation of defense
response genes. Besides the typical biotic stress-responsive
genes like pathogenesis-related proteins (PRPs) (Solyc01g106620,
Solyc01g097240, and Solyc01g106610), including β-1,3-glucanase
(Solyc01g060020), a strong upregulation was also found
for a series of proteinase inhibitors (PIs) (Solyc09g084450,
Solyc03g098780, Solyc11g022590, and Solyc09g084470). PIs
play a vital role in defenses against pests and pathogens,
especially against herbivores and, in tomato, PI genes have
been recently found to mediate the response of tomato to
biotic stress by balancing hormone signals (Fan et al., 2020).
Another response to tomato to eDNA was the downregulation
of 4-coumarate-CoA ligase-like protein (Solyc06g035960) which
encodes for an enzyme that thioesterifies coumaric acid to
coenzyme A (CoA) to form coumaroyl CoA, the precursor of
a vast diversity of phenylpropanoids (Alberstein et al., 2012).
The function of this gene has also been correlated to its ability
to impair membrane functions such as ion transport (Kienow
et al., 2008). Another intriguing plant response to eDNA is
the downregulation of a polygalacturonase (Solyc12g096730)
a gene that encodes an enzyme that catalyzes the hydrolysis
and disassembly of pectin in plant cell walls (Caffall and
Mohnen, 2009). Suppression of the gene can repress the
pectin depolymerization and change the postharvest pathogen
susceptibility (Ke et al., 2018).

Treating Tomato With eDNA
Downregulates Genes Coding for
Calcium-Dependent Protein Kinases,
Heat Shock Transcription Factors, and
Heat Shock Proteins
Many molecular chaperones are stress proteins and many of
them were originally identified as heat shock (HS) proteins (Hsp),
with particular reference to abiotic stress (Wang et al., 2004).
Heat shock transcription factors (Hsfs) family members exert
their anti-stress effects by regulating a series of H molecular
chaperones, and other functional protein genes (Kovtun et al.,
2000) and Hsp expression result from the binding of an Hsf
to the HS element (HSE) in the promoter region of Hsp
genes (von Koskull-Doring et al., 2007). Treatment with eDNA
prompted the downregulation of the heat shock transcription
factor 1 (Solyc02g079180) and heat stress transcription factor
A3 (Solyc09g065660), which along with the downregulation
of calcium-dependent protein kinases (CPK1, Solyc03g031670,
Supplementary Table 2), was associated to the downregulation
of several small and large Hsps. In plants, a correlation between
calcium binding activity and Hsf has been demonstrated. For
instance, some CPKs phosphorylate Hsfs which promote the
transcriptional activation of plant defense genes (Kanchiswamy
et al., 2010b) and the impairment of CPK downregulates the
expression of several Hsps (Kanchiswamy et al., 2010a). In
tomato, Hsfs regulate a wide range of metabolic pathways
and have been identified as major players in physiological
development in response to stress (Paupiere et al., 2020).
Although Hsps play a major role in abiotic stress responses
(e.g., to heat) as molecular chaperones, Hsps are involved in
protein folding and in avoiding the irreversible aggregation of
denatured proteins (Sun et al., 2002). In tomato, the activation
of Hsps prevents lipid peroxidation, the generation of excessive
reactive radicals and increases the secretion of plant antioxidant
enzymes (Khan et al., 2020). Therefore the downregulation of
all Hsps in response to eDNA treatment might be associated to
the reduced scavenging activity and the increased production
of ROS. Downregulation of Hsps, with particular reference to
small Hsps, like the strongly downregulated heat shock protein
22 (Solyc08g078700), has been observed upon herbivory (Bricchi
et al., 2012), confirming their involvement also in biotic stress.

The Tomato Response to eDNA Is the
Modulation of Receptor-Like Protein
Kinases and Ethylene-Responsive
Factors
Our transcriptomic analysis reveals that plants respond to
eDNA treatment by modulating several other genes involved in
plant responses to biotic stress. In plants, pathogen-associated
molecular patterns (PAMPs) and DAMPs are mainly recognized
via receptor-like kinases (RLKs) (Duran-Flores and Heil, 2018).
RLKs were largely downregulated (Supplementary Table 2).
RLKs play a role both in abiotic stress (e.g., cold, salt,
and drought tolerance) (Ye et al., 2017) and resistance to
infection by several pathogens (Bundó and Coca, 2016). In
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tomato, RLKs are involved in biotic stress and knockdown
of an RLK resulted in increased sensitivity to fungi and
reduced resistance against the pathogen B. cinerea (Xu et al.,
2020). Interestingly, a significant downregulation was found
for TIR-NBS-LRR Toll-Interleukin receptor (Solyc00g294230)
(Supplementary Table 2). Emerging evidence suggests that TLR-
mediated signal transduction pathways lead to the movement
of calcium deposits through calcium channel activity (Liu et al.,
2008; Zhang et al., 2013).

Ethylene is a crucial phytohormone involved in plant
responses to biotic stress as well as in tomato fruit development
(Liu et al., 2021). In tomato, ethylene is induced by the
pathogenic fungus Oidium neolycopersici (Kissoudis et al., 2016)
and by P. syringae pv. tomato (Moran-Diez et al., 2020),
the latter being a pathogen that causes a rapid and localized
programmed cell death (PCD) (Moyano et al., 2020). Ethylene
biosynthesis involves the conversion of 1-aminocyclopropane-
1-carboxylic acid (ACC) to ethylene, a reaction catalyzed by
ACC oxidase (Boller et al., 1979). The plant response to eDNA
was the upregulation of ACC oxidase (Solyc09g008560) and
the same modulation was found for several ethylene-responsive
transcription factors (Solyc02g070040, Solyc12g009240, and
Solyc03g093550) (Figure 6D and Supplementary Table 2).
Ethylene-responsive factors (ERFs) belong to a subfamily of
the AP2/ERF superfamily which is involved in tomato response
to the pathogens P. syringae pv. tomato (He et al., 2001) and
Stemphylium lycopersici (Yang et al., 2021), among others.

CONCLUSION

Plant reactions to biotic stress encompass signal transduction
cascades, receptors, and biochemical pathways involved in
responding to pathogens and herbivores. Recent reports suggest
that the application of fragmented pathogen DNA may have an
impact when applied in crop protection strategies to cope with
pathogens (Serrano-Jamaica et al., 2021). Here we show that
not only pathogen fragmented DNA but also self-eDNA induces
plant responses typical of biotic responses to pathogens and
herbivores. The early and late responses induced by treatment
of tomato leaves with tomato eDNA imply the “recognition of
small-sized nucleotide molecules” as suggested by several authors
(Duran-Flores and Heil, 2018; Heil and Vega-Munoz, 2019;
Monticolo et al., 2020) and the involvement of CPKs, RLKs,
ERFs, ion homeostasis (calcium, and potassium involvement)
and ROS production demonstrated in this work are strongly
consistent with this proposition. Moreover, the ROS production
induced by eDNA may trigger further DNA degradation and
PCD events, which would reinforce the plant response to eDNA.
Our results support the intriguing hypothesis that some of the
plant reactions to pathogens and herbivores might be due to
the plant cell DNA degradation, particularly when associated
to the plant cell disruption. Passive cell disruption by chewing
herbivores and pathogen-triggered necrotic cell death might be
a realistic scenario for the release of self-DNA fragments as
DAMPs. Pathogen-inflicted cell lysis including the degradation
of host DNA by pathogen-derived DNAses has been bought

forward already in 1993 (Gerhold et al., 1993) and since then
supported by diverse follow-up studies (Gerhold et al., 1993;
Isaac et al., 2009; Hadwiger and Chang, 2015). Moreover,
necrotrophic pathogens use DNAse to digest their host’s DNA
as a source of nutrients (and thereby liberate a DAMP that
triggers a defense response), and recent studies suggest that
pathogens or herbivores can use DNAses as an effector that
removes a DAMP and thereby allows them to escape from
the detection by the plant immune system (Huang et al.,
2019; Park et al., 2019). In summary, there is some interesting
evidence for a role of eDNA also in non-controlled (i.e., non-
apoptotic) cell death due to (necrotrophic) pathogens or a
(chewing) herbivore and fragmented DNA would then become
an important and powerful elicitor able to trigger early and late
responses to biotic stress.
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