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The development of crop varieties with stable performance in future environmental

conditions represents a critical challenge in the context of climate change. Environmental

data collected at the field level, such as soil and climatic information, can be

relevant to improve predictive ability in genomic prediction models by describing more

precisely genotype-by-environment interactions, which represent a key component of

the phenotypic response for complex crop agronomic traits. Modern predictive modeling

approaches can efficiently handle various data types and are able to capture complex

nonlinear relationships in large datasets. In particular, machine learning techniques have

gained substantial interest in recent years. Here we examined the predictive ability of

machine learning-based models for two phenotypic traits in maize using data collected

by the Maize Genomes to Fields (G2F) Initiative. The data we analyzed consisted of

multi-environment trials (METs) dispersed across the United States and Canada from

2014 to 2017. An assortment of soil- and weather-related variables was derived and

used in prediction models alongside genotypic data. Linear random effects models were

compared to a linear regularized regression method (elastic net) and to two nonlinear

gradient boosting methods based on decision tree algorithms (XGBoost, LightGBM).

These models were evaluated under four prediction problems: (1) tested and new

genotypes in a new year; (2) only unobserved genotypes in a new year; (3) tested and

new genotypes in a new site; (4) only unobserved genotypes in a new site. Accuracy

in forecasting grain yield performance of new genotypes in a new year was improved

by up to 20% over the baseline model by including environmental predictors with

gradient boosting methods. For plant height, an enhancement of predictive ability could

neither be observed by using machine learning-based methods nor by using detailed

environmental information. An investigation of key environmental factors using gradient

boosting frameworks also revealed that temperature at flowering stage, frequency

and amount of water received during the vegetative and grain filling stage, and soil

organic matter content appeared as important predictors for grain yield in our panel of

environments.

Keywords: machine learning, genotype-by-environment interactions, gradient boosting, maize, yield, genomic

prediction, plant breeding

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.699589
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.699589&domain=pdf&date_stamp=2021-11-11
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cathy.jubin@uni-goettingen.de
https://doi.org/10.3389/fpls.2021.699589
https://www.frontiersin.org/articles/10.3389/fpls.2021.699589/full


Westhues et al. Genomic Prediction With Gradient Boosting

1. INTRODUCTION

The development of environmental sensing technologies,
including local weather stations, soil and crop sensors has
progressively enabled field-level climate data to be incorporated
into the analysis of plant breeding experiments (Tardieu
et al., 2017; Ersoz et al., 2020; Crossa et al., 2021). When
used to enhance genomic prediction, climate data can be
useful to estimate the differential response of genotypes to
new environmental conditions, i.e., genotype-by-environment
interactions (GxE), almost omnipresent in multi-environment
trial (MET) experiments (Cooper and DeLacy, 1994; Chenu,
2015). In plant breeding, an environment generally refers to
the set of growing conditions associated with a given location
in a given year. Various statistical models, such as factorial
regression methods, have been developed to model genotype
sensitivity to continuous environmental covariates (ECs) (van
Eeuwijk et al., 1996; Malosetti et al., 2004) or even to simple
geographic coordinates (Costa-Neto et al., 2020b) capturing
primarily genotype-by-location interaction effects explained by
crop management or soil characteristics.

Before the emergence of environmental data in breeding, large
whole-genome marker datasets, generated by high-throughput
genotyping platforms, have progressively enabled the routine
implementation of genomic prediction (GP) methods (Haley
and Visscher, 1998; Meuwissen et al., 2001). GP allows to
predict performance of untested genotypes based on their genetic
similarity, estimated with marker data, with other phenotyped
genotypes. GP has since been expanded to achieve predictions
in a multi-environment context, for instance by implementing
a multivariate GBLUP approach (Burgueño et al., 2012) to
use genetic correlations among environments. Despite the
overall success of genomic prediction, a lingering challenge
has regularly been to incorporate interactions between high-
dimensional genomic data and high-dimensional environmental
data. A solution proposed by Jarquín et al. (2014) is to use
reaction norm models, where markers and environmental effects
are modeled using covariance structures. Interactions between
markers and environmental covariates are computed with the
Hadamard product which avoids the need to fit all first-order
interaction terms. This extension of the GBLUP GxE mixed
effects models has been applied on a large number of datasets in
different species (Pérez-Rodríguez et al., 2015; Pérez-Rodríguez
et al., 2017; Jarquín et al., 2017; Sukumaran et al., 2017, 2018;
Monteverde et al., 2019; Rincent et al., 2019; De Los Campos
et al., 2020). Several studies have also focused on the integration
of crop growth models in genomic prediction to better model
the differential impact of abiotic stress depending on the crop
developmental stage (Heslot et al., 2014a; Rincent et al., 2017,
2019). Rincent et al. (2019) proposed a method to select the
optimal subset of ECs from the output of a crop growth model on
the basis of the correlation between the environmental covariance
matrix, which is based on ECs, and the covariance matrix
between GxE interactivity of environments obtained by AMMI
decomposition. Overall, many studies have found that using
quantitative environmental information in genomic prediction
models in the form of additional covariates can result in an

enhancement of prediction accuracies (Heslot et al., 2014b;
Jarquín et al., 2014; Malosetti et al., 2016; Millet et al., 2019;
Monteverde et al., 2019; Costa-Neto et al., 2020a) and a better
characterization of the genotype-by-environment interaction
effects (Rogers et al., 2021).

However, modeling interaction effects with nonlinear
techniques is a crucial topic that has not been conclusively
explored for genomic prediction in MET. In particular, machine
learning techniques have gained attention over the last two
decades due to their ability to handle nonlinear effects (Hastie
et al., 2009) and to uncover higher-order interactions between
predictor variables (Lampa et al., 2014; Behravan et al., 2018).
With machine learning algorithms, the mapping function linking
input variables to the outcome—i.e., a phenotypic trait—is
learned from training data and no strong assumptions about its
form need to be explicitly formulated beforehand. Hence, these
methods represent relatively flexible frameworks for data-driven
integration of different data types. Among these new techniques,
ensembles of trees, such as methods based on bagging (e.g.,
random forests), or on boosting (e.g., gradient boosted trees)
have become increasingly popular. Ensemble methods designate
predictive modeling techniques which aggregate the predictions
of a group of base learners, and thereby generally allow better
predictions than by using only the single best learner (Friedman,
2001; Hastie et al., 2009; Géron, 2019). Broad applications of
these approaches include human disease prediction (Fukuda
et al., 2013; Romagnoni et al., 2019; Yu et al., 2019; Kopitar
et al., 2020), bioinformatics (Yu et al., 2019), ecology (Moisen
et al., 2006; Elith et al., 2008) and agricultural forecasting
(Fukuda et al., 2013; Delerce et al., 2016; Jeong et al., 2016;
Crane-Droesch, 2018; Shahhosseini et al., 2020). In the field
of genomic prediction, ensemble methods have progressively
been used, as they appear especially interesting for capturing
non-additive effects such as epistasis or dominance effects,
which can be important for predicting complex phenotypic traits
(Ogutu et al., 2011; González-Recio et al., 2013; Azodi et al.,
2019; Abdollahi-Arpanahi et al., 2020). Abdollahi-Arpanahi et al.
(2020) concluded from results obtained on both a real animal and
simulated datasets that gradient boosting was the best predictive
modeling approach when the genetic architecture included non-
additive effects. While these new predictive modeling approaches
can also potentially enable superior prediction results, special
attention must be paid to an appropriate optimization of
hyperparameters during the training phase in order to prevent
overfitting on new test data (Friedman, 2001; Hastie et al., 2009;
Géron, 2019).

In addition, these new predictive modeling frameworks,
coupled with large volumes of environmental data, can
provide powerful data mining opportunities to identify critical
environmental factors affecting economically important
phenotypic traits in the field. Much research has already been
done to examine the expected impact of climate change on the
vulnerability of major staple food crops. Extreme weather events
are expected to happen at a higher frequency in the future,
characterized for instance by heat waves or prolonged drought
periods according to various climate scenarios (Rahmstorf
et al., 2012; Trnka et al., 2014). When occurring at crucial
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crop developmental stages, risks for important yield losses are
augmented. Different studies onmaize have for instance reported
a physiological sensitivity to higher temperatures, heightened
during the reproductive phase, which often results in grain yield
reduction when a certain threshold is exceeded (Cicchino et al.,
2010; Butler and Huybers, 2015; Lizaso et al., 2018). In addition,
nonlinear effects of environmental covariates, especially of
temperature and precipitation on maize plants, have also been
regularly described in the literature (Schlenker and Roberts, 2009;
Mushore et al., 2017). Therefore, machine learning techniques
break new ground to get an extended comprehension of the
effect—both in direction and magnitude—of environmental
conditions in the context of breeding for abiotic stress resilience.

Motivated by previous studies emphasizing the benefit
of nonlinear methods, we tested two machine learning
ensemble methods, based on gradient boosted trees, which,
to our knowledge, have never been examined for data-driven
predictions and interpretation using MET experimental datasets
from the Maize Genomes to Fields initiative. The Maize
Genomes to Fields (G2F) initiative (www.genomes2fields.org)
includes yearly evaluations of inbred and hybrid maize across
a large range of climatically-distinct regions in North America.
The project makes publicly available phenotypic and genotypic
(genotyping-by-sequencing datasets relating to the inbred
lines) information, as well as weather (field weather stations),
agronomic practices and soil data (Falcon et al., 2020; McFarland
et al., 2020). The large number of phenotypic observations, and
the assortment of various data types makes the application of
machine learning models here particularly relevant to evaluate
their performance, as well as their usefulness to disentangle
hidden relationships. Our objectives in this study were (1) to
evaluate recent gradient boosting methods for prediction of
two phenotypic traits (plant height and grain yield) across four
different cross-validations, and compare them to traditional
prediction models classically used for multi-environment trials;
(2) to examine if the use of environmental information, in
addition to genomic predictor variables, could lead to a gain
of predictive ability of genotype performance based on these
various prediction models; and (3) to better understand the
influence of some environmental factors on maize grain yield
using tools derived from the machine learning framework.

2. MATERIALS AND METHODS

2.1. Phenotypic Data Cleaning and Analysis
Phenotypic datasets (years 2014–2017) were downloaded from
the official website of the Genomes to Fields project. The
full dataset represents a large collection of trials located
on the North-American continent run by different principal
investigators and institutions, but the experimental design used
for most of the hybrid trials was a randomized complete
block design with two replications per environment. A total
number of 71 trial experiments remained for further analysis
(Supplementary Figure 1; Supplementary Table 1) after having
eliminated environments with critical missing information,
such as flowering time (Supplementary Table 2). Plots with
low phenotypic quality, as interpreted by the researcher

groups who collected field data, were removed before within-
experiment analysis. Replicates within a same ID experiment but
planted seven or more days apart were considered as different
environments and treated as unreplicated environments, due to
the difference in the weather conditions they experienced at their
respective phenological stages.

Each environment (Year-Site combination) was
independently analyzed to obtain best linear unbiased estimates
(BLUEs) for each hybrid in each environment for grain yield,
plant height and silking date. We performed this analysis with
the lme4 package (Bates et al., 2015) in R version 3.6.0 (R Core
Team, 2019) based on the following model:

Yij = µ + Gi + Rj + εij,

where Yij is the observed phenotypic response variable of the i-
th hybrid genotype (G) in the j-th replicate (R), µ is the general
mean, Gi is the effect of the i-th hybrid genotype, Rj is the
effect of the j-th replicate and εij is the error associated with
the observation Yij. We treated genotype as a fixed effect and
replicate as a random effect.

Phenotypic observations with absolute studentized
conditional residuals greater than three were identified as
potential outliers and removed from the dataset. The plant
material and phenotypic datasets are described in more
details in previous publications (AlKhalifah et al., 2018;
McFarland et al., 2020) and on the project website (https://
www.genomes2fields.org/home/). Ultimately, 18,325 and
16,951 phenotypic observations for grain yield and plant
height, respectively, with available silking date, genotypic and
environmental data, were used as target response variable in the
prediction models.

2.2. Genotypic Data
Genotype-by-sequencing (GBS) data of inbred lines used in
Genomes to Fields hybrid experiments were downloaded on
CyVerse. SNPs with more than two observed alleles were
removed before analysis. Taxa with less than 70% site coverage
and more than 8% heterozygosity were discarded. Monomorphic
markers were removed, as were those missing or heterozygous in
more than 5% of the parental lines. These filtering analyses were
performed with TASSEL 5 (Bradbury et al., 2007). After filtering,
246,818 SNPs remained for analysis. These were imputed using
the software LinkImpute (Money et al., 2015). The genotype
matrix was coded as the number of minor alleles at each locus (0,
1, or 2). Markers with minor allele frequency less than 2% and in
high linkageDisequilibrium (LD)were further removed using the
pruning function of Plink (Purcell et al., 2007) with a window of
size 100 markers, a step of 5, and a LD threshold of 0.99. In silico
genotypes of maize hybrids, for which phenotypic data had been
analyzed, were constructed based on the processed genotypes
of parental lines, and a final minor allele frequency filtering of
2% was applied. The final hybrid genotype dataset contained
107,399 SNPs characterizing 2,033 hybrids. Additional details
regarding the genotype-by-sequencing procedure implemented
by the Genomes to Fields project has been previously published
(Gage et al., 2017).
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2.3. Weather Data
All field experiment locations in the Genomes to Fields project
had a WatchdogTM Model 2700 weather station (Spectrum
Technologies Inc., East-Plainfield, Illinois, 60585, USA) on-
site. Weather records were recorded every 30 min during the
growing season. Measurements for air temperature (◦C), relative
humidity (%), rainfall (mm), solar radiation (W/m2) and wind
speed (m/s) were specifically analyzed. In-field weather station
measurements provide climatic information of a very localized
scale in comparison to weather service stations. Therefore, we
prioritized the use of weather-station data whenever data quality
criteria were fulfilled and the proportion of missing data was
reasonable. When quality criteria were not met, weather data was
acquired from nearby weather service stations.

In the first step, we summarized the hourly or semi-hourly
records for each climatic variable on a daily basis using various
quality control criteria (consistent number of weather records per
day; threshold tests; persistence tests, i.e., flagging observations
with null variability during the day; internal consistency tests,
i.e., verification of the relation between measured variables).
These criteria were applied based on the recommendations from
the official published guidelines on quality control procedures
for data acquired from weather stations (Zahumenský, 2004;
Estévez et al., 2011) and are detailed in Supplementary Table 3.
Data from the field weather station were compared against
weather data obtained from public climate summaries to
check for possible large data divergences and to fill out
missing values. Data from the Global Historical Climatology
Network (GHCN) and from the Global Surface Summary of
the Day (GSOD) were retrieved from the National Oceanic
and Atmospheric Administration (NOAA) website to investigate
American locations, while data for Canadian locations were
downloaded from the Environment and Climate Change Canada
(ECCC) website, based each time on a 70-kilometer radius from
the geographic coordinates for each field experiment. In case
data from the field weather station data were missing or assigned
as erroneous, data from the closest publicly accessible weather
station were used, if it was located less than 2 km from the
field. If the distance to the nearest station was large, interpolation
by spatio-temporal kriging or inverse distance weighting was
performed using the R package gstat to impute the missing data
(Pebesma, 2004; Gräler et al., 2016). For wind data, we only
used results obtained from inverse distance weighting because
of the consistency regarding the standard height measurement
obtained from GSOD data. Similarly, in-field weather stations
solar radiation data were characterized by a high percentage of
missing values and inconsistencies; we used instead the R package
nasapower (Sparks, 2018), which enables an easy access to NASA
POWER surface solar radiation energy data. Some environments
were irrigated: for those of which the precise amount was tracked
during the growing season, these data were added to the final
daily precipitation data.

Hence, the daily weather data consisted of the daily
maximum, minimum and mean temperature (average of
minimum and maximum daily temperatures), average wind
speed, precipitation, humidity, incoming solar radiation. Based
on these processed weather data, we were then able to calculate

the daily growing degrees (Baskerville and Emin, 1969), the
photothermal time (product between GDs and day length
in hours, for each day, also referred as an environmental
index; Li et al., 2018), the mean vapor pressure deficit, the
reference evapotranspiration (ET0) using FAO-56 Penman-
Monteith method (Allen et al., 1998). These latter variables
were computed because they incorporate crop physiological
parameters which make them sometimes more relevant than the
initial weather data.

2.4. Derivation of Environmental Variables
per Hybrid Growth Stage
The next step was to obtain pertinent environmental predictors
from daily weather summaries for the predictive modeling
framework. The objective was to relate each hybrid phenotypic
performance (e.g., yield) in a particular environment,
individually characterized by its specific flowering dates, to
the corresponding weather series during the growing season.
To develop a unified framework across the different growing
season lengths, which varied throughout locations and years,
we used three critical maize growth stages, as was performed
in previous similar work for other crops (Heslot et al., 2014b;
Delerce et al., 2016; Gillberg et al., 2019; Monteverde et al.,
2019). This approach was needed to account for the differential
impact of weather-based variables according to the crop
developmental stage. Each intermediate plant developmental
stage could not be precisely determined since visual scoring for
all stages is in practice highly time-consuming and expensive.
However, the sowing date and the flowering date, i.e., when
50% of plants in a plot have visible silk, were recorded for
each hybrid kept after phenotypic data analysis. Based on
these known dates, three hybrid maize growth periods could
be estimated: vegetative (from the planting date to 1 week
before the 50% silking date); flowering (from 1 week before
50% silking date to 2 weeks after that date, which corresponds
approximately to the end of the pollination period); and the
grain filling stage (from the end of the flowering period to
65 days after, after which maturity should be reached). By
definition, these three periods do not overlap. The typical
duration of the grain filling stage varies according to the
hybrid and the environment; nonetheless, based on literature
and agronomic knowledge, the corn plant is normally at
physiological maturity (R6) about 55–65 days after silking
(Ritchie et al., 1993).

Based on these dates, 13 weather-based environmental
predictor variables were computed for each phenological stage
and therefore were both environment- and hybrid-specific
(Table 1). We included stress covariates related to heat, as
it is expected that an excess of heat can be detrimental,
especially during the flowering stage, and results in a lower
yield. To examine the presence of clusters of environments
based on climatic similarity, a principal component analysis
on the weather-based covariates using the R package factoextra
(Kassambara and Mundt, 2017) was applied.

In addition to climatic variables, our framework
accommodates four soil-based environmental variables: soil
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TABLE 1 | Environmental predictor variables used in the prediction models.

Acronym General description

P.V, P.F, P.G Accumulated precipitation + irrigation (mm) by

growth period

FreqP5.V, FreqP5.F,

FreqP5.G

Frequency of days with more than 5 mm

precipitation by growth period

MeanT.V, MeanT.F, MeanT.G Average of daily mean temperature (◦C) by

growth period

MinT.V, MinT.F, MinT.G Average of minimum daily temperature (◦C) by

growth period

MaxT.V, MaxT.F, MaxT.G Average of maximum daily temperature (◦C) by

growth period

GDD.V, GDD.F, GDD.G Cumulative growing degree days, Base 10◦C

(◦C) by growth period

Photothermal.Time.V,

Photothermal.Time.F,

Photothermal.Time.G

Cumulative photothermal time (GDD x Day

Length) by growth period

FreqMaxT30.V,

FreqMaxT30.F,

FreqMaxT30.G

Frequency of days with maximum temperature

above 30◦C by growth period

FreqMaxT35.V,

FreqMaxT35.F,

FreqMaxT35.G

Frequency of days with maximum temperature

above 35◦C by growth period

St30.V, St30.F, St30.G Sum of the daily maximal temperatures above

30◦C (◦C)

CumSumET0.V,

CumSumET0.F,

CumSumET0.G

Accumulated reference evapotranspiration

(mm), under standard conditions, according to

the FA0-56 Penman-Monteith methodology for

each growth period

CumDailyWaterBalance.V,

CumDailyWaterBalance.F,

CumDailyWaterBalance.G

Cumulative daily water balance, i.e., daily

precipitation + irrigation - daily reference

evapotranspiration (mm)

Sdrad.V, Sdrad.F, Sdrad.G Accumulated incoming daily solar radiation (MJ

m-2 day-1) by growth period

SandProp.SC Sand composition (%)

Silt.Prop.SC Silt composition (%)

ClayProp.SC Clay composition (%)

OM.SC Percentage of organic matter (%)

The suffixes refer to: V, vegetative period; F, flowering period; G, grain fill period; SC, soil

covariate.

quality types (percentages of sand, silt, and clay composition)
and percentage of soil organic matter. The majority of the soil
information originates from the soil samples realized at each
G2F field location; otherwise, when the location presented
missing information, we defined an area of interest based on field
geographical coordinates using the Web Soil Survey application
for American locations, and the web mapping application
Agricultural Information Atlas for Canadian locations, and
retrieved the aforementioned data of interest. In the rest of the
paper, the abbreviation “W” refers to the set of weather-based
and soil-based environmental covariates. For the trait plant
height, weather-based covariates from the grain filling stage were
not used as explanatory variable for prediction, since this trait
was usually measured shortly after flowering time.

2.5. Prediction Models Implemented
2.5.1. Linear Random Effects Models (LRE Models)
In multi-environment trial analysis and plant breeding
experiments, linear random effects models, abbreviated to
LRE models thereafter, are often used as genomic prediction

models and were compared in this study with machine learning
techniques, according to the models outlined in Jarquín et al.
(2014). In particular, GxE can be modeled with a covariance
function equal to the product of two random linear functions of
markers and of environmental covariates, which is equivalent to
a reaction norm model (Jarquín et al., 2014). An environment
always refers to a Site x Year combination.

Main effects models

(1) Model G + E: Marker + Environment Main Effects
(baseline model)

The response variable is modeled as the sum of an overall mean
(µ), plus random deviations due to the environment Ei and to the
genotypic random effect of the jth hybrid genotype gj based on
marker covariates (G-BLUP component), plus an error term εij:

yij = µ + Ei + gj + εij, (1)

where Ei
IID
∼ N(0, σ 2

E ), g
IID
∼ N(0,Gσ 2

g ) and εij
IID
∼ N(0, σ 2

ε ),
and N(.,.) denotes a normally distributed random variable,
IID stands for independent and identically distributed, and
σ 2
E , σ 2

g are the corresponding environmental and genomic
variances, respectively.
gj corresponds to a regression on marker covariates of the form

gj =
∑p

m=1 xjmbm, linear combination of p markers and their
respective marker effects. Marker effects were regarded as IID

draws from normal distributions of the form bm
IID
∼ N(0, σ 2

b
), m

= 1,...,p. The vector g=Xb follows a multivariate normal density
with null mean and covariance-matrix Cov(g) = Gσ 2

g , where

G = XX′

p is the genomic relationship matrix, X representing

the centered and standardized genotype matrix and p is the total
number of markers.

(2) Model G + S: Marker + Site Main Effects

The present model allows to gain information from a site
evaluated over several years, as it includes the site effect:

ykj = µ + Sk + gj + εkj (2)

Here ykj corresponds to the phenotypic response of the jth

genotype in the kth site with Sk
IID
∼ N(0, σ 2

S ), k = 1,...,K.

(3) Model G+E+W: Marker + Ennvironment + Environmental
Covariates Main Effects

This model incorporates additionally the main effect of the
environmental covariates (including the longitude and latitude
coordinates). We can model the environmental effects by
a random regression on the ECs (W), that represents the
environmental conditions experienced by each hybrid in each

environment: wij =
∑Q

q=1Wijqγq, where Wijq is the value of the

qth EC evaluated in the ijth environment x hybrid combination,
γq is the main effect of the corresponding EC, and Q is the total
number of ECs.We considered the effects of the ECs as IID draws
from normal densities, i.e., γq ∼ N(0, σ 2

γ ). Consequently, the
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vector w = Wγ follows a multivariate normal distribution with
null mean and covariance matrix �σ 2

w, where � ∝ WW′, and
the matrix W, which is centered and standardized, contains the
values of the ECs. The model becomes then:

yij = µ + Ei + gj + wij + εij (3)

with w ∼ N(0,�σ 2
w).

In this model, as explained in Jarquín et al. (2014),
environmental effects are subdivided in two components, one
that originates from the regression on numeric environmental
variables, and one due to deviations from the Year-Site
combination effect which cannot be accounted for by the
ECs. Indeed, the environmental variables might not be able
to fully explain the differences across environments. The
modeling of the covariance matrices � and G allows to
borrow information between environments and between hybrid
genotypes, respectively.

Models with interaction

(4) Model G+E+GxE: main effects G+E with Genomic x
Environment Interaction

The model G+E was extended by including the interaction term
between environments and markers (GxE):

yij = µ + Ei + gj + gEij + εij (4)

with gE ∼ N(0, [ZgGZ
′
g]◦ [ZEZ

′
E]σ

2
gE), εij

IID
∼ N(0, σ 2

ε ), where Zg

andZE are the designmatrices that connect the phenotype entries
with hybrid genotypes and with environments, respectively; σ 2

gE

is the variance component of the gEij interaction term; and ◦

denotes the Hadamard product between two matrices.

(5) Model G+S+GxS: main effects G+S with Genomic x
Site Interaction

Similar to the previous model, this model extends model G+S by
including the interaction term between sites and markers (GxS):

ykj = µ + Sk + gj + gSkj + εkj (5)

where gS ∼ N(0, [ZgGZ
′
g] ◦ [ZSZ

′
S]σ

2
gS), εkj

IID
∼ N(0, σ 2

ε ), where

ZS and σ 2
gS are the design matrix for sites and the associated

variance component for this interaction, respectively.

(6) Model G+E+S+Y+GxS+GxY+GxE: main effects G+E+S+Y
with Genomic x Environment Interaction, Genomic x Site
Interaction and Genomic x Year Interaction

This model corresponds to the most complete model using
only basic GxE information (year and site information)
about environments:

yjkm = µ+ gj+Sk+Ym+Ekm+ gSjk+ gYjm+ gEjkm+ εjkm (6)

where gY ∼ N(0, [ZgGZ
′
g] ◦ [ZYZ

′
Y]σ

2
gY ), εkj

IID
∼ N(0, σ 2

ε ), where

ZY and σ 2
gY are the design matrix for years and the associated

variance component for this interaction, respectively.

(7) Model G+E+W+GxW: main effects G+E+W with interactions
between markers and environmental covariates

The model G+E+W was extended by adding the interaction
between genomic markers and environmental covariates. Jarquín
et al. (2014) demonstrated that this interaction term induced
by the reaction-norm model can be described by a covariance
structure which corresponds, under standard assumptions, to
the Hadamard product of two covariance structures: one
characterizing the relationships between lines based on markers
information (e.g., G), and one describing the environmental
resemblance based on ECs (e.g.,�). The vector of random effects,
denoted gw represents the interaction terms between markers
and ECs, is assumed to follow a multivariate normal distribution
with null mean and covariance structure [ZgGZ

′
g]◦�. The model

can be expressed as follows:

yij = µ + Ei + gj + wij + gwij + εij, (7)

with gw ∼ N(0, [ZgGZ
′
g] ◦ �σ 2

gw).

(8) Model G+E+W+GxW+GxE: main effects G+E+W with
Genomic x Environment Interaction and Genomic x
Environmental Covariates Interaction

The interaction term gEij is incorporated in this model, because
some GxE might not be completely captured by the interaction
term gwij, and the model becomes:

yij = µ + Ei + gj + wij + gwij + gEij + εij (8)

Main and interactions effects included in the different models
described above are summarized in Supplementary Table 5.
Models using W, i.e., the matrix of environmental covariates,
were tested with and without longitude and latitude data
included. Additional combinations of main effects and
interactions not detailed here were also evaluated and results
are presented as Supplementary Material. These models were
implemented in a Bayesian framework using the R package
BGLR (Pérez and de Los Campos, 2014), for which the MCMC
algorithm was run for 42,000 iterations and the first 2000 cycles
were removed as burn-in with thinning equal to 5.

2.5.2. Machine Learning Based-Methods Used
The potential of machine learning models was explored using
the following three algorithms: the linear regularized Elastic
Net (Zou and Hastie, 2005), XGBoost (Chen and Guestrin,
2016) and LightGBM (Ke et al., 2017). All the machine learning
regression models were conducted in R version 3.6.1 (R Core
Team, 2019) using the tidymodels framework (Kuhn and
Wickham, 2020) and wrapper functions of treesnip (https://
github.com/curso-r/treesnip/). Elastic net is a regularized linear
regression method that has proven to be useful with datasets
characterized by multicollinearity to identify the most relevant
predictor variables as well as reducing the computing time
(Zou and Hastie, 2005). It corresponds to a linear combination
of two penalty terms: the lasso (L1 regularization), noted
‖β‖1 =

∑p
j=1 |βj| and the ridge (L2 regularization), noted

‖β‖22 =
∑p

j=1 β2
j . While the L2 penalty tends to contract the
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coefficients of highly correlated features toward each other, the
L1 penalty supports a sparse solution, as many coefficients are
zeroed. However, this method does not account for interactions
between features.

Originally introduced by Friedman (2001), gradient boosting
approach sequentially builds an ensemble of decision trees, with
each new tree improving the predictions of the previous one by
fitting on its residual errors. Two implementations of gradient
boosting of decision trees (GBDT) for regression were used: Light
Gradient Boosting Machine (LightGBM) and eXtreme Gradient
Boosting (XGBoost). The two GBDT frameworks stand out
from other similar boosting algorithms regarding their efficiency,
which can be achieved by their common implementation of
a histogram-based method for split finding, which groups
continuous features into discrete bins. Hence, the algorithm
does not iterate through all feature values, which is extremely
time-consuming, but instead performs splitting on the bins.
This speeds up training for very large datasets, as well as
reducing memory usage. LightGBM, developed more recently,
incorporates additional features, among others a downsampling
during the training on basis of gradients. GBDT frameworks
can handle well various types of data (binary, continuous
data), and they are relatively robust to the effects of outliers
among predictor variables (Hastie et al., 2009). Decision trees
can capture, by construction, higher-order interactions between
features, as well as nonlinear relationships between predictors
and response variable (Friedman, 2001). Hence, interactions
do not need to be explicitly provided as input data, since
new splits are built conditional on preceding splits made on
other predictors.

2.5.3. Data Pre-processing for Machine

Learning-Based Models
For data processing, we used the R package recipes (Kuhn and
Wickham, 2020). To reduce genomic data dimensionality, we did
not input SNP data into our prediction models directly. Instead,
we used the top 275 or 350 principal components (PCs) of SNP
data, for the traits grain yield and plant height, respectively.
This set of PCs was chosen after evaluation of the predictive
ability using different sets of top PCs explaining a various
proportion of the variance in the data. Covariates which had no
variance were removed using the step_nzv function. Retained
covariates were standardized to zero mean and unit variance.
As for linear random effect models, we tested the influence
on prediction of longitude and latitude data by including and
removing them as predictor variables across the different cross-
validation scenarios. The year was also included as an input
variable as a predictor variable in some models to account for
environmental variation not fully captured by environmental
covariates. In that case, the factor variable was converted into
four new variables corresponding to each level of the original
predictor. To model the site effect in models without numerical
environmental information, we used the simple geographic
coordinates of each location instead of using its label. Indeed,
in decision trees, the use of a categorical predictor with a
high number of levels can lead to overfitting (Hastie et al.,
2009).

2.5.4. Optimization of Hyperparameters and

Hyperparameter Importance for Machine

Learning-Based Models
Bayesian optimization using an iterative Gaussian process was
used for hyperparameter tuning. It represents a much faster
approach than grid search while allowing more flexibility in how
the parameter space is covered. The Gaussian process builds a
probability model based on an initial set of performance metrics
obtained for various hyperparameter combinations during an
initialization step, and predicts new tuning hyperparameters to
test based on these previous results (Williams and Rasmussen,
2006; Snoek et al., 2012). Bayesian optimization incorporates
prior assumptions on model parameter distribution and update
it after each iteration, seeking to minimize the root mean
square error (RMSE). Hyperparameter tuning was evaluated
with 30 iterations under resampling based on a fivefold
cross-validation (CV) with two repeats on the training set.
Supplementary Table 4 indicates the set of hyperparameters
tuned for each method during this optimization step. This set
of hyperparameters was then used to fit the whole training
data and predict the test set, which was unused during the
optimization of hyperparameters. The general procedure for this
nested cross-validation is illustrated in Figure 1. Fine-tuning
of hyperparameters is required in order to prevent overfitting
and to achieve the best prediction accuracy and representation
of the data.

In addition, we examined the role of each hyperparameter on
the overall model performance. This analysis provide insights
into the most important hyperparameters to primarily tune in
order to yield accurate models. We focus here on the LightGBM
algorithm and XGBoost. A method based on random forests
and functional ANOVA (fANOVA) was proposed by Hutter
et al. (2014) to quantify the marginal contribution of each
hyperparameter and pairwise interaction effects. Briefly, we used
the output table of performance metrics of each algorithm
with different hyperparameter combinations, which was obtained
during the optimization step. The metric (root mean square
error) is then used as target variable while hyperparameters
represent the explaining variables to fit a random forest
algorithm. fANOVA is then applied to evaluate the importance
of each hyperparameter used in the grid search.

2.5.5. Assessment of Prediction Accuracy for New

Environments
In order to mimic real plant breeding problems, we considered
four different cross-validation strategies aiming at predicting
genotypes in environments that were never tested before, namely
CV0-Year, CV0-Site, CV00-Year, and CV00-Site, described in
Jarquín et al. (2017). The CV0 cross-validation scheme allows to
borrow information in the training set about the performance
of predicted genotypes in other tested environments, while the
CV00 cross-validation scheme consists of the prediction of newly
developed genotypes. This means that for implementation of
the CV00 cross-validation, any observation from a genotype
included in the test set (i.e., new environments) was removed
from the training set. Predictions of untested genotypes can
be achieved by exploiting information from marker data on
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FIGURE 1 | Nested cross-validation diagram for evaluation of model performance in the leave-1-year-out CV scheme with a machine learning approach.

genetic similarities between genotypes from the training set
and from the test set. Four scenarios in total were examined,
which differ according to whether site or year were used
to build the test set, and to the degree of relationship
between training and test set: (1) CV0-Year, where phenotypic
information about the performance of genotypes evaluated in
the same year was masked; (2) CV00-Year, where phenotypic
information about the performance of any genotypes present
in the test set in other years was additionally masked; (3)
CV0-Site, where phenotypic information about the performance
of genotypes evaluated in the same site was masked and
(4) CV00-Year, where phenotypic information about the
performance of any genotypes present in the test set in
other sites was additionally masked. In this procedure, the
number of observations contained in each outer fold is not
the same, due to the unbalanced character of the dataset.
This approach reflects a common issue arising in multi-
environment plant breeding trials, as all selection candidates
cannot be grown in all environments. However, we can ensure
a fair model comparison by having the same data splits across
tested models.

Regarding evaluation metrics, we define the prediction
accuracy as the Pearson correlation between the predicted
and the observed performance in a given environment, i.e.,
correlations were computed on a trial basis.

In order to take into account the difference in sample
sizes between environments, we evaluated the weighted average
predictive ability across environments according to Tiezzi et al.
(2017), for each combination of prediction model, predictor
variables and trait, as following:

rw =

∑J
j=1

rj
V(rj)∑J

j=1
1

V(rj)

,

with rj the Pearson’s correlation between predicted and observed

values at the jth environment, V(rj)=
1−r2j
nj−2 its sampling

variance and nj the total number of phenotypic observations

in the jth environment.

2.6. Variable Importance and Partial
Dependence Plots for Grain Yield
We used the gain metric to quantify the feature importance in the
XGBoost model fitted to the full dataset. This metric corresponds
to the relative contribution of the variable to the ensemble model,
calculated by considering each variable’s contribution for each
boosting iteration. A superior value of the gain for one feature
compared to another feature means that this feature is more
important to generate a‘prediction.
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Overall partial dependence plots (PDPs) were computed using
the R package DALEX (Biecek, 2018) using the four trained
datasets from the CV0-Year scheme and the full dataset. PDPs
are relevant to study how the predicted outcome of a machine
learning model is partially influenced by a subset of explanatory
variables of interest, by marginalizing over the values of all
other variables.

The partial dependence profile of f(X) is defined as following
by Friedman (2001):

fS(XS) = EXC f (XS,XC),

where the XS represents the set of input predictor variables
for which the effect on the prediction is analyzed, and XC

represent the complement set of other predictor variables
used in the model. The following partial function can be used as
an estimator:

SfS(XS) =
1

N

N∑

i=1

f (XS, xiC),

where x1C, x2C, ..., xNC are the values of XC observed in the
training data. This means that we estimate this expected value as
the average of the model predictions, over the joint distribution
of variables in XC, when the set of joint values in XS is fixed. As
emphasized by Hastie et al. (2009), partial dependence functions
represent hence the influence of XS on f(X), after taking into
account the average effects of the other variables XC on f(X).

2.7. Code Availability
A Github repository containing the various R scripts and Bash
scripts used for phenotypic analysis, processing of weather
data, spatio-temporal interpolation of missing weather data, and
predictive modeling is available: https://github.com/cjubin/G2F_
data.

3. RESULTS

3.1. Variability of Climatic Conditions in the
Panel of Environments
Figure 2 reveals a partitioning of environments into clusters
corresponding mostly to different US climate zones. It suggests
that the sample of environments was broad enough to cover
a large spectrum of environmental conditions across the
North-American continent. The first two principal components
explained more than 55% of total variation among environments
on the basis of weather-based environmental covariates. The
loading plot shows that MinT.F and GDD.F, FreqMaxT30.G,
which are covariates related to temperature during flowering
and grain filling stage, strongly influenced the first principal
component (PC1). Environments from the South/Southeast
(Arkansas, Texas, Georgia) showed positive PC1 and PC2 scores,
which can be explained by a common humid subtropical climate,
according to the Köppen climate type classification (Köppen
and Geiger, 1930). One exception was one location in Texas
(denoted 2014_TXH2), associated with more semi-arid climatic
conditions. These results indicate that a closer geographical

distance does not necessarily imply similar environmental
conditions, based on climate types. For instance, environments
from Delaware were closer to environments from the Midwest
than Northeastern environments. Environments from the
Midwest, associated with a humid continental climate, were
situated mostly around the origin of the plot, and environments
further north or in Canada exhibited the lowest temperatures
among this set of sampled environments and presented a negative
PC1 score.

3.2. Hyperparameter Importance for
Gradient Boosting Approaches
Computing by fANOVA the marginal contribution of each tuned
hyperparameter, using the performance data gathered during
the hyperparameter optimization step on the different training
sets, highlights large differences regarding their respective impact
on model performance (Supplementary Figure 3). For the two
gradient boosting algorithms, the learning rate (named eta in
XGBoost) and the maximum depth of the tree were the most
relevant algorithm parameters, as well as their interaction. The
number of boosting iterations did not play a major role in
model performance. We also found an advantage of using
the hyperparameter feature_fraction and colsample_bytree,
implemented in LightGBM and XGBoost, respectively, as it
allowed an important reduction of the training time without
having any observed negative effect on the accuracy of the
predictions. It should be emphasized that we did not fully explore
the influence of all possible hyperparameters implemented in
these algorithms because of computational limitations, and
therefore many of these were fixed during the hyperparameter
optimization step.

3.3. Comparison of Model Performance
Across Two Traits and Four Different CV
Scenarios

CV0-Year

When the aim was to predict yield performance of already
tested hybrids in new environments, the weighted average
correlation of the baseline LREmodel (G+E) was 0.356 (Figure 3;
Supplementary Table 6). When the GxE term was added,
the average correlation improved to 0.362. The model that
included all interactions (G+E+W+GxW+GxE) was the best LRE
model, while using only interactions between environmental
covariates and genomic information (model G+E+W+GxW)
slightly decreased the predictive ability of the baseline model
to 0.347. In this prediction scenario, the two GBDT methods
outperform all LRE models; model XGBoost-G+W+Y+Lon+Lat
improved upon the baseline model by 18%. In addition,
a small increase of predictive ability could be observed
when environmental covariates were included as features for
the machine learning-based frameworks. Furthermore, models
that included geographical coordinates as predictor variables
resulted in better prediction accuracies, and this revealed true
across all prediction problems; therefore, Figures 4, 5 display
results from LRE models using W as including longitude and
latitude as predictor variables. For plant height, the baseline
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FIGURE 2 | Principal component analysis (PCA) plot of environmental data from the 71 environments, using the median flowering date as reference in each

environment. (A) Maize trial experiments located in the US and in Canada used in analyses. Name of the locations and their geographical position are given in

Supplementary Table 1. (B) Correlation plot of the weather-based covariates used in the PCA.
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model performed best (Figure 4; Supplementary Table 8), and
gradient boosting models incorporating environmental predictor
variables performed consistently worse than models based only
on genotypic data, geographical data and year information.

CV00-Year

CV00-Year produced lower average correlation coefficients
for the two traits and for all models compared to CV0-
Year, which illustrates that genomic prediction in multi-
environment trials achieves better results when the training
set includes information from the same genotypes evaluated in
other environments. Regarding the trait grain yield (Figure 3;
Supplementary Table 6), modeling the effect of sites instead of
environments resulted in a small improvement of the predictive
ability (4% better than the G+E model). Adding the GxE term
to the LRE baseline model also positively affected the predictive
ability (8% better than the G+E model). However, the LRE
model with main site and genotype-by-site interaction effects
(G+S+GxS) outperformed LRE models based on the modeling of
year-location (E) effects. Overall the best predictivemodel for this
trait was again the GBDT model XGBoost-G+W+Y+Lon+Lat,
which displayed an average correlation of 0.301 (20% higher than
the baseline model). GBDT models incorporating W performed
between 6 and 13% better than GBDT models excluding W,
which demonstrates the usefulness of environmental data for
prediction of yield performance of new genotypes in an untested
year. Among LRE models, the LRE model with all interactions
and using enviromental data was the best model and resulted in
an improvement of 17% over the baseline model. Regarding the
trait plant height (Supplementary Table 8), the best predictive
model was the baseline LRE model with an average weighted
correlation of 0.604. Among LRE and GBDT models, models
which did not include any environmental data performed
better than those using these. An explanation for this lack of
improvement with environmental data for plant height in this
prediction problem can be that year and geographical position
are appropriate and sufficient data to efficiently characterize
environments for prediction of plant height, while using all
environmental variables might generate noise here.

CV0-Site

The prediction of already tested genotypes in all environments
associated with a common site revealed higher predictive
abilities than with the CV0-Year prediction problem
(Figures 3, 4; Supplementary Tables 7, 9). Indeed, based
on our dataset, which covers many different sites across the
US (see Supplementary Figure 1), the leave-one-site-out CV
strategy generates large ratios across all training/test splits.
This greater amount of data available to predict environments
from one site can explain why this CV scheme obtained
higher predictive abilities than the CV0-Year strategy. For
the trait grain yield (Figure 3; Supplementary Table 7), the
XGBoost-G+Lon+Lat+Y outperformed other models, showing
an increase of 9% compared to the baseline LRE model.
LightGBM models showed also better predictive abilities than
LRE models. Only for LRE models did the use of environmental
data yield a very small increase in predictive ability; the best

result within this type of statistical approach was obtained
by the model including all interactions (0.477, 3% higher
than the baseline model). However, for the trait plant height
(Figure 4; Supplementary Table 9), LRE models performed
better than machine learning-based methods, with the model
G+E+S+Y+GxS+GxY+GxE, which uses only basic information
on environments, showing a mean correlation of 0.742.
LightGBM and XGBoost methods with geographical and year
information predicted reasonably well compared to the latter
model (average r between 0.7 and 0.72), and again, the addition
of environmental covariates decreased the predictive ability of
GBDT models G+Lon+Lat+Y.

CV00-Site

As expected, the prediction of new genotypes in new sites resulted
in lower mean correlations than CV0-Site for the two traits
under study across predictive models. This highlights again
the importance of the relationship between training and test
sets. For the trait grain yield (Figure 3; Supplementary Table 7),
the weighted average predictive ability of the reference model
(G+E) was 0.248, and the model using sites instead of
environment main effect was slightly better with a mean
correlation of 0.265 (7% over G+E model). When the GxE
term was added to the baseline model, the weighted average
predictive ability was improved to 0.269 (8% over G+E model).
It is worth to underline that models incorporating genotype-
by-site effects performed even better (10% and 11% higher
than the reference model). Modeling the interaction between
ECs and genotypes and between environments and genotypes
(model G+E+W+GxW+GxE) yielded an improvement of the
baseline model by 19% (average r = 0.296), which was closely
followed by the LightGBM and XGBoost models incorporating
environmental covariates (between 11 and 16 % increase over
the baseline model). As for the CV0-Year and CV00-Year CV
schemes, the use of environmental data slightly increased the
average predictive ability for grain yield. For the trait plant height
(Figure 4; Supplementary Table 9), the baseline model with
interactions by environment (G+E+GxE) outperformed other
models. As for the previous prediction problems, environmental
data decreased predictive abilities over all implemented models
for the trait plant height.

When comparing the predictive abilities across traits, grain
yield was the trait showing the lowest predictive ability across
all CV schemes. Across all CV schemes, Elastic Net was the
worst predictive modeling approach, which can be related to the
absence of interactions between predictors in this model, if these
are not explicitly provided as new features.

Figure 5; Supplementary Tables 10, 11 display the detailed
within-environment correlation results for grain yield for
two (CV0-Year and CV0-Site) cross-validation schemes. If
a predicted environment is over the identity line, this
means that there was an increment of the predictive ability
by using environmental information. For CV0-Year, the
machine learning-based model including environmental data
outperformed the model only using geographical and year
information in 44 of the 71 considered environments. For CV0-
Site, however, the model with environmental features was better
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FIGURE 3 | Weighted average predictive ability across 71 environments obtained for four cross-validation schemes and 16 models for the trait grain yield. G, main

effect of SNPs markers (genomic relationship matrix for LRE models; principal components derived from marker matrix for machine learning-based approaches); Y,

year effect; S, site effect; GxS, genotype-by-site interaction; E, environment effect; GxY, genotype-by-year interaction; GxS, genotype-by-site interaction; GxE,

genotype-by-environment interaction; GxW, interaction between W and SNPs; Lon, longitude; Lat, latitude; W, effect of weather- and soil-based covariates. For linear

random effects models, results with models including longitude and latitude data in the matrix W are depicted here.

FIGURE 4 | Weighted average predictive ability across 71 environments obtained for four cross-validation schemes and 16 models for the trait plant height. G, main

effect of SNPs markers (genomic relationship matrix for LRE models; principal components derived from marker matrix for machine learning-based approaches); Y,

year effect; S, site effect; GxS, genotype-by-site interaction; E, environment effect; GxY, genotype-by-year interaction; GxS, genotype-by-site interaction; GxE,

genotype-by-environment interaction; GxW, interaction between W and SNPs; Lon, longitude; Lat, latitude; W, effect of weather- and soil-based covariates. For linear

random effects models, results with models including longitude and latitude data in the matrix W are depicted here.

than the less complex one in only 34 environments. This can
be interpreted as a failure to explain a large part of the GxE
by the computed ECs, and by a more efficient representation of
environmental effects by simple geographic information.

3.4. Variable Importance
Regarding the trait grain yield, many of the identified top
variables were related to temperature, such as the average
minimum temperature during the flowering stage, or the
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FIGURE 5 | Comparison of the within-environment predictive ability with different sets of predictors for the trait grain yield for XGBoost (A) with the CV0-Year scenario

and (B) CV0-Site scenario. The x-axis corresponds to the within-environment correlation obtained with the model incorporating PCs derived from SNPs, year and

geographical coordinates. The y-axis corresponds to the within-environment correlation obtained with the model incorporating PCs, year, W (i.e., weather- and

soil-based covariates) and geographical coordinates. The line indicates the identity. Blue-colored points with a label indicate environments for which the absolute

difference between the two predictive abilities was superior to 0.13. Black-colored points with a label indicate the least and the most accurately predicted

environments.

frequency of days during which the maximum temperature was
above 35◦C (Figure 6). Organic soil matter concentration was the
thirdmost important feature, which demonstrates that fields with
fertile soils were associated with higher yields. The amount of
water received by the field (P.V) during the vegetative and grain
filling stage was also a major feature for the model, as well as
the frequency of days during the vegetative stage for which the
amount of water was greater than 5mm. Regarding the trait plant
height, variables based on soil information played amajor role for
trait prediction, as they likely affect the crop shoot architecture.
The amount of water received during the vegetative stage was also
an important explanatory variable for plant height.

Partial dependence plots (Figure 7) show that minimum
temperature at flowering stage was strongly impacting yield from
approximately 20◦C onwards. Maximum temperature during the
vegetative stage had a detrimental effect on yield, suggesting that
very elevated temperatures can impair a normal plant growth,
eventually required to achieve optimal grain yield, although it
tended to have a more gradual effect than minimum temperature
at flowering stage. The relationship with yield of the total amount
of precipitation during the vegetative stage was positive, before
reaching a plateau. A high soil organic matter content yielded in
superior yield predicted values.

4. DISCUSSION

Breeders, working on the development of climate resilient
cultivars, risk making incorrect selection decisions if genotype-
by-location and genotype-by-year interactions are not properly
accounted for (Jarquín et al., 2017; De Los Campos et al.,

2020). By incorporating environmental variables in our models,
we assessed the value of these predictor variables for genomic
prediction of complex phenotypes across four cross-validation
scenarios. Gradient boosting frameworks based on decision
trees have demonstrated high prediction performance for
traits affected by non-additive effects (Abdollahi-Arpanahi
et al., 2020), as well as model interpretability to extract
important insights from the model’s decision making process
(Shahhosseini et al., 2020). Thus, a second objective was
to evaluate these new prediction methods on the basis of
prediction accuracies and for identification of the most relevant
environmental variables.

4.1. Comparison of Prediction Methods
Across the Two Traits
We observed that GBDT frameworks produced a slightly
improved predictive ability for grain yield compared to the linear
random effects models in three (CV0-Year, CV00-Year, and
CV0-Site) out of the four CV schemes. However, no advantage
was observed when GBDT was used to predict plant height.
Overall, GBDT methods were competitive to LRE models, but
we did not find any case where these machine learning-based
methods considerably exceeded the predictive ability of LRE
models. Previous studies have suggested that machine learning-
based approaches can provide superior accuracy for prediction
of phenotypic traits characterized by substantial non-additive
effects. For instance, results from Zingaretti et al. (2020) in
strawberries suggest that traits, exhibiting large epistatic effects,
can be better predicted by convolutional neural networks (CNN),
than by Bayesian penalized linear models. On the other hand, for
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FIGURE 6 | Feature importance ranking based on the average relative gain per feature obtained with the model XGBoost-G+W, for the two traits grain yield and plant

height. The metric was estimated using a model fitted on the full dataset. The gain represents the improvement in accuracy when using a feature for splitting, across

all trees in the model. The order of features is based on feature performance within covariate class for the trait grain yield. The sum of all feature contributions is equal

to 1. Weather-based variables from the grain filling stage were not used to predict plant height.

moderately to highly heritable traits, no real advantage of using
machine learning-based methods was observed in their study.
Bellot et al. (2018) pointed out that human height, a trait with a
prevailing additive component and a polygenic architecture, was
better predicted by linear methods than by CNNs. For other traits
they examined in their study, a deep learning approach did not
significantly outperform other methods in terms of prediction
accuracy. Similar conclusions were drawn by Azodi et al. (2019)
who reported an inconsistency of performance for non-linear
machine learning-based algorithms in comparison with linear
algorithms, according to the trait under study.

In our study, we incorporated not only genomic-based, but
also environmental-based predictor variables. Yield component
traits are controlled by numerous physiological processes under
the influence of environmental factors, which can explain the
large contribution of the GxE variance component for the
phenotypic variance of grain yield, while for plant height, the
proportion of variance explained by GxE is generally much
lower than the proportion of variance related to genetic effects
(Olivoto et al., 2017; Rogers et al., 2021). Nonlinear relationships
between some environmental factors, such as temperature or
rainfall amounts, and grain yield are well-known in the field
of ecology and agriculture (Troy et al., 2015; Li et al., 2019).

Hence, the slightly better prediction performance for grain yield
with GBDT frameworks might originate from their ability to
model nonlinear effects of environmental predictor variables, as
observed with the partial dependence plots, as well as interactions
with other predictor variables like genomic-based principal
components. This asset was also described by Heslot et al.
(2014b) when implementing soft rule fit (a modified ensemble
method) capturing nonlinear interactions between markers and
environmental stress covariates. Additional studies are required
to validate this hypothesis using other phenotypic traits showing
various genetic architectures. Moreover, it should be noted that
we used only linear kernels in the reaction normmodels to model
genetic and environmental similarities. This means that we did
not account for the specific combining ability (i.e., nonlinear
genetic effects, due to dominance or epistasis, of specific hybrid
combinations) which can influence the magnitude of yield
heterosis in maize hybrids. Alternative approaches exist to model
additive and dominant genetic effects, as well as environmental
relatedness with nonlinear kernels (Bandeira e Sousa et al., 2017;
Cuevas et al., 2018; Costa-Neto et al., 2020a). Bandeira e Sousa
et al. (2017) and Cuevas et al. (2018) obtained better predictive
abilities when using a Gaussian kernel rather than a linear
GBLUP kernel withmulti-environment G–E interactionsmodels.
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FIGURE 7 | Partial dependence plots (PDPs) showing the behavior of the expected value of predicted yield as a function of four top-ranked predictor variables. The

Y-axis value of a PDP is calculated average of all model predictions obtained from the training dataset, when the value of the predictor variable is equal to X. The four

training sets from the leave-1-year-out cross-validation scheme (CV0-Year) and the full dataset, separately trained with XGBoost, were used. Tick marks indicate

individual observations. (A) MaxT.V, maximum temperature during the vegetative stage; (B) MinT.F, minimum temperature during the flowering stage; (C) OM.SC,

percentage of soil organic matter; (D) P.V, Amount of precipitation and irrigation during the vegetative stage.

More recently, Costa-Neto et al. (2020a) implemented Gaussian
and arc-cosine kernels-based approaches on both genomic and
environmental datasets from a MET maize dataset, and noted
an improvement in prediction accuracy using these methods
across various cross-validation strategies. These results highlight
the potential of nonlinear methods to better unravel nonlinear
relationships existing in the input space.

4.2. Model Performance Under Various
Prediction Problems
The four cross-validation schemes we evaluated represent
challenging prediction problems. They seeked to assess the ability
of the models to predict the effect of unknown combinations
of environmental stresses on the studied phenotypic traits in a
new year (CV0-Year and CV00-Year) or in a new site (CV0-
Site and CV00-Site). Previously published work has revealed
somewhat similar ranges of prediction accuracies for this trait
in maize (Costa-Neto et al., 2020a; Jarquin et al., 2020). In
winter wheat, Jarquín et al. (2017) and Sukumaran et al. (2017)
reported the predictions of yield performance in future years
(CV0-Year) as the most challenging prediction problem on the
basis of results obtained for various cross-validation schemes,

and results of Sukumaran et al. (2018) showed that modeling site
effect instead of environment effect based on basic information
about the environments (year and location) had a positive effect
on predictive ability with CV0-Year, as we could also observe for
CV0-Year, CV00-Year, and CV00-Site in our results. Indeed, this
type of models allows to exploit information from the same site
tested across several years. Another factor which is important to
take into account in multi-year breeding data, as emphasized by
Bernal-Vasquez et al. (2017), is the degree of genetic relatedness
between the training and validation sets. Hence, CV00-Year
and CV00-Site were more challenging prediction problems
than CV0-Year and CV0-Site, respectively, and yielded lower
weighted mean correlations across all models.

Regarding the usefulness of environmental information, the
best model for grain yield based on mean predictive ability
included these data for three (CV0-Year, CV00-Year, and CV00-
Site) out of the four CV schemes. In addition, it must be
taken into account that much less phenotypic observations
were masked for CV0-Site (1/28, about 3.6% on average, with
some sites being present more often than others across years
in our dataset) than for CV0-Year (1/4, about 25% as the
dataset is unbalanced). Hence, we can consider CV0-Year and
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CV00-Year as more challenging prediction problems than CV0-
Site and CV00-Site in our study. The improvement due to
the incorporation of environmental data was however less
remarkable and less consistent across CV schemes than expected,
which was in contrast with previous results. Monteverde
et al. (2019) also implemented a leave-1-year-out scenario,
with one unique location present in the dataset, and the
best prediction accuracies for grain yield were always reached
by the models integrating environmental predictors alongside
genomic predictors. Findings from Costa-Neto et al. (2020a)
also show a significant increase of prediction accuracy with the
linear GB kernel incorporating environmental data in a CV0
scheme, but the authors additionally modeled dominant genetic
effects, which were not accounted for in our study. On the
other hand, Jarquin et al. (2020) also used the same Genomes
to Fields dataset and reported a lack of enhancement when
using a model that solely incorporated interactions between
genotype and environmental covariates (i.e., without using the
environment label). The best predictive models for the CV0 and
CV00 schemes, that they implemented, included both genotype-
by-environment and genotype-by-EC interactions, similarly to
our results (Supplementary Tables 6–9). In agreement with
the reasons invoked by the authors of this study, we argue
that environmental data are especially relevant for predictions
when a larger number of environments is used, e.g., by testing
sites within a limited geographical range with relatively similar
environmental conditions across multiple years. This was for
example achieved in the study of De Los Campos et al. (2020),
where 16 sites located in France were tested over 16 years. A
reasonable hypothesis is that historical weather data obtained
across multiple years for a specific geographical area can lend
the model reliable information on the effect of year-to-year
climatic variation on phenotypic performance, in addition to
site-based factors (soil and geographical position). A finding
supporting this hypothesis is that the environments, which
showed the best prediction accuracies with an environmental
model, corresponded generally to the sites which were repeated
across years, like Madison (WI) or College Station (TX)
(Supplementary Tables 10, 11). Interestingly, 2014_TXH2, a
location for which data were only included for a single year,
showed a moderate prediction accuracy with the XGBoost model
without environmental information in CV0-Year (r = 0.28;
Supplementary Table 10), which was superior to the model
with environmental covariates (r = 0.21 with all environmental
covariates included). We can suppose that the inclusion of
environmental information, when predicting a new environment
with properties that are very different from environments
covered by the training set, is not useful to enhance the predictive
ability of the model using basic predictors, such as the year
factor and geographic coordinates. Extreme weather events can
make some environments very unpredictable. 2017_ARH1 and
2017_ARH2 exhibited a very low prediction accuracy for grain
yield (< 0 for 2017_ARH2) in both CV0-Year and CV0-Site
(Supplementary Table 11), which is likely to be related to the
effect of the tropical storm Harvey at the end of August 2017,
which caused substantial lodging due to wind and excessive

rainfall affecting the yield, and was reported by collaborators in
the metadata.

4.3. Incorporation of Weather-Covariates in
the Predictive Models
The use of environmental information yielded a small gain in
average prediction accuracy for many models tested on grain
yield, but did not lead to any improvement for plant height.
For this latter trait, the large influence of soil-based variables,
illustrated by the variable importance ranking (Figure 6),
can also possibly explain why prediction models using only
geographical coordinates outperformed more elaborate models.
For this trait, latitude and longitude data might indirectly capture
information which is site-specific and repeatable across years,
e.g., related to the quality of soil. For instance, environments
from the Corn Belt, which were present in our dataset, usually
exhibited fertile soils with much higher organic soil matter
content than environments located in other US regions. Costa-
Neto et al. (2020b) highlighted that simple geographic-related
information, such as longitude and latitude data, can also
efficiently represent environmental patterns that are specific to a
site (for instance related to soil characteristics), and hence capture
well genotype-by-site interaction while using only two variables.

In general, the lack of real enhancement of predictive ability
may result from the way we incorporated developmental stages
into our models, as we defined only three main developmental
stages (i.e., vegetative, flowering and grain filling stages). Trial
data often lack a rigorous collection of phenological data due
to phenotyping costs. A possible solution to predict plant
developmental stages can be to use crop models, such as APSIM
(Holzworth et al., 2014) or SiriusQuality (Keating et al., 2003),
as done in related studies (Heslot et al., 2014b; Rincent et al.,
2017, 2019; Bustos-Korts et al., 2019). In our case, we did
not implement a crop model since we aimed at estimating the
flowering stage at the hybrid level as accurately as possible, as it
is known to be a critical period for the determination of yield-
related components. Therefore, we based our environmental
characterization on available field data (sowing date and silking
date scored) in order to derive environmental covariates for three
main developmental stages, similarly to Monteverde et al. (2019)
in rice. The reported variability among crop growth models
(CGM) in simulating temperature response can complicate the
task of choosing the most appropriate one (Bassu et al., 2014).
In addition, the task of integrating genetic variation for earliness
in crop growth models can also be rather challenging, with the
risk that the predicted developmental crop stages might not
appropriately reflect the plant developmental stages observed in
the field if the model does not properly account for genotype-
specific parameters (Rincent et al., 2019). Technow et al. (2015)
developed a complex framework combining both CGM and
whole-genome prediction, where the CGM is used to predict
grain yield as a function of several physiological traits and of
weather and management data. Genotype-specific physiological
parameters were estimated in this study by running a Bayesian
algorithm which models them as linear functions of the effects
of genomic features. It would be of high interest to apply CGM
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models on this dataset by taking advantage of the flowering
time data that are available. We should also mention that other
types of input data could be incorporated in future analyses,
such as the type of field management, the field disease pressure,
preceding crop, or the presence of external treatments (organic,
nitrogen fertilizers).

4.4. Prerequisites to Use Machine
Learning-Based Models and Their
Usefulness to Understand Significant
Environmental Factors
Specific techniques should be employed to ensure an efficient
application ofmachine learning-basedmodels. These can provide
better results when expert knowledge is incorporated (Kagawa
et al., 2017; Roe et al., 2020; Brock et al., 2021). Here, we
restricted weather information to the duration of the growing
season, transformed some raw weather information into new
variables (evapotranspiration) and built stress indices besides
typical climate covariates based on previous biological knowledge
(e.g., detrimental temperature thresholds for maize (Greaves,
1996; Schlenker and Roberts, 2009; Lobell et al., 2014; Zhu et al.,
2019; Mimić et al., 2020). Prior understanding of the role of
input features can help mitigate the risk of using irrelevant
information in the model. As expected, the correlation matrix
between environmental covariates (Supplementary Figure 2)
showed that numerous predictor variables were highly correlated
with each other, especially those related to temperature and
heat stress. We did not perform feature selection based on
the Pearson correlation coefficients between environmental
covariates, because of the risk of dropping highly predictive
variables, since the metric ignores the relationship to the output
variable. In addition, methods based on decision trees can
perform internal feature selection, making them robust to the
inclusion of irrelevant input variables and to multicollinearity
(Hastie et al., 2009; Kuhn et al., 2013). If two variables are strongly
correlated, the decision tree will pick either one or the other
when deciding upon a split, which should not eventually affect
prediction results. Another approach to reduce the number of
features and reduce training time is to apply feature extraction,
as we did by deriving principal components from the genotype
matrix and use these as new predictor variables in the machine
learning-based models. This procedure did not seem to affect
model performance.

Machine learning models often require an elaborated
hyperparameter optimization strategy, implying for example a
nested cross-validation approach which can be computationally
expensive (Varma and Simon, 2006), since it involves a series of
train/validation/test set splits to prevent data leakage. Inadequate
model tuning can result in a suboptimal performance of the
algorithm. Here, we found that the hyperparameters such as
the learning rate or tree depth were relevant regularization
parameters to reduce the model complexity, thereby dealing with
overfitting. In accordance with these results, other authors had
also reported these two hyperparameters as the most important
ones for another gradient boosting library similar to LightGBM,
Adaboost (Van Rijn and Hutter, 2018). In general, lower values

of the learning rate (< 0.01) are recommended to reach the
best optimum (Ridgeway, 2007). Nonetheless, as the learning
rate is decreased, more iterations are needed to get to the
optimum, which implies an increase of the computation time
and of additional memory (Ridgeway, 2007; Kuhn et al., 2013).
With regard to the tree depth, a relatively low maximal depth
generally helped to prevent overfitting, and better results were
generally obtained with our data using a tree depth lower than
to 8. The deeper a tree is, the more splits it contains, resulting
in very complex models which do not generalize well on new
data. Knowledge regarding themost important hyperpararmeters
to tune is useful if limited computational resources hamper the
investigation of numerous hyperparameter combinations during
the training phase. Our results demonstrated similar predictive
abilities of LightGBM and XGBoost, with a clear speed advantage
for LightGBM, which ran often more than twice as fast. This
asset relies in particular on a feature implemented in LightGBM,
the gradient-based one-side sampling method (GOSS), which
implies that not all data actually contribute equally to training.
Training instances with large training error (i.e., larger gradients)
should be re-trained, while data instances with small gradients
are closer to the local minima and indicate that data is well-
trained. Hence, this new sampling approach focuses on data
points with large gradients and keeps them, while randomly
sampling from those with smaller gradient values. A drawback of
thismethod is the risk of biased sampling whichmight change the
distribution of data, but this issue is mitigated in LightGBM by
increasing the weight of training instances with small gradients.
The main advantage is that it makes LightGBM much faster
with comparable accuracy results. Another crucial aspect when
applying machine learning models is the adequacy of the dataset
for machine learning applications, which should be large enough
to allow the algorithm to learn from the data (Géron, 2019). In
our case, we benefited from a very large training dataset and a
low feature-to-instance ratio (316/18,325).

In our study, on top of prediction applications, tree-
based methods were also used to obtain estimates of feature
importance, and thereby contributed to a better understanding of
key abiotic factors driving the response of the tested genotypes.
Feature importance rankings and partial dependence profiles
showed that the minimal temperatures and indices related to
prolonged heat stress, or to amounts of water received in the
field, especially at the flowering stage, ranked among the most
important variables for grain yield. When comparing these
results with established agronomic knowledge, it was reported
that, above a certain threshold, high minimum temperature can
lead to an increase of the rate of senescence and reduce the ability
of the plant to produce grain across many plant species (Hatfield
et al., 2011; Hatfield and Prueger, 2015). Previous research
also revealed that increases in average night temperatures were
associated with a reduction of grain yield in maize (Millet et al.,
2019) and in rice (Welch et al., 2010). In an alternative study
on rice cultivars in Colombia, Delerce et al. (2016) identified
high minimum temperature (above 22.7◦C) as one of the most
important environmental factors negatively impacting grain yield
by using a machine learning approach based on conditional
inference trees. Exposure to temperatures exceeding 35◦C during
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the flowering stage was also a key factor in our study (best
predictor variable for grain yield), which can be related to a loss
of pollen viability, and consequently to a reduced final kernel
set (Hatfield et al., 2011). In our study, water availability at
vegetative and grain-filling stages appeared to affect yield, in
accordance with the literature outlining that any water deficit
during these growth stages can impact grain yield (Denmead
and Shaw, 1960; Cakir, 2004), with a more significant impact
when water stress occurs during the grain-filling stage (Cakir,
2004). Caution should nonetheless be taken regarding feature
importance ranking due to the important correlations between
some environmental variables. Furthermore, only 4 years of field
trials were used in our analyses, therefore variable importances
could be refined with additional data from following years, to
mitigate the influence of some environments characterized by
adverse climatic conditions and potentially acting as outliers.

4.5. Applications
The usefulness of medium to high prediction accuracies,
when predicting the performance in a new environment, must
always be related to our predictability of the environmental
variation. If the weather fluctuates considerably year to year,
then the environmental predictors used to compute these
predictions might be very different from the true value in the
corresponding year. In addition, even if more precise climate
change models were available to improve upon the precision
of environmental predictors, predictions of observations falling
outside the applicability domain, i.e., the range of predictor space
in the training set for which the model can give relativey accurate
predictions (Netzeva et al., 2005), might not be trustworthy and
should be used cautiously (Kuhn et al., 2013). The degree of
similarity of the new test set to the training set should hence
always be carefully considered.

While some environmental factors are repeatable from year
to year, such as the soil type or agronomic practices, a large
part of the GxE variation is attributable to weather patterns.
Hence, the success of this type of prediction scenario depends
on the relative stability of the climate in the targeted regions
across years. Nonetheless, we posit that our approach presents
two key advantages to predict performance in future years.
First, because they are fundamentally data-directed, the tree-
based models can take into account new phenotypic data in
the training set in a more flexible manner than classical mixed
models, without the need to explicitly specify interactions for
example. The development of high-throughput phenotyping
technologies announces a future enhancement of rapid and
accurate training data (Juliana et al., 2019). The predictive
frameworks we presented here can make use of new information
to refine the estimated effects of the predictor variables. Secondly,
we were able to predict a quantitative phenotype in a new
environment by using a novel configuration of genotypic and
environmental predictors describing it. A point of interest relates
to resource allocation and the possibility to select more efficiently
candidates to test in field trials. Based on the exploration
of different plausible climatic scenarios—within a range of
conditions experienced by the training set—these models can
help to evaluate which genotypes might be more adapted to

which range of environmental conditions. For regions or target
population of environments presenting relatively stable climatic
conditions across years, the probability of success of this type of
predictive modeling approach is heightened.

5. CONCLUSIONS

Encouraged by the effectiveness of machine learning-based
frameworks reported in the recent literature across various
research fields, we compared two popular ensemble models
with linear random effects models implemented in a Bayesian
framework and a regularized linear model. In three CV schemes
with the trait grain yield, the use of gradient boosting models
resulted in a slight improvement of the average predictive
ability but not for plant height. This finding indicates that
machine learning-based approaches can be envisaged for
genomic prediction but their efficiency may vary according
to the trait under study and its degree of responsiveness to
environmental variation. For a trait strongly under the influence
of environmental factors, machine learning-based models could
provide predictive abilities similar or slightly superior to linear
random effects, and could additionally be used for interpretation
of feature ranking and to build partial dependence plots
detailing relationships between predictor variables and outcome.
Provided further efficiency gains in machine learning algorithms,
as well as the standardization and harmonization of large-
scale environmental data, new opportunities in the field of
predictive modeling for developing climate resilient varieties
appear forthcoming.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. Raw
genotypic, phenotypic, weather, and soil data from the Genomes
to Fields Initiative can be found at: https://datacommons.cyverse
.org/browse/iplant/home/shared/commons_repo/curated/Geno
mesToFields_2014_2017_v1.

AUTHOR CONTRIBUTIONS

CW analyzed the data and wrote the manuscript. TB and HS
supervised research. CW, TB, HS, GM, and PT designed the
study. TB, HS, GM, SdS, and PT supported with statistical
advice. CW, TB, HS, GM, SdS, PT, MS, and J-CR participated
in the interpretation of results and contributed to discussion. All
authors contributed to the writing of the final draft and approved
the manuscript.

FUNDING

Financial support for CW was provided by KWS SAAT SE by
means of a Ph.D. fellowship. Additional financial support was
provided by the University of Göttingen and by the Center for
Integrated Breeding Research. We acknowledge support by the
Open Access Publication Funds of the Göttingen University.

Frontiers in Plant Science | www.frontiersin.org 18 November 2021 | Volume 12 | Article 699589

https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/GenomesToFields_2014_2017_v1
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Westhues et al. Genomic Prediction With Gradient Boosting

ACKNOWLEDGMENTS

The authors would like to thank the G2F Consortium for making
data publicly available, sharing them among collaborators,

and for their constructive feedback with this study. The

authors acknowledge support by the computing center for the
university of Göttingen (GWDG) through the use of their High
Performance Computing resources. We would like to thank two

reviewers for their thoughtful ideas and comments that improved
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
699589/full#supplementary-material

REFERENCES

Abdollahi-Arpanahi, R., Gianola, D., and Peagaricano, F. (2020). Deep learning

versus parametric and ensemble methods for genomic prediction of complex

phenotypes. Genet. Sel. Evolut. 52, 12. doi: 10.1186/s12711-020-00531-z

AlKhalifah, N., Campbell, D. A., Falcon, C. M., Gardiner, J. M., Miller, N. D.,

Romay, M. C., et al. (2018). Maize genomes to fields: 2014 and 2015 field season

genotype, phenotype, environment, and inbred ear image datasets. BMC Res.

Notes 11:452. doi: 10.1186/s13104-018-3508-1

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998).Crop Evapotranspiration-

Guidelines for Computing Crop Water Requirements-Fao Irrigation and

Drainage Paper 56, Vol. 300. Rome: Fao. D05109.

Azodi, C. B., Bolger, E., McCarren, A., Roantree, M., de Los Campos, G.,

and Shiu, S.-H. (2019). Benchmarking parametric and machine learning

models for genomic prediction of complex traits. G3 9, 3691–3702.

doi: 10.1534/g3.119.400498

Bandeira e Sousa, M., Cuevas, J., de Oliveira Couto, E. G., Pérez-Rodríguez, P.,

Jarquín, D., Fritsche-Neto, R., et al. (2017). Genomic-enabled prediction in

maize using kernel models with genotype× environment interaction. G3 7,

1995–2014. doi: 10.1534/g3.117.042341

Baskerville, G. L., and Emin, P. (1969). Rapid estimation of heat accumulation

from maximum and minimum temperatures. Ecology 50, 514–517.

doi: 10.2307/1933912

Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., et al. (2014).

How do various maize crop models vary in their responses to climate change

factors? Glob. Chang Biol. 20, 2301–2320. doi: 10.1111/gcb.12520

Bates, D., Mchler, M., Bolker, B., andWalker, S. (2015). Fitting linear mixed-effects

models using lme4. J. Stat. Softw. Articles 67, 1–48. doi: 10.18637/jss.v067.i01

Behravan, H., Hartikainen, J. M., Tengström, M., Pylkäs, K., Winqvist, R., Kosma,

V.-M., et al. (2018). Machine learning identifies interacting genetic variants

contributing to breast cancer risk: a case study in Finnish cases and controls.

Sci. Rep. 8, 1–13. doi: 10.1038/s41598-018-31573-5

Bellot, P., de Los Campos, G., and Pérez-Enciso, M. (2018). Can deep learning

improve genomic prediction of complex human traits? Genetics 210, 809–819.

doi: 10.1534/genetics.118.301298

Bernal-Vasquez, A.-M., Gordillo, A., Schmidt, M., and Piepho, H.-P. (2017).

Genomic prediction in early selection stages using multi-year data in a

hybrid rye breeding program. BMC Genet. 18:51. doi: 10.1186/s12863-017-

0512-8

Biecek, P. (2018). Dalex: Explainers for complex predictive models in r. J. Mach.

Learn. Res. 19, 3245–3249.

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y.,

and Buckler, E. S. (2007). Tassel: software for association mapping

of complex traits in diverse samples. Bioinformatics 23, 2633–2635.

doi: 10.1093/bioinformatics/btm308

Brock, J., Lange, M., Tratalos, J. A., More, S. J., Graham, D. A., Guelbenzu-

Gonzalo, M., et al. (2021). Combining expert knowledge and machine-

learning to classify herd types in livestock systems. Sci. Rep. 11, 1–10.

doi: 10.1038/s41598-021-82373-3

Burgueño, J., de los Campos, G., Weigel, K., and Crossa, J. (2012). Genomic

prediction of breeding values when modeling genotype environment

interaction using pedigree and dense molecular markers. Crop Sci. 52, 707–719.

doi: 10.2135/cropsci2011.06.0299

Bustos-Korts, D., Boer, M. P., Malosetti, M., Chapman, S., Chenu, K., Zheng,

B., et al. (2019). Combining crop growth modeling and statistical genetic

modeling to evaluate phenotyping strategies. Front. Plant Sci. 10:1491.

doi: 10.3389/fpls.2019.01491

Butler, E. E., and Huybers, P. (2015). Variations in the sensitivity of US maize yield

to extreme temperatures by region and growth phase. Environ. Res. Lett. 10,

034009. doi: 10.1088/1748-9326/10/3/034009

Cakir, R. (2004). Effect of water stress at different development stages on

vegetative and reproductive growth of corn. Field Crops Res. 89, 1–16.

doi: 10.1016/j.fcr.2004.01.005

Chen, T., and Guestrin, C. (2016). “Xgboost: a scalable tree boosting system,” in

Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge

Discovery and Data Mining, 785–794.

Chenu, K. (2015). Characterising the crop environment – Nature, significance

and applications. In: Crop Physiology. Applications for Genetic Improvement

and Agronomy, eds Sadras V. and Calderini D. London: Elsevier, 321–348.

doi: 10.1016/B978-0-12-417104-6.00013-3

Cicchino, M., Edreira, J. I. R., Uribelarrea, M., and Otegui, M. E. (2010). Heat stress

in field-grown maize: response of physiological determinants of grain yield.

Crop Sci. 50, 1438–1448. doi: 10.2135/cropsci2009.10.0574

Cooper, M., and DeLacy, I. (1994). Relationships among analytical methods used

to study genotypic variation and genotype-by-environment interaction in plant

breeding multi-environment experiments. Theor. Appl. Genet. 88, 561–572.

doi: 10.1007/BF01240919

Costa-Neto, G., Fritsche-Neto, R., and Crossa, J. (2020a). Nonlinear kernels,

dominance, and envirotyping data increase the accuracy of genome-

based prediction in multi-environment trials. Heredity 126, 92–106.

doi: 10.1038/s41437-020-00353-1

Costa-Neto, G. M. F., Júnior, O. P. M., Heinemann, A. B., de Castro, A.

P., and Duarte, J. B. (2020b). A novel gis-based tool to reveal spatial

trends in reaction norm: upland rice case study. Euphytica 216, 1–16.

doi: 10.1007/s10681-020-2573-4

Crane-Droesch, A. (2018).Machine learningmethods for crop yield prediction and

climate change impact assessment in agriculture. Environ. Res. Lett. 13, 114003.

doi: 10.1088/1748-9326/aae159

Crossa, J., Neto, R.-F., Montesinos-López, O. A., Costa-Neto, G. M. F.,

Dreisigacker, S., Montesinos-Lopez, A., et al. (2021). The modern plant

breeding triangle: optimising the use of genomics, phenomics and enviromics

data. Front. Plant Sci. 12:332. doi: 10.3389/fpls.2021.651480

Cuevas, J., Granato, I., Fritsche-Neto, R., Montesinos-Lopez, O. A., Burgueño,

J., Bandeira e Sousa, M., et al. (2018). Genomic-enabled prediction kernel

models with random intercepts for multi-environment trials. G3 8, 1347–1365.

doi: 10.1534/g3.117.300454

De Los Campos, G., Pérez-Rodríguez, P., Bogard, M., Gouache, D., and

Crossa, J. (2020). A data-driven simulation platform to predict cultivars

performances under uncertain weather conditions. Nat. Commun. 11, 1–10.

doi: 10.1038/s41467-020-18480-y

Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D.,

Pati, V. H., et al. (2016). Assessing weather-yield relationships in rice

at local scale using data mining approaches. PLoS ONE 11:e0161620.

doi: 10.1371/journal.pone.0161620

Denmead, O., and Shaw, R. H. (1960). The effects of soil moisture stress at different

stages of growth on the development and yield of corn 1. Agron. J. 52, 272–274.

doi: 10.2134/agronj1960.00021962005200050010x

Elith, J., Leathwick, J. R., and Hastie, T. (2008). A working

guide to boosted regression trees. J. Anim. Ecol. 77, 802–813.

doi: 10.1111/j.1365-2656.2008.01390.x

Frontiers in Plant Science | www.frontiersin.org 19 November 2021 | Volume 12 | Article 699589

https://www.frontiersin.org/articles/10.3389/fpls.2021.699589/full#supplementary-material
https://doi.org/10.1186/s12711-020-00531-z
https://doi.org/10.1186/s13104-018-3508-1
https://doi.org/10.1534/g3.119.400498
https://doi.org/10.1534/g3.117.042341
https://doi.org/10.2307/1933912
https://doi.org/10.1111/gcb.12520
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1038/s41598-018-31573-5
https://doi.org/10.1534/genetics.118.301298
https://doi.org/10.1186/s12863-017-0512-8
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1038/s41598-021-82373-3
https://doi.org/10.2135/cropsci2011.06.0299
https://doi.org/10.3389/fpls.2019.01491
https://doi.org/10.1088/1748-9326/10/3/034009
https://doi.org/10.1016/j.fcr.2004.01.005
https://doi.org/10.1016/B978-0-12-417104-6.00013-3
https://doi.org/10.2135/cropsci2009.10.0574
https://doi.org/10.1007/BF01240919
https://doi.org/10.1038/s41437-020-00353-1
https://doi.org/10.1007/s10681-020-2573-4
https://doi.org/10.1088/1748-9326/aae159
https://doi.org/10.3389/fpls.2021.651480
https://doi.org/10.1534/g3.117.300454
https://doi.org/10.1038/s41467-020-18480-y
https://doi.org/10.1371/journal.pone.0161620
https://doi.org/10.2134/agronj1960.00021962005200050010x
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Westhues et al. Genomic Prediction With Gradient Boosting

Ersoz, E. S., Martin, N. F., and Stapleton, A. E. (2020). On to the next chapter

for crop breeding: convergence with data science. Crop Sci. 60, 639–655.

doi: 10.1002/csc2.20054

Estévez, J., Gavilán, P., and Giráldez, J. V. (2011). Guidelines on validation

procedures for meteorological data from automatic weather stations. J. Hydrol.

402, 144–154. doi: 10.1016/j.jhydrol.2011.02.031

Falcon, C. M., Kaeppler, S. M., Spalding, E. P., Miller, N. D., Haase, N., AlKhalifah,

N., et al. (2020). Relative utility of agronomic, phenological, and morphological

traits for assessing genotype-by-environment interaction in maize inbreds.

Crop Sci. 60, 62–81. doi: 10.1002/csc2.20035

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting

machine. Ann. Stat. 29, 1189–1232. doi: 10.1214/aos/1013203451

Fukuda, S., Spreer, W., Yasunaga, E., Yuge, K., Sardsud, V., and Müller, J. (2013).

Random Forests modelling for the estimation of mango (Mangifera indica L.

cv. Chok Anan) fruit yields under different irrigation regimes. Agric. Water

Manage. 116, 142–150. doi: 10.1016/j.agwat.2012.07.003

Gage, J. L., Jarquin, D., Romay, C., Lorenz, A., Buckler, E. S., Kaeppler, S., et al.

(2017). The effect of artificial selection on phenotypic plasticity in maize. Nat.

Commun. 8, 1–11. doi: 10.1038/s41467-017-01450-2

Géron, A. (2019). Hands-on Machine Learning With Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.

O’Reilly Media.

Gillberg, J., Marttinen, P., Mamitsuka, H., and Kaski, S. (2019).

Modelling G–E with historical weather information improves genomic

prediction in new environments. Bioinformatics 35, 4045–4052.

doi: 10.1093/bioinformatics/btz197

González-Recio, O., Jiménez-Montero, J., and Alenda, R. (2013). The gradient

boosting algorithm and random boosting for genome-assisted evaluation in

large data sets. J. Dairy Sci. 96, 614–624. doi: 10.3168/jds.2012-5630

Gräler, B., Pebesma, E., and Heuvelink, G. (2016). Spatio-temporal interpolation

using gstat. R J. 8, 204–218. doi: 10.32614/RJ-2016-014

Greaves, J. A. (1996). Improving suboptimal temperature tolerance in maize-

the search for variation. J. Exp. Bot. 47, 307–323. doi: 10.1093/jxb/

47.3.307

Haley, C., and Visscher, P. (1998). Strategies to utilize marker-quantitative trait

loci associations. J. Dairy Sci. 81, 85–97. doi: 10.3168/jds.S0022-0302(98)

70157-2

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics,

2nd Edn. New York, NY: Springer.

Hatfield, J. L., Boote, K. J., Kimball, B., Ziska, L., Izaurralde, R. C., Ort, D.,

et al. (2011). Climate impacts on agriculture: implications for crop production.

Agron. J. 103, 351–370. doi: 10.2134/agronj2010.0303

Hatfield, J. L., and Prueger, J. H. (2015). Temperature extremes: effect

on plant growth and development. Weather Climate Extremes 10, 4–10.

doi: 10.1016/j.wace.2015.08.001

Heslot, N., Akdemir, D., Sorrells, M. E., and Jannink, J.-L. (2014a). Integrating

environmental covariates and crop modeling into the genomic selection

framework to predict genotype by environment interactions. Theor. Appl.

Genet. 127, 463–480.

Heslot, N., Akdemir, D., Sorrells, M. E., and Jannink, J.-L. (2014b). Integrating

environmental covariates and crop modeling into the genomic selection

framework to predict genotype by environment interactions. Theor. Appl.

Genet. 127, 463–480. doi: 10.1007/s00122-013-2231-5

Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N.

I., McLean, G., et al. (2014). Apsim-evolution towards a new generation

of agricultural systems simulation. Environ. Model. Softw. 62, 327–350.

doi: 10.1016/j.envsoft.2014.07.009

Hutter, F., Hoos, H., and Leyton-Brown, K. (2014). “An efficient approach for

assessing hyperparameter importance,” in International Conference on Machine

Learning (PMLR), 754–762.

Jarquin, D., De Leon, N., Romay, M. C., Bohn, M. O., Buckler, E. S., Ciampitti, I.

A., et al. (2020). Utility of climatic information via combining ability models

to improve genomic prediction for yield within the genomes to fields maize

project. Front. Genet. 11:1819. doi: 10.3389/fgene.2020.592769

Jarquín, D., Lemes da Silva, C., Gaynor, R. C., Poland, J., Fritz, A., Howard, R.,

et al. (2017). Increasing genomic-enabled prediction accuracy by modeling

genotype× environment interactions in kansas wheat. Plant Genome 10, 1–15.

doi: 10.3835/plantgenome2016.12.0130

Jarquín, D., Crossa, J., Lacaze, X., Du Cheyron, P., Daucourt, J., Lorgeou, J.,

et al. (2014). A reaction norm model for genomic selection using high-

dimensional genomic and environmental data. Theor. Appl. Genet. 127,

595–607. doi: 10.1007/s00122-013-2243-1

Jeong, J. H., Resop, J. P., Mueller, N. D., Fleisher, D. H., Yun, K., Butler, E. E., et al.

(2016). Random forests for global and regional crop yield predictions. PLoS

ONE 11:e0156571. doi: 10.1371/journal.pone.0156571

Juliana, P., Montesinos-López, O. A., Crossa, J., Mondal, S., Pérez, L. G., Poland,

J., et al. (2019). Integrating genomic-enabled prediction and high-throughput

phenotyping in breeding for climate-resilient bread wheat. Theor. Appl. Genet.

132, 177–194. doi: 10.1007/s00122-018-3206-3

Kagawa, R., Kawazoe, Y., Ida, Y., Shinohara, E., Tanaka, K., Imai, T., et al.

(2017). Development of type 2 diabetes mellitus phenotyping framework using

expert knowledge and machine learning approach. J. Diabetes Sci. Technol. 11,

791–799. doi: 10.1177/1932296816681584

Kassambara, A., and Mundt, F. (2017). Package factoextra. Extract and visualize

the results of multivariate data analyses 76.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). “Lightgbm:

a highly efficient gradient boosting decision tree,” in Advances in Neural

Information Processing Systems, 30, 3146–3154.

Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson,

M. J., Holzworth, D., et al. (2003). An overview of apsim, a model

designed for farming systems simulation. Eur. J. Agron. 18, 267–288.

doi: 10.1016/S.1161-0301(02)00108-9

Kopitar, L., Kocbek, P., Cilar, L., Sheikh, A., and Stiglic, G. (2020). Early detection

of type 2 diabetes mellitus usingmachine learning-based predictionmodels. Sci.

Rep. 10, 1–12. doi: 10.1038/s41598-020-68771-z

Köppen, W., and Geiger, R. (1930). Handbuch der Klimatologie, Vol. 1. Gebrüder

Borntraeger Berlin.

Kuhn, M., and Johnson, K. (2013).Applied Predictive Modeling, Vol. 26. New York,

NY: Springer.

Kuhn, M., and Wickham, H. (2020). Tidymodels: a collection of packages for

modeling and machine learning using tidyverse principles. Available online at:

https://www.tidymodels.org

Lampa, E., Lind, L., Lind, P. M., and Bornefalk-Hermansson, A. (2014).

The identification of complex interactions in epidemiology and toxicology:

a simulation study of boosted regression trees. Environ. Health 13:57.

doi: 10.1186/1476-069X-13-57

Li, B., Zhang, N., Wang, Y.-G., George, A., Reverter, A., and Li, Y. (2018). Genomic

prediction of breeding values using a subset of snps identified by three machine

learning methods. Front. Genet. 9:237. doi: 10.3389/fgene.2018.00237

Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E., and Peng, B. (2019). Excessive

rainfall leads to maize yield loss of a comparable magnitude to extreme drought

in the united states. Glob. Chang Biol. 25, 2325–2337. doi: 10.1111/gcb.14628

Lizaso, J., Ruiz-Ramos, M., Rodríguez, L., Gabaldon-Leal, C., Oliveira, J., Lorite,

I., et al. (2018). Impact of high temperatures in maize: phenology and yield

components. Field Crops Res. 216, 129–140. doi: 10.1016/j.fcr.2017.11.013

Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B., Rejesus, R. M.,

et al. (2014). Greater sensitivity to drought accompanies maize yield increase in

the U.S. Midwest. Science 344, 516–519. doi: 10.1126/science.1251423

Malosetti, M., Bustos-Korts, D., Boer, M. P., and van Eeuwijk, F. A.

(2016). Predicting responses in multiple environments: issues in

relation to genotype environment interactions. Crop Sci. 56, 2210–2222.

doi: 10.2135/cropsci2015.05.0311

Malosetti, M., Voltas, J., Romagosa, I., Ullrich, S., and Van Eeuwijk,

F. (2004). Mixed models including environmental covariables for

studying qtl by environment interaction. Euphytica 137, 139–145.

doi: 10.1023/B:EUPH.0000040511.46388.ef

McFarland, B. A., AlKhalifah, N., Bohn, M., Bubert, J., Buckler, E. S., Ciampitti, I.,

et al. (2020). Maize genomes to fields (g2f): 2014-2017 field seasons: genotype,

phenotype, climatic, soil, and inbred ear image datasets. BMC Res. Notes 13,

1–6. doi: 10.1186/s13104-020-4922-8

Meuwissen, T. H., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total

genetic value using genome-wide dense marker maps.Genetics 157, 1819–1829.

doi: 10.1093/genetics/157.4.1819

Frontiers in Plant Science | www.frontiersin.org 20 November 2021 | Volume 12 | Article 699589

https://doi.org/10.1002/csc2.20054
https://doi.org/10.1016/j.jhydrol.2011.02.031
https://doi.org/10.1002/csc2.20035
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.agwat.2012.07.003
https://doi.org/10.1038/s41467-017-01450-2
https://doi.org/10.1093/bioinformatics/btz197
https://doi.org/10.3168/jds.2012-5630
https://doi.org/10.32614/RJ-2016-014
https://doi.org/10.1093/jxb/47.3.307
https://doi.org/10.3168/jds.S0022-0302(98)70157-2
https://doi.org/10.2134/agronj2010.0303
https://doi.org/10.1016/j.wace.2015.08.001
https://doi.org/10.1007/s00122-013-2231-5
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.3389/fgene.2020.592769
https://doi.org/10.3835/plantgenome2016.12.0130
https://doi.org/10.1007/s00122-013-2243-1
https://doi.org/10.1371/journal.pone.0156571
https://doi.org/10.1007/s00122-018-3206-3
https://doi.org/10.1177/1932296816681584
https://doi.org/10.1016/S.1161-0301(02)00108-9
https://doi.org/10.1038/s41598-020-68771-z
https://www.tidymodels.org
https://doi.org/10.1186/1476-069X-13-57
https://doi.org/10.3389/fgene.2018.00237
https://doi.org/10.1111/gcb.14628
https://doi.org/10.1016/j.fcr.2017.11.013
https://doi.org/10.1126/science.1251423
https://doi.org/10.2135/cropsci2015.05.0311
https://doi.org/10.1023/B:EUPH.0000040511.46388.ef
https://doi.org/10.1186/s13104-020-4922-8
https://doi.org/10.1093/genetics/157.4.1819
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Westhues et al. Genomic Prediction With Gradient Boosting

Millet, E. J., Kruijer, W., Coupel-Ledru, A., Alvarez Prado, S., Cabrera-

Bosquet, L., Lacube, S., et al. (2019). Genomic prediction of maize

yield across European environmental conditions. Nat. Genet. 51, 952–956.

doi: 10.1038/s41588-019-0414-y
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engineering meteorological features to select stress tolerant hybrids in maize.

Sci. Rep. 10, 1–10. doi: 10.1038/s41598-020-60366-y

Moisen, G. G., Freeman, E. A., Blackard, J. A., Frescino, T. S., Zimmermann,

N. E., and Edwards Jr, T. C. (2006). Predicting tree species presence and

basal area in utah: a comparison of stochastic gradient boosting, generalized

additive models, and tree-based methods. Ecol. Modell. 199, 176–187.

doi: 10.1016/j.ecolmodel.2006.05.021

Money, D., Gardner, K., Migicovsky, Z., Schwaninger, H., Zhong, G.-Y., andMyles,

S. (2015). Linkimpute: fast and accurate genotype imputation for nonmodel

organisms. G3 5, 2383–2390. doi: 10.1534/g3.115.021667

Monteverde, E., Gutierrez, L., Blanco, P., Prez de Vida, F., Rosas, J. E., Bonnecarrre,

V., et al. (2019). Integratingmolecularmarkers and environmental covariates to

interpret genotype by environment interaction in rice (Oryza sativa L.) grown

in subtropical areas. G3 9, 1519–1531. doi: 10.1534/g3.119.400064

Mushore, T., Manatsa, D., Pedzisai, E., Muzenda-Mudavanhu, C., Mushore, W.,

and Kudzotsa, I. (2017). Investigating the implications of meteorological

indicators of seasonal rainfall performance on maize yield in a rain-fed

agricultural system: case study of mt. darwin district in zimbabwe. Theor. Appl.

Climatol. 129, 1167–1173. doi: 10.1007/s00704-016-1838-2

Netzeva, T. I., Worth, A. P., Aldenberg, T., Benigni, R., Cronin, M. T., Gramatica,

P., et al. (2005). Current status of methods for defining the applicability

domain of (quantitative) structure-activity relationships: the report and

recommendations of ecvam workshop 52. Alternat. Lab. Anim. 33, 155–173.

doi: 10.1177/026119290503300209

Ogutu, J. O., Piepho, H.-P., and Schulz-Streeck, T. (2011). A comparison of

random forests, boosting and support vector machines for genomic selection.

BMC Proc. 5, 1–5. doi: 10.1186/1753-6561-5-S3-S11

Olivoto, T., Nardino, M., Carvalho, I., Follmann, D., Ferrari, M., Szareski, V., et al.

(2017). Reml/blup and sequential path analysis in estimating genotypic values

and interrelationships among simple maize grain yield-related traits. Genet.

Mol. Res. 16, 1–19. doi: 10.4238/gmr16019525

Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers

Geosci. 30, 683–691. doi: 10.1016/j.cageo.2004.03.012

Pérez, P., and de Los Campos, G. (2014). Genome-wide regression and

prediction with the bglr statistical package. Genetics 198, 483–495.

doi: 10.1534/genetics.114.164442

Pérez-Rodríguez, P., Crossa, J., Bondalapati, K., De Meyer, G., Pita, F., and

de los Campos, G. (2015). A pedigree-based reaction norm model for

prediction of cotton yield in multienvironment trials. Crop Sci. 55, 1143–1151.

doi: 10.2135/cropsci2014.08.0577

Pérez-Rodríguez, P., Crossa, J., Rutkoski, J., Poland, J., Singh, R., Legarra, A., et al.

(2017). Single-step genomic and pedigree genotype× environment interaction

models for predicting wheat lines in international environments. Plant Genome

10:plantgenome2016-09. doi: 10.3835/plantgenome2016.09.0089

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D.,

et al. (2007). Plink: a tool set for whole-genome association and population-

based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/51

9795

R Core Team (2019). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing.

Rahmstorf, S., Foster, G., and Cazenave, A. (2012). Comparing climate

projections to observations up to 2011. Environ. Res. Lett. 7, 044035.

doi: 10.1088/1748-9326/7/4/044035

Ridgeway, G. (2007). Generalized boosted models: a guide to the gbm package.

Update Univ S C Dep Music. 1, 2007.

Rincent, R., Kuhn, E., Monod, H., Oury, F.-X., Rousset, M., Allard, V., et al.

(2017). Optimization of multi-environment trials for genomic selection based

on crop models. Theor. Appl. Genet. 130, 1735–1752. doi: 10.1007/s00122-017-

2922-4

Rincent, R., Malosetti, M., Ababaei, B., Touzy, G., Mini, A., Bogard, M., et al.

(2019). Using crop growth model stress covariates and ammi decomposition to

better predict genotype-by-environment interactions. Theor. Appl. Genet. 132,

3399–3411. doi: 10.1007/s00122-019-03432-y

Ritchie, S. W., Hanway, J. J., Benson, G. O., Herman, J. C., and Lupkes, S. J. (1993).

How a Corn Plant Develops. Iowa State University Cooperative. Extension

Special report 48.

Roe, K. D., Jawa, V., Zhang, X., Chute, C. G., Epstein, J. A.,Matelsky, J., et al. (2020).

Feature engineering with clinical expert knowledge: a case study assessment of

machine learning model complexity and performance. PLoS ONE 15:e0231300.

doi: 10.1371/journal.pone.0231300

Rogers, A. R., Dunne, J. C., Romay, C., Bohn, M., Buckler, E. S., Ciampitti, I.

A., et al. (2021). The importance of dominance and genotype-by-environment

interactions on grain yield variation in a large-scale public cooperative maize

experiment. G3. 11:jkaa050. doi: 10.1093/g3journal/jkaa050

Romagnoni, A., Jégou, S., Van Steen, K., Wainrib, G., and Hugot, J.-P. (2019).

Comparative performances of machine learning methods for classifying crohn

disease patients using genome-wide genotyping data. Sci. Rep. 9, 1–18.

doi: 10.1038/s41598-019-46649-z

Schlenker, W., and Roberts, M. J. (2009). Nonlinear temperature effects indicate

severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Scie.

U.S.A. 106, 15594–15598. doi: 10.1073/pnas.0906865106

Shahhosseini, M., Hu, G., and Archontoulis, S. V. (2020). Forecasting

corn yield with machine learning ensembles. Front. Plant Sci. 11:1120.

doi: 10.3389/fpls.2020.01120

Snoek, J., Larochelle, H., and Adams, R. P. (2012). “Practical bayesian optimization

of machine learning algorithms,” in Proceedings of the 25th International

Conference on Neural Information Processing Systems, Vol. 2, NIPS’12 (Red

Hook, NY: Curran Associates Inc.), 2951–2959.

Sparks, A. (2018). nasapower: a nasa power global meteorology, surface solar

energy and climatology data client for r. J. Open Source Softw. 3:1035.

doi: 10.21105/joss.01035

Sukumaran, S., Crossa, J., Jarquín, D., and Reynolds, M. (2017). Pedigree-

based prediction models with genotype× environment interaction in

multienvironment trials of cimmyt wheat. Crop Sci. 57, 1865–1880.

doi: 10.2135/cropsci2016.06.0558

Sukumaran, S., Jarquin, D., Crossa, J., and Reynolds, M. (2018). Genomic-

enabled prediction accuracies increased by modeling genotype×

environment interaction in durum wheat. Plant Genome 11, 1–11.

doi: 10.3835/plantgenome2017.12.0112

Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., and Bennett, M. (2017).

Plant phenomics, from sensors to knowledge. Curr. Biol. 27, R770–R783.

doi: 10.1016/j.cub.2017.05.055

Technow, F., Messina, C. D., Totir, L. R., and Cooper, M. (2015). Integrating crop

growth models with whole genome prediction through approximate bayesian

computation. PLoS ONE 10:e0130855. doi: 10.1371/journal.pone.0130855

Tiezzi, F., de Los Campos, G., Gaddis, K. P., and Maltecca, C. (2017).

Genotype by environment (climate) interaction improves genomic prediction

for production traits in us holstein cattle. J. Dairy Sci. 100, 2042–2056.

doi: 10.3168/jds.2016-11543

Trnka, M., Rtter, R. P., Ruiz-Ramos, M., Kersebaum, K. C., Olesen, J. E., Ealud,

Z., et al. (2014). Adverse weather conditions for european wheat production

will become more frequent with climate change. Nat. Clim. Chang 4, 637–643.

doi: 10.1038/nclimate2242

Troy, T. J., Kipgen, C., and Pal, I. (2015). The impact of climate extremes

and irrigation on us crop yields. Environ. Res. Lett. 10:054013.

doi: 10.1088/1748-9326/10/5/054013

van Eeuwijk, F. A., Denis, J. B., and Kang, M. S. (1996). “Incorporating additional

information on genotypes and environments in models for two-way genotype

by environment tables.” in Genotype-by-Environment Interaction, eds M. S.

Kang and H. G. Gauch (Boca Raton, FL: CRC Press Inc.), 15–50.

Van Rijn, J. N., and Hutter, F. (2018). “Hyperparameter importance across

datasets,” in Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery Data Mining, 2367–2376.

Varma, S., and Simon, R. (2006). Bias in error estimation when using

cross-validation for model selection. BMC Bioinformatics 7:91.

doi: 10.1186/1471-2105-7-91

Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A.,

and Dawe, D. (2010). Rice yields in tropical/subtropical asia exhibit large

but opposing sensitivities to minimum and maximum temperatures.

Proc. Natl. Acad. Sci. U.S.A. 107, 14562–14567. doi: 10.1073/pnas.

1001222107

Frontiers in Plant Science | www.frontiersin.org 21 November 2021 | Volume 12 | Article 699589

https://doi.org/10.1038/s41588-019-0414-y
https://doi.org/10.1038/s41598-020-60366-y
https://doi.org/10.1016/j.ecolmodel.2006.05.021
https://doi.org/10.1534/g3.115.021667
https://doi.org/10.1534/g3.119.400064
https://doi.org/10.1007/s00704-016-1838-2
https://doi.org/10.1177/026119290503300209
https://doi.org/10.1186/1753-6561-5-S3-S11
https://doi.org/10.4238/gmr16019525
https://doi.org/10.1016/j.cageo.2004.03.012
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.2135/cropsci2014.08.0577
https://doi.org/10.3835/plantgenome2016.09.0089
https://doi.org/10.1086/519795
https://doi.org/10.1088/1748-9326/7/4/044035
https://doi.org/10.1007/s00122-017-2922-4
https://doi.org/10.1007/s00122-019-03432-y
https://doi.org/10.1371/journal.pone.0231300
https://doi.org/10.1093/g3journal/jkaa050
https://doi.org/10.1038/s41598-019-46649-z
https://doi.org/10.1073/pnas.0906865106
https://doi.org/10.3389/fpls.2020.01120
https://doi.org/10.21105/joss.01035
https://doi.org/10.2135/cropsci2016.06.0558
https://doi.org/10.3835/plantgenome2017.12.0112
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.1371/journal.pone.0130855
https://doi.org/10.3168/jds.2016-11543
https://doi.org/10.1038/nclimate2242
https://doi.org/10.1088/1748-9326/10/5/054013
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1073/pnas.1001222107
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Westhues et al. Genomic Prediction With Gradient Boosting

Williams, C. K., and Rasmussen, C. E. (2006). Gaussian Processes for Machine

Learning, Vol. 2. Cambridge, MA: MIT Press.

Yu, J., Shi, S., Zhang, F., Chen, G., and Cao, M. (2019). Predgly: predicting

lysine glycation sites for homo sapiens based on xgboost feature optimization.

Bioinformatics 35, 2749–2756. doi: 10.1093/bioinformatics/bty1043

Zahumenský, I. (2004). Guidelines on Quality Control Procedures for Data From

Automatic Weather Stations. World Meteorological Organization.

Zhu, P., Zhuang, Q., Archontoulis, S. V., Bernacchi, C., and Müller, C. (2019).

Dissecting the nonlinear response of maize yield to high temperature

stress with model-data integration. Glob. Chang Biol. 25, 2470–2484.

doi: 10.1111/gcb.14632

Zingaretti, L. M., Gezan, S. A., Ferrão, L. F. V., Osorio, L. F., Monfort, A.,

Muñoz, P. R., et al. (2020). Exploring deep learning for complex trait

genomic prediction in polyploid outcrossing species. Front. Plant Sci. 11:25.

doi: 10.3389/fpls.2020.00025

Zou, H., and Hastie, T. (2005). Regularization and variable selection via

the elastic net. J. R. Stat. Soc. 67, 301–320. doi: 10.1111/j.1467-9868.2005.

00503.x

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Westhues, Mahone, da Silva, Thorwarth, Schmidt, Richter,

Simianer and Beissinger. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 22 November 2021 | Volume 12 | Article 699589

https://doi.org/10.1093/bioinformatics/bty1043
https://doi.org/10.1111/gcb.14632
https://doi.org/10.3389/fpls.2020.00025
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Prediction of Maize Phenotypic Traits With Genomic and Environmental Predictors Using Gradient Boosting Frameworks
	1. Introduction
	2. Materials and Methods
	2.1. Phenotypic Data Cleaning and Analysis
	2.2. Genotypic Data
	2.3. Weather Data
	2.4. Derivation of Environmental Variables per Hybrid Growth Stage
	2.5. Prediction Models Implemented
	2.5.1. Linear Random Effects Models (LRE Models)
	2.5.2. Machine Learning Based-Methods Used
	2.5.3. Data Pre-processing for Machine Learning-Based Models
	2.5.4. Optimization of Hyperparameters and Hyperparameter Importance for Machine Learning-Based Models
	2.5.5. Assessment of Prediction Accuracy for New Environments

	2.6. Variable Importance and Partial Dependence Plots for Grain Yield
	2.7. Code Availability

	3. Results
	3.1. Variability of Climatic Conditions in the Panel of Environments
	3.2. Hyperparameter Importance for Gradient Boosting Approaches
	3.3. Comparison of Model Performance Across Two Traits and Four Different CV Scenarios
	3.4. Variable Importance

	4. Discussion
	4.1. Comparison of Prediction Methods Across the Two Traits
	4.2. Model Performance Under Various Prediction Problems
	4.3. Incorporation of Weather-Covariates in the Predictive Models
	4.4. Prerequisites to Use Machine Learning-Based Models and Their Usefulness to Understand Significant Environmental Factors
	4.5. Applications

	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


