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Biofortification breeding for three important micronutrients for human health, namely,

iron (Fe), zinc (Zn), and provitamin A (PVA), has gained momentum in recent years.

HarvestPlus, along with its global consortium partners, enhances Fe, Zn, and PVA

in staple crops. The strategic and applied research by HarvestPlus is driven by

product-based impact pathway that integrates crop breeding, nutrition research, impact

assessment, advocacy, and communication to implement country-specific crop delivery

plans. Targeted breeding has resulted in 393 biofortified crop varieties by the end of

2020, which have been released or are in testing in 63 countries, potentially benefitting

more than 48 million people. Nevertheless, to reach more than a billion people by 2030,

future breeding lines that are being distributed by Consultative Group on International

Agricultural Research (CGIAR) centers and submitted by National Agricultural Research

System (NARS) to varietal release committees should be biofortified. It is envisaged that

the mainstreaming of biofortification traits will be driven by high-throughput micronutrient

phenotyping, genomic selection coupled with speed breeding for accelerating genetic

gains. It is noteworthy that targeted breeding gradually leads to mainstreaming, as the

latter capitalizes on the progress made in the former. Efficacy studies have revealed the

nutritional significance of Fe, Zn, and PVA biofortified varieties over non-biofortified ones.

Mainstreaming will ensure the integration of biofortified traits into competitive varieties

and hybrids developed by private and public sectors. The mainstreaming strategy has

just been initiated in select CGIAR centers, namely, International Maize and Wheat

Improvement Center (CIMMYT), International Rice Research Institute (IRRI), International

Crops Research Institute for the Semi-Arid Tropics (ICRISAT), International Institute of

Tropical Agriculture (IITA), and International Center for Tropical Agriculture (CIAT). This

review will present the key successes of targeted breeding and its relevance to the

mainstreaming approaches to achieve scaling of biofortification to billions sustainably.
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INTRODUCTION

Globally, micronutrient malnutrition or hidden hunger is
affecting more than 2 billion people according to the 2014 Global
Hunger Index [(IFPRI (International Food Policy Research
Institute), 2014); (FAO, 2019)]. Malnutrition is primarily a
result of one or more micronutrient deficiencies and is
recognized as a serious human health problem in the twenty
first century. Among the most striking of these are vitamin
A, iron (Fe), iodine (I), and zinc (Zn) deficiencies (Bailey
et al., 2015). Historical interventions, such as pharmaceutical
supplementation, industrial food fortification, and dietary
diversification, have long been used to address this problem.
The impact of food fortification is well-known, which has
been successful primarily for vitamin A and iodized salt,
and supplementation has been hugely successful in addressing
vitamin A deficiency. Dietary diversification will continue to have
relevance; however, it is subject to affordability. Biofortification
endeavors to serve hard to reach rural communities as well as
peri-urban and urban consumers (Stein et al., 2005).

Biofortification refers to a breeding process by which the
essential mineral and vitamin concentration of staple food
crops are increased through conventional plant breeding and/or
genetic modification, and the application of micronutrient
fertilizers to crops. Genetic biofortification (heritable) has proven
to be cost-effective and sustainable, as it takes the advantage to
ensure nutritional value from one crop generation to another and
serves the rural poor [(CAST (Council for Agricultural Science
and Technology), 2020)]. Nevertheless, the potential of genetic
biofortification benefits from recommended agronomic practices
and complements agronomic biofortification. Furthermore, as
biofortified varieties are grown and consumed, their adoption
does not require a change in ongoing dietary habits. Nonetheless,
deficiencies of these nutrients and vitamins cannot be addressed
by a single food crop or by a single intervention. Hence,
biofortification is likely to complement existing nutritional
strategies. Biofortified crops are being developed by the
Consultative Group on International Agricultural Research
(CGIAR) HarvestPlus program through an interdisciplinary
alliance of research institutions and implementing partners,
in particular, of primary staples such as rice (for Zn), wheat
(for Zn), maize (for Zn and PVA), cassava (for PVA), sweet
potato (for PVA), beans (for iron), and pearl millet (for iron),
based on crop and nutrient combination, hereafter referred to
as zinc rice, zinc wheat, zinc maize, iron beans, iron pearl
millet, provitamin A (PVA) maize, PVA cassava, and PVA sweet
potato, which have been published in many studies [Andersson
et al., 2017; Bouis, 2018; CAST (Council for Agricultural Science
and Technology), 2020]. In principle, biofortification target
increments of micronutrients are expected to be met without
compromising yield productivity or agronomic performance
in the target crops. This is evidenced by partnership-based
biofortification breeding, testing, and scaling-up. For instance,
about 10 million farming households are growing, while > 48
million farming household level people are potentially benefiting
from biofortified crops in > 30 countries [(CAST (Council for
Agricultural Science and Technology), 2020)].

The impact of coronavirus disease-2019 (COVID-19) is likely
to adversely impact household incomes, especially in low and
middle-income countries (LMICs) that work in farming and
rural regions of developing countries. The situation will impair
the food purchasing power of vulnerable populations. Reduced
household incomes often translate to no or little affordability
to animal- and fruit-/vegetable-based foods, increasing reliance
on locally grown staple foods to meet caloric needs (Bouis
et al., 2011). Therefore, biofortification needs to be accelerated
to disseminate more nutrient-dense varieties to the vulnerable.
During the COVID-19 pandemic, disrupted or restricted
mobility of farm produce jeopardized food supply chain in Asian
and African countries, that would lead to increase in food prices
post-COVID-19. This is likely to make food more expensive and
potentially out of the reach of poor families (Heck et al., 2020).
Hence, poor income, increasing prices of nutrient-dense foods,
and shifting policy priorities caused by COVID-19 are likely
to increase the demand for biofortified staples as a local and
affordable source of micronutrients. The impact of the current
pandemic may be extended to cultivar testing and release, and
seed production, disrupting supply chains.

This review aims to summarize the current targeted breeding
strategy for the development of biofortified primary staple crops
and to inform the prospects of mainstreaming breeding strategies
to maximize genetic gains for nutritional and agronomic traits.

TARGETED BREEDING APPROACH

Targeted breeding for micronutrient contents was conceived
by HarvestPlus, a challenge program of the CGIAR. This
targeted breeding (TB) approach is largely focused on staple
crop-trait prioritization for target countries and was based
on Biofortification Priority Index (BPI), which basically ranks
low- and middle-income countries according to the prevalence
of malnutrition (https://bpi.harvestplus.org). Establishing
global biofortification coordination to demonstrate nutritional
enhancement through crop breeding is highly feasible in a wide
range of food crops (cereals, legumes, tubers) and is a major
part of TB. In fact, TB involves breeding for a given production
zone usually defined by abiotic and biotic environmental factors,
growing conditions, and consumer preferences. Briefly, TB aims
to continuously improve the germplasm and early-stage breeding
pipeline of crops for given nutrients through building a breeding
capacity with CGIAR and partner breeding centers. Target zones
for the public (National Agricultural Research Systems-NARS)
and private sectors are, in general, within a given country. The
breeding programs of CG centers, in general, are focused on
broader geographic regions i.e., many target zones of a crop.
These target zones are so-called “Mega-Environments” (MEs) or
Target Population of Environments (TPEs) and are frequently
transcontinental. TB comprises several stages and is described
briefly hereunder.

Setting the Breeding Targets
During the conceptual development of biofortification
targeted breeding, a global working group, which consisted
of nutritionists and plant breeders, established nutritional
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breeding target increments based on the quantity of various
staple foods consumption in a given agro-ecological zone,
considering nutrient losses during storage and processing, and
nutrient bioavailability in respective crops at that time. Breeding
increment targets for biofortified crops were designed to meet
the nutritional requirements in a population, particularly for
women and children as they are the most vulnerable groups
in developing countries. Breeding targets for primary staple
crops were first proposed by Hotz and McClafferty (2007)
and were later revised as more data became available and
accessible [Andersson et al., 2017; Bouis and Saltzman, 2017;
CAST (Council for Agricultural Science and Technology), 2020].
The baseline of each essential micronutrient and vitamin was
evaluated for each crop and reported in wheat (25 ppm Zn), rice
(16 ppm Zn), maize (25 ppm Zn), beans (50 ppm Fe), pearl millet
(47 ppm Fe), maize (0 ppm PVA), sweet potato (2 ppm PVA),
and cassava (0 ppm PVA) [Beebe et al., 2000; Bouis and Saltzman,
2017; Govindaraj et al., 2019; CAST (Council for Agricultural
Science and Technology), 2020]. Most of the baseline is based
on cultivars commercially grown by farmers and pipelines. TB
targets are measured from this crop-specific baseline. For Zn
crops, namely, wheat, rice, and maize, the target increment was
set at +12 ppm; and for iron crops, it was set at +30 and +44
ppm for pearl millet and beans, respectively. For cassava and
maize, the provitamin A target was set at +15 ppm, while it was
+70 ppm for sweet potato [Bouis and Saltzman, 2017; CAST
(Council for Agricultural Science and Technology), 2020].

High-Throughput Phenotyping for
Micronutrient Densities
The development and availability of cost-effective and
high-throughput analytical methods for the unambiguous
micronutrient estimation in grain and tuber crops were
also identified as a prerequisite for TB. A large number of
samples per season were screened throughout the TB process.
The key phenotyping methods, along with the adoption
and modification of equipment, are described in detail by
Pfeiffer and McClafferty (2007), Andersson et al. (2017), and
CAST (Council for Agricultural Science and Technology)
(2020). A detailed review and the current status of high-
throughput screening methodologies are presented by Guild
et al. (2017). In general, destructive chemical digestion-based
wet lab instruments, such as those used for atomic absorption
spectroscopy (AAS) or inductively coupled plasma optical
emission spectrometry (ICP-OES), have been used to assess
the estimation of plant minerals. Considering crop cycle
time and rapid turnaround, the non-destructive method is
faster and convenient to screen thousands of breeding and
germplasm samples in a given time. Hence, x-ray fluorescence
spectroscopy (XRF) and near-infrared spectroscopy (NIRS)
have emerged as the methods of choice, as they require minimal
pre-analysis preparation and lower costs (Paltridge et al.,
2012a,b). The sample output of XRF is much higher than ICP;
for instance, about 250–300 samples can be processed per day
(Govindaraj et al., 2019). Therefore, XRF- and NIRS-based
high throughput cost-effective phenotypic tools for mineral

TABLE 1 | Prioritization of crop-nutrient combinations and Consultative Group on

International Agricultural Research (CGIAR) centers involved in targeted breeding.

Crop Nutrient Center(s)

Sweetpotato Provitamin A (PVA) CIP

PearlMillet Iron (Fe) ICRISAT

Beans Iron (Fe) CIAT

Cassava Provitamin A (PVA) CIAT,IITA

Maize Provitamin A (PVA) CIMMYT,IITA

Maize Zinc (Zn) CIMMYT,IITA

Wheat Zinc (Zn) CIMMYT

Rice Zinc (Zn) IRRI, CIAT

and carotenoid measurements are the current choice for
breeding programs.

Prioritization of Crop-Nutrient
Combinations and Breeding Centers
The following criteria were used to identify crop-nutrient
combinations and CG centers dependent on crop expertise.

1. Availability of germplasm for high-nutrient parents with
nutrient target levels.

2. Additional increments of Fe, Zn, and PVA contents are
required to have a measurable public health impact.

3. Keeping in mind to maximize impact (number of potential
malnourished consumers with high per capita consumption,
breeding capacity of centers), crop-nutrient and center
combinations were identified (Table 1).

Prioritization of Countries-Crops
Combinations
Countries and crops were identified to maximize the impact
of biofortification in TB phase. Two criteria were used in
this exercise: (1) the extent of micronutrient deficiencies
in target country populations and (2) the greatest potential
impact of targeted biofortified crops. A combination of
different indices was employed by various experts (Bouis
and Saltzman, 2017) to identify the following countries-crops
combinations (Table 2). However, in the mainstreaming phase,
these criteria may be revisited. For more details, please refer
to https://www.harvestplus.org/knowledge-market/in-the-news/
scaling-biofortified-crops-which-ones-where-and-when.

Traits Efficacy
Over 48 million people worldwide are potentially consuming
biofortified crops [Bouis and Saltzman, 2017; CAST (Council
for Agricultural Science and Technology), 2020]. It has now
been recognized that biofortified crops have the potential to
provide an additional 20 to 100% of the Estimated Average
Requirement (EAR; median daily intake value estimated to
meet the requirement of half the healthy individuals in a
life-stage and gender group) for specific nutrients based on
per capita consumption (https://www.harvestplus.org/content/
estimated-average-requirements-provided-biofortification). The
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TABLE 2 | Priority countries-primary crops combination.

Country Biofortified Crops

Bangladesh Sweet potato, Rice

Benin Pearl millet

Brazil Maize, Cassava, Sweet potato, Beans

China Sweet potato, Wheat, Rice

Colombia Beans

DR Congo Maize, Cassava, Beans

Egypt Sweet potato

Ethiopia Sweet potato

Ghana Maize, Cassava, Sweet potato

Guatemala Beans

India Sweet potato, wheat, Rice, Pearl millet

Indonesia Sweet potato

Kenya Sweet potato, Beans

Madagascar Sweet potato

Malawi Maize, Cassava, Sweet potato, Beans

Mali Maize

Mozambique Sweet potato

Niger Pearl millet

Nigeria Maize, Cassava, Sweet potato

Pakistan Wheat

Rwanda Maize, Sweet potato, Beans

Tanzania Sweet potato

Uganda Sweet potato, Beans

Vietnam Sweet potato

Zambia Maize, Sweet potato

Zimbabwe Maize, Beans

availability of screening methodologies and the setting of
breeding targets for micronutrients and other supporting
materials pave the way for starting biofortification [Govindaraj
et al., 2016, 2019; CAST (Council for Agricultural Science and
Technology), 2020].

Targeted breeding requires the availability of sufficient genetic
variation in the germplasm for the target micronutrient, as
highlighted by yellow boxes in the crop development conceptual
framework (Figure 1). Plant breeders screen existing active
germplasm collections, including released varieties, advanced
germplasm, and accessions in international and national gene
banks. This serves two purposes: (1) identify already adapted
germplasm with previously unknown micronutrient traits for
“fast-tracking” in which these are either released or relaunched
as a biofortified variety and (2) identify donor parents to be
used in making new crosses, developing molecular markers,
related genetic studies, etc. If the donor parents are identified
from unadapted landraces, pre-breeding is necessary before using
them in breeding programs. However, if adequate crop genetic
variation is present in the adapted germplasm and parents, then
selected donor parents can be directly utilized in the breeding
program (purple boxes). Fortunately, a wide range of vitamin
and mineral concentrations was available to start biofortification
(reviewed by Andersson et al., 2017). The promising parental

germplasm was used in the early stage of product development
and further parent building to set up breeding pipelines to
advance to the next stage. This process largely takes place in the
breeding center.

The next breeding steps are the intermediate and final
stage product development, which take place at both
CGIAR centers and National Agricultural Research Systems
(NARS), where breeding materials with significantly improved
nutrient concentration coupled with equal or high agronomic
performance over local control variety, as well as consumer-
preferred quality, are developed. When promising high-yielding,
high-nutrient lines are available, these are tested in multiple
target environments along with commercial checks. Participatory
variety selection (PVS) involving farmers and/or consumers
is also practiced in few crops (for example in wheat; Velu
et al., 2015). The best-performing lines are identified over
multi-site testing for genotype by the assessment of environment
(GxE) interactions and then submission to respective national
varietal release committees for their release (orange boxes). The
breeding process takes 6 to 10 years to complete depending on
the crop, screening capacity, testing networks, and program
turnaround. As a result of TB, HarvestPlus has supported
programs and, together with its CIP partner, has released 393
biofortified varieties of 12 crops in 49 countries (Figure 2;
Supplementary Table 1).

TB: Progress and Variety Releases
The biofortified germplasm, varietal development, and release
progress until 2016 was reviewed by Andersson et al. (2017).
The following section briefly discusses the progress made in
crop development and variety releases until 2020 for primary
staple crops.

Zinc Wheat
Global wheat production was at a record high at 773 million
metric tons in 2020–2021 (http://www.fao.org/faostat/en/#data/
QCL; https://www.statista.com/statistics/267268/production-of-
wheat-worldwide-since-1990/). Wheat provides ≥20% of daily
dietary energy globally and is a good source of iron and zinc
(Velu et al., 2017). A breeding target of an additional 12 ppm was
set [(CAST (Council for Agricultural Science and Technology),
2020)]. Several studies have indicated that ample genetic
variation in wheat exists for the success of a biofortified wheat
breeding program. Hence, to start with, a breeding program was
initiated in the International Maize and Wheat Improvement
Center (CIMMYT). In particular, two key nurseries, namely,
HarvestPlus Advanced (HPAN) and HarvestPlus Yield Trial
(HPYT), bred at CIMMYT are routinely shared with NARS
in India and Pakistan for varietal development (Virk et al.,
2021). These nurseries are field-evaluated at multiple locations
to shortlist candidate varieties possessing >6 ppm additional
Zn concentration. Elite lines are then submitted to the varietal
release programs in respective countries. Recently, sharing of
early-generation segregating materials (F4/F5) has also been
started for the fast-track development of locally adapted varieties
for high Zn. The new varieties have 100% target increment
for grain Zn concentration (37 ppm) and are agronomically at
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FIGURE 1 | Crop Development Conceptual Framework followed by HarvestPlus (source: www.harvestplus.org).

par with or superior to the popular wheat cultivars of South
Asia (e.g., Zincol-2016 and Akbar-2019), indicating that there
is no yield trade-off (Velu et al., 2012, 2015, 2021; Virk et al.,
2021). The incorporation of resistance to major diseases, such as
yellow rust and stem rust (Ug99), was also built into zinc wheat.
Twenty-one biofortified wheat varieties have been released in
eight countries (Andersson et al., 2017; Supplementary Table 1).
In 2020, the release of six wheat varieties (namely Zinc Gahun-
1, Himganga, Khumal-Shakti, Zinc Gahun-2, Bheri-Ganga, and
Borlaug) in one attempt was a tremendous achievement in Nepal

(https://www.cimmyt.org/funder_partner/harvestplus/). Several
promising candidate varieties are in the varietal development and
evaluation pipeline.

Zinc Rice
Rice is one of the megastaples in the world, particularly in
Asia where 90% of global rice is grown and consumed (Khush
and Virk, 2000), and its consumption is steadily increasing in
West Africa. Just like wheat, 12 ppm additional zinc was set
as a breeding target. Initial screening by the International Rice
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FIGURE 2 | Biofortified crop cultivars released from 2004 to 2020 (source: www.harvestplus.org).

Research Institute (IRRI) found a concentration of zinc of up
to 58 ppm (reviewed by Andersson et al., 2017). HarvestPlus
is focusing to release and deliver biofortified rice varieties in
Bangladesh, Indonesia, and India. Breeding programs at IRRI, the
Bangladesh Rice Research Institute (BRRI), Indonesian Center
for Rice Research (ICRR), and the NARS in India have developed
germplasm in early- to late-development stages and elite lines
to final products. In addition, zinc rice breeding pipelines were
established at the International Center for Tropical Agriculture
(CIAT) targeted at Latin America. HarvestPlus is focusing on
developing inbred varieties and not hybrids, because there is
limited acceptability of hybrids outside China. In all, 14 rice
varieties have been released in seven countries (Andersson
et al., 2017; Supplementary Table 1). HarvestPlus has been
approached by several partners in Africa to test zinc ricematerials
from CIAT and IRRI and NARS in Asia.

Iron Pearl Millet
Pearl millet is a staple cereal for around 90 million people in
the arid and semi-arid regions of Sub-Saharan Africa (SSA)
and South Asia (SA). The breeding program for iron pearl
millet is based at ICRISAT. The initial screening of pearl millet
germplasm reported an up to 76 ppm iron concentration, which
was sufficient to undertake a breeding program to enhance iron
concentration by an additional 30 ppm (Bouis and Saltzman,
2017).

The targeted breeding for iron pearl millet aimed to
identify improved open-pollinated varieties (OPVs), advanced
breeding lines, and hybrid parents with a moderate to higher
level of iron/zinc to develop and release biofortified cultivars.
Dhanashakti, an OPV variety, is an improved version of ICTP
8203 for Fe density (by 9%), grain yield (by 11%) with higher
fodder yield (by 13%), and similar to ICTP 8203 for other
agronomic and adaptation traits (Rai et al., 2014). Several hybrids
with more than 95% Fe target increment, with higher grain
yield, have been identified (Govindaraj et al., 2019). However, the
grain yield of these hybrids is not comparable with the highest-
yielding commercial hybrid 86M86. A competitive yield gain
can be achieved through diversifying the parents pool (iniadi
sources) used in the initial stages of TB (Govindaraj et al., 2019).
Emphasis is given to Fe trait introgression from donor sources to
advanced seed and restorer parents through pedigree breeding.
By introducing new breeding lines having a higher level of
micronutrients and diversity among parentage, several promising
hybrids have been developed and evaluated in a series of trials for
possible testing and release in India.

Outside India, the West and Central Africa (WCA) region
had the largest area under pearl millet in Africa (∼15m ha),
and major staple food in this region. The most promising iron
pearl millet OPVs are currently being tested on-farm in WCA.
One OPV variety, namely, Chakti, has been released in Niger
and gaining popularity in adjoining countries as well, owing
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to its early maturity. Several high-Fe lines from India were
included in theWCA breeding program for fast-tracking the trait
development and demonstrating the hybrid technology in the
coming years. To date, 11 high-iron pearl millet cultivars (2 OPVs
and 9 single cross hybrids) have been released in India and Niger
(Andersson et al., 2017; Supplementary Table 1).

Iron Beans
Common bean is the most widely consumed food legume in
Latin America and Eastern and Southern Africa. Beans have two
growth habits, namely, bush and climbing, which are cultivated in
low to mid-altitude and mid-to high-altitude areas, respectively.
The initial screening of about 1,000 bean germplasm found up
to 110 ppm Fe concentration in cultivated and wild species
(Beebe et al., 2000). Existing variation was, therefore, enough to
breed for a target increment level of 44 ppm Fe [for details, see
Andersson et al., 2017; CAST (Council for Agricultural Science
and Technology), 2020].

The breeding of biofortified beans is led by CIAT, who shares
germplasm and advanced lines with NARS in several East and
Southern African and South and Central American countries.
Additionally, regional breeding programs based in Rwanda
(Rwanda Agriculture Board, RAB) and the DRC (L’Institut
National pour l’Etude et la Recherche Agronomique, INERA) are
involved in developing high-Fe beans. In Rwanda and DRC, 10
and 19 varieties, respectively, were released until 2020. In Latin
America, 23 high-iron bean varieties (20 bush and 3 climber
types) have been released in eight countries (Andersson et al.,
2017; Supplementary Table 1). Although gradual incremental Fe
levels were achieved in beans, the recent releases hold a 100%
iron target level. Important to note is that all these released
bean varieties are resistant to major pests and diseases, have
competitive yield, possess a range of colors and sizes, and have
an acceptable cooking quality. In all, 69 bean varieties (43 bush
and 26 climber types) have been released (Andersson et al., 2017;
Supplementary Table 1). Crop development activities, strategies,
and the varietal dissemination of biofortified beans in Rwanda
are discussed in detail by Mulambu et al. (2017). To increase the
adaptation of iron beans, future biofortified bean varieties should
possess an adequate level of tolerance to drought and heat. On the
other hand, the Fe bioavailability in beans should be increased by
exploring low Phytic Acid (lpa) mutation breeding to optimize
the lpa in future varieties.

Provitamin a Orange Sweet Potato
Sweet potato is widely consumed in SSA. Traditionally bred
orange sweet potatoes (OSPs) containing PVA carotenoids
were the first biofortified crop developed and released by
the International Potato Center (CIP), HarvestPlus, and its
partners. Plant breeders have produced several OSP varieties
with PVA concentration exceeding the target level of 32 ppm.
The proportion of beta carotene is >80% of the total carotenoid
concentration in OSP (Woolfe, 1992). It is also established that
the darker the orange color, the more beta-carotene present.
This made breeding for high beta-carotene in OSP easier,
and phenotypic selection for deep orange color was successful
to breed OSP varieties exceeding the target level. Hence, the

development and deployment of molecular markers are not
necessary. HarvestPlus coordinates with NaCRRI and CIP in
Uganda to ensure a strong breeding pipeline. Crop development
activities, strategies, and the dissemination of biofortified sweet
potato in SSA are discussed in detail by Low et al. (2017).
One hundred and forty-six varieties of OSP (112 in Africa, 19
in Asia, and 15 in LAC) have been released in 28 countries
(Supplementary Table 1).

Provitamin a Yellow Cassava
Cassava is a staple crop in most of tropical Africa, and it grows
very well in poor soils. The screening of cassava germplasm
at the CIAT found up to 19 ppm of PVA, exceeding the
breeding target of 15 ppm (Andersson et al., 2017). Breeding
programs for PVA cassava is based at CIAT and the International
Institute of Tropical Agriculture (IITA). CIAT generates high
PVA sources through rapid cycling and provides in vitro
clones and populations to IITA and NARS in Nigeria and the
Democratic Republic of Congo (DRC), for further breeding.
These national research programs are the Nigerian (NRCRI)
and National Root Crops Research Institute and the Institut
National pour l’Etude et la Recherche Agronomiques (INERA)
in the DRC. Nineteen varieties of yellow cassava have been
released in Africa, and another 3 in Brazil (Andersson et al., 2017;
Supplementary Table 1).

Provitamin a Orange Maize
Maize is very important for food security in SSA and Latin
America. The initial screening of more than 1,500 maize
germplasm accessions recorded a genetic variation of up to
19 ppm PVA, exceeding the PVA target of 15 ppm (Ortiz-
Monasterio et al., 2007; Harjes et al., 2008; Menkir et al., 2015).
PVA maize breeding programs at CIMMYT concentrated for
tropical and mid-latitude, while IITA took over breeding for
tropical lowlands. The Zambia Agriculture Research Institute
(ZARI) is a national partner for PVA breeding. Both hybrid and
open-pollinated (synthetic) biofortified varieties were bred. To
date, in Africa, more than 65 PVA maize cultivars (synthetic,
single-cross hybrids, and three-way hybrids) have been released
in Cameroon, the DRC, Ghana, Malawi, Mali, Nigeria, Rwanda,
Tanzania, Zambia, and Zimbabwe. A detailed review of activities
and experiences with PVA delivery in Zambia is presented by
Simpungwe et al. (2017). Five three-way hybrids fully meeting
the PVA target level have been released in Ghana, Malawi,
Tanzania, Zambia, and Zimbabwe (Supplementary Table 1). All
the biofortified varieties combine high yield and acceptable grain
quality traits.

Zinc Maize
In addition to breeding for PVA, both CIMMYT and IITA are
also breeding for white maize with a higher Zn concentration.
Up to 96 ppm Zn in tropical maize germplasm was found
(Queiroz et al., 2011; Hindu et al., 2018). The initial focus has
been on Latin American countries; however, several African
nations, where white maize consumption is high, have also
been included (Colombia, El Salvador, Guatemala, Honduras,
Mexico, and Nicaragua; Benin, Ethiopia, Ghana, and Nigeria in
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Africa). Both QPM and non-QPM germplasm are being used
extensively in making bi-parental and backcrosses for generating
breeding materials (Prasanna et al., 2020). Both synthetic and
hybrid varieties approaching the target increment (+12 ppm
additional zinc) have been released. Eleven zinc maize varieties
(seven OPVs, three three-way hybrids, and one single cross
hybrid) have been released in five Latin American countries
(Supplementary Table 1).

TB AND MARKER-AIDED SELECTION FOR
FE, ZN, AND PVA

Quantitative trait loci for grain zinc concentration have been
mapped in wheat (Hao et al., 2014; Velu et al., 2014; Velu
and Singh, 2019), rice (Stangoulis et al., 2007; Banerjee et al.,
2010; Anuradha et al., 2012; Neelamraju et al., 2012; Norton
et al., 2014; Swamy et al., 2018; Descalsota-Empleo et al., 2019;
Calayugan et al., 2020), and maize (Hindu et al., 2018; Prasanna
et al., 2020). Major quantitative trait loci (QTLs) for both
iron and zinc concentration have been mapped in pearl millet
(Kumar et al., 2016, 2018; Anuradha et al., 2017) and beans
(Izquirdo et al., 2018). Metal transporter gene families in rice
(Palmgren et al., 2008; Stomph et al., 2009) and pearl millet
(Mahendrakar et al., 2020), which play an important role in Fe
and Zn homeostasis, are also being investigated to enhance Zn
concentration. However, all these QTLs are being validated in
diverse genetic backgrounds, and none of these are being used
routinely in varietal development breeding pipelines to enhance
Zn concentration.

In cassava, two single-nucleotide polymorphism (SNP)
markers in the exon region of phytoene synthase 2 (psy2)
have been associated with yellow color. These two mutations
are responsible for the generation of a more active enzyme;
hence, they enhance total carotenoid production (das Araújo
et al., 2021). High throughput molecular assays for these SNPs,
along with phenotypic selection, could be performed to enhance
carotenoid concentration in the breeding programs (Welsch
et al., 2010; Ferguson et al., 2011; Rabbi et al., 2014).

In maize, however, two different genes within the carotenoid
biosynthetic pathway, namely, beta-carotene hydroxylase 1
(CrtRB1), which catalyzes the hydroxylation of β-carotene (BC)
to beta-cryptoxanthin (BCX), and lycopene epsilon cyclase (LcyE),
which converts lycopene into ζ-carotene and ultimately α-
carotene (Harjes et al., 2008; Yan et al., 2010), have been
targeted to increase PVA. Molecular assays for three functional
polymorphisms within these two genes have been shown to more
than double the BC concentration and at the same time reduce
by up to 30% the ratio of alpha to beta carotenoids (Babu et al.,
2013; Zunjare et al., 2018). More recently, marker-aided selection
for PVA and MSV1 alleles is being carried out in the breeding
program at CIMMYT (Prasanna et al., 2020).

MAINSTREAMING (MS)

Targeted breeding, a time-tested breeding strategy, at CGIAR
centers and NARS was instrumental in developing competitive

biofortified varieties and improving the concept of high yield,
and other agronomic traits could be combined with mineral and
vitamin density, as has been described in the earlier sections.
Nevertheless, to fulfill the ambitious target of HarvestPlus,
which is to scale out to reach more than a billion people
by 2030, CGIAR center breeding programs are aligned to
address key sustainable development goals (SDGs) in the coming
years. Therefore, all the germplasm and breeding lines being
distributed by CGIAR centers for a specific crop, and submitted
by NARS to varietal release committees, should be biofortified,
assuring minimum target nutrient levels (i.e., 50% of breeding
target). Taking advantage of the best agronomic characteristics
of varieties and hybrids from all stakeholders, eventually, all or
most varieties and hybrids are expected to be bred as higher-
yielding biofortified varieties. A short-hand term that has been
coined to describe this strategy is “mainstreaming.” In other
words, mainstreaming refers to incorporating micronutrient
traits into all germplasm and breeding pipelines targeted for
production zones for which it constitutes a value addition. By
integrating higher levels of key nutrients in all breeding lines
without any counterproductive agronomic performance will lead
to the development of offspring and varieties from the CG
centers, and NARS pipelines are expected to be biofortified. For
biofortification traits, in particular, minerals that remain stable,
only minimal “maintenance breeding” would be required once
mainstreaming is accomplished.

Transition From Targeted Breeding to
Mainstreaming
The targeted breeding approach was capitalized on traditional
breeding approaches and to a certain extent, the preliminary
application of marker-aided selection. Modernizing breeding
programs are driven by advances in technology including
genomic selection coupled with speed breeding and are likely
to enhance mainstreaming process. In addition, establishment
of several synergistic collaborative projects and platforms
commended breeders for a “big push” for mainstreaming
nutrition through simultaneous selection for micronutrients and
all core traits of interest.

Technological Advances
Multivariate genomic selection for several traits coupled with
speed breeding has been demonstrated by Watson et al. (2019)
to accelerate genetic gain.

Enabling Environment
Several collaborative projects and platforms, such as the
Accelerating Genetic Gains in Maize and Wheat (AGG;
https://www.cimmyt.org/projects/agg/); the High Throughput
Genotyping (HTPG) Project (http://cegsb.icrisat.org/high-
throughput-genotyping-project-htpg/); the Genomic Open
Breeding Informatics Initiative (GOBii; http://gobiiproject.
org/); the Integrated Breeding Platform (http://www.
integratedbreeding.net), and the CGIAR Excellence in Breeding
Platform (EiB; https://excellenceinbreeding.org/) are providing
third party genotyping services, innovative decision-making
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FIGURE 3 | Percentage of mainstreaming effort at Consultative Group on

International Agricultural Research (CGIAR) centers until 2016 [legend: blue

(2012) indicates the cumulative % attained by the end of 2012; red and green,

marginal additions by 2014 and 2016, respectively].

tools for modernization of breeding programs to accelerate
genetic gain.

Changing Funding Scenarios
Donors initially funded TB and building on its success, they
are starting to fund mainstreaming to expand the scope of
biofortification. Mainstreaming is not a new concept. In the
past, it was confined to TB; however, its meaning has expanded
to the entire breeding pipeline because of mainstreaming
efforts. While collaborators conducted TB, the crop development
team of HarvestPlus working with crop leaders estimated the
mainstreaming effort in the breeding programs of CG centers
(Figure 3). Estimates were based on the proportion of the total
program budget allocated to targeted biofortification breeding,
the proportion of the number of crosses, and the proportion
of biofortified lines in advanced yield trials or combinations.
This model is giving more weightage to the investment to
targeted biofortification breeding at each center. For instance,
the proportion of the number of crosses and the proportion
of biofortified lines in advanced yield trials or combinations
that were delivered are proportional to the total investments
to the given center. These proportions do not reflect certain
parameters (e.g., competitiveness over commercial cultivars in
that period), and certain target zones considered as irrelevant
or breeding efforts for special projects may not have been
included in the calculation of these figures. Overall, the amount of
biofortified materials developed in each center is reflected, which
will set a base to measure future mainstreaming efforts with the
implementation of the newly proposed model (see next section).

In mainstreaming, incremental annual target nutrient
increases for major crops vary between 2.5 and 3% per year.
Much higher rates are necessary to achieve mainstreaming
targets in a 10-year timeframe, before 2030 (Figure 3). Hence,
additional crop development investments to accelerate this rate
of genetic gains are crucial. We expect that it would take about

9–10 years until varieties from a mainstreaming “big push”
with multivariate genomic selection for several quantitative
traits of interest are released and adopted in target countries.
Nevertheless, in this transition, TB is crucial to assure a constant
flow of biofortified varieties until products fromMS are available.

Mainstreaming Capitalizes on Progress in
Targeted Breeding
The experiences of the authors with TB have shown that to
incorporate additional traits (e.g., Fe, Zn, and PVA) requires
an additional effort and added human and financial resources,
especially when the donor germplasm is from unadapted genetic
backgrounds (landraces or wild species), and pre-breeding is
often required. When the trait is transferred to established high-
yielding germplasm and popular varieties via TB, their use as
parents facilitates and accelerates MS as the next generation
of micronutrient dense elite breeding lines and varieties used
as parents are already in adapted genetic backgrounds. Hence,
together with TB, mainstreaming is faster and efficient.

Continuity of Targeted Breeding for
Efficient Mainstreaming Progress
The achievements of HarvestPlus in reaching around 10 million
farming households were driven by engaging in activities along
the entire value chain, building critical partnerships on the supply
and demand side in developing sustainable markets for seed
and produce/products. Discontinuing TB may create genetic
and breeding inefficiencies and eventually lead to dramatic
consequences for the standards of the products and scaling of
biofortification. TB is still not mature enough in some staples,
and for target nutrients, the prospect for TB is equally high
until mainstreaming demonstrates product delivery to meet
nutritional standards and deliverables. For instance, stopping
TB would disrupt activities in crop development and limit
the availability of improved, competitive biofortified varieties.
Hence, current versions of biofortified varieties would have
to compete with newer non-biofortified varieties released by
the CG centers, local NARS, and private seed companies
until mainstreaming products are available. Furthermore, in
the absence of biofortified varieties and their produce, several
activities, such as advocacy, extension, continuous nutrition
education, and marketing, would be reduced. Because of the
limited short-term growth of biofortification, scaling would take
much longer, for the mainstreaming products to reach farmer
fields because of discontinuity. In the intervening years, there
could be slower progress in reducing micronutrient deficiencies
due to limited biofortification products, if any. For instance,
minimumFe and Zn standards were fixed in India’s national pearl
millet variety release policy in 2018 by the Indian Council of
Agricultural Research (AICRP-PM, 2017). Such national policies
are not in place in most staple crop variety guidelines. Most of the
biotic stress tolerance and yield gains are being achieved by such
a cultivar release policy at the regional level and globally. Having
such a standard policy specific to crops may balance TB efforts
and enhance mainstreaming efforts. To date, there is no report
available on conserving biofortified germplasm, breeding lines,
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FIGURE 4 | Proposed strategy and timeline for a gradual shift from targeted

breeding to mainstreaming.

and hybrid parents (including the released biofortified varieties)
in gene banks at CG centers.

It is critical to invest in TB and mainstreaming is required
until a sufficient number of biofortified parental lines are
established in breeding centers and, more importantly, conserved
in local and global gene banks (as global public goods). The
proposed twin strategy along with timelines is outlined in
Figure 4, and would enable the mainstreaming of biofortified
products to address malnutrition significantly. In addition to
the additional “big push” support for mainstreaming (I) to
the CG Centers, HarvestPlus continues TB support to CG
centers and NARS, and capacity building, for 5 years (II–IV)
while monitoring the mainstreaming in CG centers. Given this
scenario, HarvestPlus would gradually phase out funding crop
development and thereafter may concentrate on an oversight
and monitoring role. Collaborating CG centers and public and
private sector NARS will absorb a decrease in TB funding after
year 5. Mainstreaming is in its initial stages for wheat, rice, beans,
cassava, and pearl millet at CIMMYT, IRRI, CIAT, and ICRISAT.
Assured long-term funding is required for the sustainability
of mainstreaming.

New Role of HarvestPlus
HarvestPlus is continuously evolving its global and regional
focus with a diverse working expert team. HarvestPlus, in
consultation with various crop lead CG centers, has developed
a set of mainstreaming indicators for wheat, rice, maize, beans,
pearl millet, and cassava to monitor initial mainstreaming
breeding progress. These first ever indicators (Tables 3, 4)

TABLE 3 | Indicators for assessing and monitoring the transition to mainstreaming

of biofortification in self-pollinating crops.

a) Percentage of crosses with biofortified germplasm vs. total number of

crosses for each product profile

b.1) Percentage of biofortified lines vs. total number of breeding lines in testing

at different evaluation stages for each product profile*:

Stage 1 Breeding center

Stage 2 Multilocation/target sites

Stage 3 National trials

b.2) Performance of biofortified lines vis-à-vis non-biofortified lines (commercial

checks) in testing at different evaluation stages for each product profile:

Stage 1 Multilocation trials

Stage 2 Advanced trials

Stage 3 National variety trials

c.1) Percentage of yield trials established with biofortified germplasm vs. total

yield trials (under same conditions of testing) for each product profile

c.2) Agronomiccompetitiveness of biofortified germplasm which constitutes a

value proposition to farmers for each product profile e.g. yield advantage over

commercial checks, resistance to diseases (rust and foliar diseases), stress

tolerance etc.

c.3) End-use qualitycompetitiveness of biofortified germplasm which

constitutes a value proposition to farmers/processors/traders for each product

profile (advantage over popular varieties) e.g., milling quality, cooking quality (flat

bread/steamed bread) and organoleptic properties

c.4) Rate of expected or realized genetic gain for micronutrient (MN) trait, yield

and key essential traits for each product profile

d) Percentage of budget allocation specific to biofortification breeding vs. total

breeding budget

e) Frequency or % of favorable markers/alleles used to predict the

performance of MN trait in breeding populations for each product profile

*Product profiles are established in each CGIAR breeding center (for elite

germplasm/parents), and similar profiles are being developed in National Agricultural

Research System (NARS) centers (for variety replacement).

are developed for self-pollinated and cross-pollinated crops.
These primary indicators will continue to evolve and be
customized for contributing to crop product profiles and
varietal replacement. Therefore, HarvestPlus and EiB are
driving the higher yields as well as higher nutrition staple
food crops as part of the targeted genetic gains in the
near future.

Mainstreaming and Product Profiles
The excellence in breeding (EiB) program of the CGIAR
signified product profiles to focus on the breeding of crop
varieties that would replace existing popular varieties on the
market, considering market knowledge from millers, traders and
consumers, and other considerations such as gender. Product
profile describes a variety with the essential characteristics to
replace as well as correct any defects (e.g., biotic stress tolerance
and nutrition) of largely cultivated varieties. It also serves
as a commitment by breeders to stakeholders. HarvestPlus is
working very closely with the EiB module lead and crop lead
centers to ensure that essential vitamins and micronutrient
traits are embedded as a core trait in CGIAR and NARS
crop product profiles. HarvestPlus is also working on similar
lines with crop breeders in CG and NARS partner centers to
include nutritional traits under “must-have traits” and “nice
to have traits,” depending on the stage of trait deployment in
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TABLE 4 | Indicators for assessing and monitoring the transition to mainstreaming

of biofortification in cross-pollinating crops.

a) Percentage of crosses/test crosses with biofortified germplasm vs. total

number of crosses/test crosses for each product profile

b.1) Percentage of biofortified OPVs/Synthetics/hybrids vs. total number of

OPVs/Synthetics/hybrids in testing at different evaluation stages for each

product profile*:

Stage 1 Breeding center

Stage 2 Multilocation/target sites

Stage 3 National trials

b.2) Performance of biofortified OPVs/Synthetics/hybrids vis-à-vis non-

biofortified OPVs/Synthetics/hybrids (commercial checks) in testing at different

evaluation stages for each product profile:

Stage 1 Multilocation trials

Stage 2 Advanced trials

Stage 3 National hybrid/variety trials

c.1) Percentage of yield trials established with biofortified germplasm vs. total

yield trials (under same conditions of testing) for each product profile

c.2) Agronomiccompetitiveness of biofortified germplasm which constitutes a

value proposition to farmers for each product profile (advantage over commercial

checks) e.g., yield advantage over commercial checks, resistance to diseases

(Striga, MLN), stress tolerance etc.

c.3) End-use qualitycompetitiveness of biofortified germplasm which

constitutes a value proposition to farmers/processors/traders for each product

profile (advantage over popular varieties) e.g., milling performance, processing

quality, sensory acceptance of the target populations

c.4) Rate of expected or realized genetic gain for micronutrient (MN) trait, yield

and key essential traits for each product profile

d) Percentage of budget allocation specific to biofortification breeding vs. total

breeding budget

e) Frequency or % of favorable markers/alleles used to predict the

performance of MN trait in breeding populations for each product profile

*Product profiles are established in each CGIAR breeding center (for elite

germplasm/parents), and similar profiles are being developed in NARS centers

(for hybrid/variety replacement).

the respective breeding program. Crops such as wheat, rice,
pearl millet, beans, and cassava should make it as mandatory
traits, since nutrient standards and desired levels are achieved
in a large set of parental pools and pipelines developed in
CGIAR and NARS breeding centers; whereas other crops may
be classified as value-added or market traits, which are required
to be incorporated in the next 5–6 years and then upgraded to
must-have trait provided critically reviewed and endorsed by the
product designing team. Therefore, stringent selection for Fe,
Zn, PVA should be exercised in addition to agronomic traits
in the mainstream breeding. Including these nutrients traits in
product profiles would ensure genetic gains for these traits along
with competitive yields in the future (https://repo.mel.cgiar.org/
handle/20.500.11766/10236).

The Key Role of NARS in Mainstreaming
Any discussion vis-à-vis TB and mainstreaming must consider
the key role of NARS in the biofortified variety testing and release
process. NARS and private seed companies regularly introduce
germplasm from CGIAR centers for adaptive testing and subject
it to additional breeding. Once adaptive promising germplasm is
identified among introduced and improved elite lines, NARS or
private seed companies will submit candidates to national variety

release committees for official testing and the formal release
and notification of varieties. CGIAR centers submit promising
germplasm through NARS partners. NARS breeding programs
and local seed companies are also responsible for the production
and marketing of various classes of seed, and a large quantity
of certified seed is required to fulfill demand. In some NARS
where well R and D facilities and established seed systems do not
exist, HarvestPlus needs to continue to support adaptive multi-
location trials, breeding, and release of biofortified varieties.
While MS continues at the CGIAR centers, adaptive GxE trials
and the release of new biofortified varieties must continue to be
undertaken by NARS.

Capacity Building at CG Centers and NARS
The established TB improved biofortification breeding strategies,
sampling methods, and phenotyping tools. Capitalizing
on established novel techniques during the inception of
biofortification mainstreaming is essential. Training and
capacity building in high-throughput micronutrient screening
by XRF and NIRS and with biofortification breeding methods
at CGIAR and NARS have been essential for the success of
mainstreaming. Breeding programs, as well as national variety
release systems, must be able to quantify micronutrients
to include Fe, Zn, or PVA as a nutritional trait in variety
development and the release process. Since its inception,
HarvestPlus, in partnership with Flinders University and other
centers of excellence, has continued to lead an ongoing effort
in micronutrient phenotyping capacity building and technical
support with standardization, proficiency testing, equipment
upgrades, training, and quality assurance. HarvestPlus has
established several XRF labs across the world (https://www.
harvestplus.org/knowledge-market/in-the-news/xrf-machines-
innovative-technology-help-breed-nutritious-crops). These are
key accelerators for successful biofortified verities as part of
TB. Lab services are being extended for need-based analytical
support to various stakeholders. Continuing future support for
these activities by HarvestPlus and its partners is essential for
the success of biofortification mainstreaming at CGIAR centers,
NARS, and private sector breeding centers.

CRITICAL ELEMENTS FOR SUCCESSFUL
MAINSTREAMING

Biofortification breeding addressed three important questions to
scale up; (i) Is breeding for high nutrient content scientifically
feasible? (ii) Will farmers adopt biofortified varieties? (iii) Will
the varieties meet consumer acceptability to adopt and consume
regularly? All the feasibilities were demonstrated by a large
number of variety releases by TB and its household consumption
in target countries. Stepping to mainstreaming requires the
following three critical elements for the success of mainstreaming
efforts (Bouis and Saltzman, 2017). This applies equally to
the products developed from TB and mainstreaming. First, to
increase the supply, require agricultural research institutions
commitment to include Fe, Zn, and PVA traits along with core
breeding traits; national or regional varietal release committees
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recommend minimum levels of Fe, Zn, and PVA as mandatory
for varietal testing and release criteria. It is noteworthy that few
governments such as India, China, and Brazil have allocated
their resources to include biofortification in their R4D portfolio.
In 2018, the All India Coordinated Pearl Millet Improvement
Project (AICRP-PM) of the Indian Council of Agricultural
Research (ICAR) made minimum standards for Fe (42 ppm) and
Zn (32 ppm) requirements for national testing and approval of
cultivar release in India. Second, policymakers must recognize
the significant impact of biofortification to address nutritional
insecurity. Substantial progress has already been made in
integrating biofortification into regional and national policies.
Several governments, such as India, China, Brazil, Indonesia,
Bangladesh, Malawi, Nigeria, Pakistan, Colombia, Panama,
Rwanda, Zambia, and Uganda, have endorsed biofortification.
Scaling Up Nutrition (SUN), Global Alliance for Improved
Nutrition (GAIN), the Comprehensive Africa Agriculture
Development Program (CAADP) movements of the African
Union are building an enabling environment for biofortification.
Third, demand creation is essential through various nutritional
education/awareness campaigns, for high mineral and vitamin
contents in their staple food and food products.

CURRENT STATUS AND PROSPECTS OF
MAINSTREAMING

A gradual transition and coexistence of both strategies shall
continue until a sufficient number of biofortified parental lines
are established and varieties are released through mainstreaming.
Inmany countries, both public and private sector seed companies
rely on CGIAR-developed breeding materials, so mainstreaming
will ensure the integration of biofortified traits into competitive
varieties and hybrids developed by private companies and
the public sector. The mainstreaming strategy has just been
initiated in select CGIAR centers namely, CIMMYT, IRRI,
ICRISAT, IITA, and CIAT. New CGIAR breeding strategies
are likely to increase applications of various novel genomic
tools and techniques, scaling biofortification from targeted to
mainstreaming. HarvestPlus is working closely with strategic
partners to develop/monitor crop strategies, and monitoring
standards for CGIAR andNARS centers. For instance, combining
genomic selection and speed breeding in wheat is the most
advancedmainstreaming program. Several academic studies have
advocated genomic selection to accelerate genetic gain for the
improvement of zinc content (Zhang et al., 2015; Cao et al.,
2017; Yuan et al., 2019, Jighly et al., 2019). Moderate to high
genomic prediction accuracies have been reported in maize (.35
to.65; Prasanna et al., 2020) and wheat (0.33 to 0.69; Velu et al.,
2016) for zinc content across different types of populations and
genotyping platforms. The grain Zn content along with other
core traits in maize, wheat, and other crops could be improved
by employing marker-aided selection for validated haplotypes to
enrich segregants with favorable alleles in the earlier generations
followed by multivariate genomic selection at either earlier or
later generations along with speed breeding.

However, research is still ongoing on best ways to use
genomic selection that result in most accurate predictions
and ultimately reduce selection cycle time. At the same time,
CIMMYT has started putting together an optimizing genomic
selection mainstreaming strategy incorporating limited speed
breeding in wheat, while ICRISAT has just established a speed
breeding platform to accelerate mainstreaming for pearl millet.
Joining forces from different projects such as AGG and EiB
breeding scheme optimization is ongoing at CIMMYT [e.g.,
Rapid Bulk Generation Advancement’ (RBGA); Rapid Cycling
Recurrent Selection (RCRS)]. Double haploidy, instead of speed
breeding, for line advancement is a method of choice in maize.
The integration of multivariate GS and speed breeding is essential
to accelerate genetic gains in mainstreaming; however, it is
too early to conclude its success in developing and delivering
successful biofortified varieties. In the future, HarvestPlus
and EiB can work closely to catalyze the mainstreaming of
nutrition and networking services to CGIAR and NARS centers
besides modernizing the breeding programs. Therefore, TB
and mainstreaming would continue until a sufficient number
of biofortified parental lines are established and competitive
biofortified varieties developed through mainstreaming pipelines
are released and adopted. Alternatively, the active involvement
and commitments from private sector breeding organizations for
biofortified products and seed marketing may reduce the overall
time frame of mainstreaming.
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