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Ginkgo biloba is a pharmaceutical resource for terpenes and flavonoids. However,
few insights discussed endophytes’ role in Ginkgo, and whether genetic exchange
happens between Ginkgo and endophytes remains unclear. Herein, functional gene
profiles and repetitive sequences were analyzed to focus on these issues. A total
of 25 endophyte strains were isolated from the Ginkgo root and distributed in 16
genera of 6 phyla. Significant morphological diversities lead to the diversity in the COG
functional classification. KEGG mapping revealed that endophytic bacteria and fungi
potentially synthesize chalcone, while endophytic fungi might also promote flavonoid
derivatization. Both bacteria and fungi may facilitate the lignin synthesis. Aspergillus sp.
Gbtc_1 exhibited the feasibility of regulating alcohols to lignans. Although Ginkgo and
the endophytes have not observed the critical levopimaradiene synthase in ginkgolides
synthesis, the upstream pathways of terpenoid precursors are likely intact. The MVK
genes in Ginkgo may have alternative non-homologous copies or be compensated
by endophytes in long-term symbiosis. Cellulomonas sp. Gbtc_1 became the only
bacteria to harbor both MEP and MVA pathways. Endophytes may perform the
mutual transformation of IPP and DMAPP in the root. Ginkgo and bacteria may
lead to the synthesis and derivatization of the carotenoid pathway. The isoquinoline
alkaloid biosynthesis seemed lost in the Ginkgo root community, but L-dopa is more
probably converted into dopamine as an essential signal-transduction substance.
So, endophytes may participate in the secondary metabolism of the Ginkgo in a
shared or complementary manner. Moreover, a few endophytic sequences predicted
as Ty3/Gypsy and Ty1/Copia superfamilies exhibited extremely high similarity to those
of Ginkgo. CDSs in such endophytic LTR-RT sequences were also highly homologous
to one Ginkgo CDS. Therefore, LTR-RTs may be a rare unit flowing between the
Ginkgo host and endophytes to exchange genetic information. Collectively, this research
effectively expanded the insight on the symbiotic relationship between the Ginkgo host
and the endophytes in the root.
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INTRODUCTION

Ever since discovering and separating microorganisms, humanity
has opened a new world of cognition and scientific research.
Microorganisms can be distributed on the seabed (Morono
et al., 2020), atmosphere (Lighthart, 2006), deep soil (Zheng
et al., 2017), and even survive in other extreme environments,
such as the Antarctic ice (Lanoil et al., 2009) and volcanic
craters (Wahyuntari et al., 2000). Notably, some are defined
as endophytes because they almost exist in all animals and
plants. With the unique physiological characteristics, such as
long lifespan and stable environmental tolerance, higher plants
have been chosen to extensively study the multidimensional
interactions between the endophytes and their hosts.

It is commonly accepted that the existing plants (∼300,000
species) each hosts up to several hundred species of endophytes
(Strobel and Daisy, 2003). In terms of life strategies, these
endophytes can be classified into obligate and facultative ones
(Hardoim et al., 2008). The obligate endophytes strictly rely on
the plant host to grow and survive, and they are transmitted
vertically or by carriers. For example, Xylella fastidiosa exhibits
well adaption to the life in plant xylem, but can cause disease
after transmitted to Citrus sinensis L. via insect vectors (Chang
et al., 1993; Araujo et al., 2002). However, facultative endophytes
refer to the ones that enter the plant at a particular life stage and
then gradually survive and persist in the host. The rhizobia are the
representative facultative endophytes, and they are considered to
be derived from soil and invade plant cells or tissues through
cracks at the fibrous root junction (Chi et al., 2005). Root
crack may be the primary approach for endophytes colonization;
notwithstanding, other entries into the plant host still exist, like
stomata on leaf tissue and physical trauma (McCully, 2001).

In general, endophytes’ effects on plants mainly include
several aspects. Firstly, some microbes may synthesize plant
hormones, such as indole-3-acetic acid (IAA), gibberellins (Gas)
and cytokinins (CKs), to promote growth (Glick, 2012), and
also be able to modulate the ethylene levels by degrading
1-aminocyclopropane-1-carboxylate (ACC) or inhibiting ACC
synthase in the life stage (Sugawara et al., 2006; Glick et al., 2007).
Secondly, like their host, endophytes can produce common
secondary metabolites of bioactivity, i.e., antibiotics (Martinez-
Klimova et al., 2017), anticancer camptothecin (Puri et al., 2005),
and podophyllotoxin (Puri et al., 2006). Also, a fraction of them
may activate and regulate their host’s secondary metabolism; for
instance, the endophytes Acinetobacter sp. and Marmoricola sp.
became the confirmed parasite to upregulate critical genes in
benzylisoquinoline alkaloid biosynthesis in Papaver somniferum
L. Besides, eliciting the host response and secreting anti-
phytopathogen substances to enhance biotic-stresses resistance
could be another benefit of endophytes for plant hosts. Fusarium
solani was reported to stimulate induced systemic resistance (ISR)
to resist pathogen Septoria lycopersici by inducing pathogenesis-
related gene expression in tomato root tissues (Kavroulakis
et al., 2007). Such as Pseudomonas putida BP25 (Sheoran
et al., 2015) and Rhizobium meliloti (Arora et al., 2001), some
endophytic bacteria can produce various volatile compounds
with antimicrobial activity against phytopathogenic bacteria,

fungi, and nematodes. Moreover, plant endophytes can induce
and intensify the resistance to abiotic stress. Endophytic bacteria
reduces metal phytotoxicity via extracellular precipitation,
intracellular accumulation, sequestration, or biotransformation
of toxic metal ions to less toxic or non-toxic forms (Khare et al.,
2018). Some fungal species can help the plants adapt to abiotic
stress by increasing resistance to drought or water stress, high
temperature, and high salinity (Redman et al., 2002; Waller et al.,
2005; Bae et al., 2009). Therefore, endophytes are an eco-friendly
choice that promotes plant growth and serves as a sustainable
resource for bioactive natural products.

Ginkgo biloba (Ginkgo) is an ancient living plant with a unique
advantage in scientific research. Its abundant pharmacological
components, terpenoids and flavonoids, lead to an excellent
inhibitory effect on many pathogenic microorganisms (Lee et al.,
2014). Apart from several strains belonging to Nocardioides
ginkgobilobae (Xu et al., 2016), Fusarium oxysporum (Cui
et al., 2012) and Penicillium sp. (Yuan et al., 2014), most
Ginkgo endophytes were isolated from the leaves, branches,
or seeds rather than the roots, for example, Streptomyces and
Pseudochaetosphaeronema species (Zhang et al., 2016; Yan et al.,
2018).

Quite a few studies have discussed the metabolites of Ginkgo
endophytes, including many biologically active ingredients, such
as flavonoids (Qiu et al., 2010; Yan et al., 2013), terpenoids (Cui
et al., 2012; Yan et al., 2013; Qian et al., 2016) and alkaloids (Zhang
et al., 2013), as well as a series of volatile organic compounds
(VOCs), like butanol and acetate (Banerjee et al., 2010). In
addition, chaetoglobosins (Li et al., 2014), chaetomugilin (Qin
et al., 2009a), altertoxin (Qin et al., 2009b), etc., were also
discovered in Ginkgo endophytes as cytotoxic ingredients. These
metabolites have made outstanding contributions to Ginkgo’s
resistance to abiotic stress and resistance to pests and diseases.

So, many studies have been carried out on the metabolites
of Ginkgo endophytes, but few insights were discussed on
the detailed mechanism of how endophytes function in
the symbiosis with Ginkgo, especially in the flavonoids and
terpenoids biosynthesis processes. It is reported that the flavonoid
accumulation in suspension cells of Ginkgo can be induced by
the abscisic acid (ABA) from fungal endophytes (Hao et al.,
2010), which pushed us not to ignore the potential effect of
endophytes in the synthesis and regulation process of flavonoids.
On the other hand, symbiosis and genetic evolution are closely
linked with some signs that indicated the feasibility of genetic
exchange between the host and parasites (Hotopp et al., 2007;
Moran and Jarvik, 2010). Arabidopsis thaliana is reported to
harbor several GTPase sequences ingested from cyanobacteria
and α-proteobacteria through the endosymbiotic gene transfer
(EGT) process (Suwastika et al., 2014), which is one of the scarce
genetic exchange authentications between plants and endophytes.
To date, no relevant studies have uncovered the evolutionary
genetic relationship between the world-famous Ginkgo species
and endophytes. Therefore, in this study, wild Ginkgo roots were
sampled to isolate bacterial and fungal endophytes. Based on
their draft genomes, bioinformatics analyses were achieved to
explore the potential function of endophytes in the secondary
metabolic pathways of Ginkgo roots and probe into the possible
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genetic exchanges between them. We hope this work can
provide a novel perspective on the relationship between plants
and microorganisms.

MATERIALS AND METHODS

Ginkgo Tree Choice and Root Tissues
Collection
The Ginkgo trees grow wildly in Linyi City, Shandong Province,
China. The detailed location is 34◦36′34′′ N, 118◦12′8′′ E with an
altitude of 40 m. Generally, the diameter at breast height (DBH)
represents the relative extent of tree ages in the same (or similar)
environment (Zou et al., 2019) according to the formula (age of
tree = diameter ∗ growth factor) proposed by the International
Society of Arboriculture1. The presumptive oldest healthy Ginkgo
tree with the largest DBH (0.64 m) in this area was chosen to
collect the root materials.

Evenly located around the tree, a total of three locations
were selected to collect the samples. Several root tissues of 2 cm
diameter were cut off from the part of the tree, which was
1.5 m horizontally away for the trunk and 1m deep underground
(Figure 1), and then mixed to make a composite sample.

Endophytes Isolation
The rhizosphere soil of the sampled roots was removed by
physical treatment, including hand shaking, hairbrush cleaning,
and thoroughly water washing. Then, successively, all tissues were
rinsed in sterile distilled water for six times, 70% ethanol for
2 min, 5.25% sodium hypochlorite for 4 min, and sterile distilled
water for five times at last (Rustamova et al., 2020). In order to
confirm the complete sterilization of the surface, 100 µl of the
final eluate is reserved for plate culture as the control.

Afterward, these preprocessed root tissues were physically
fragmented mildly in the phosphate buffer saline (PBS), which
was used to protect and suspend endophytic microorganisms
during the physical fragmentation (Liao and Shollenberger, 2003;
Hoang et al., 2020). At last, the obtained cell suspension and
the final eluate preceding were incubated on selective mediums
(initial concentration and 1/10 concentration): (M1) Czapek–
Dox Medium (Abildgren et al., 1987), (M2) Potato Dextrose Agar
Medium (Phae et al., 1990), (M3) R2A Agar (van der Linde et al.,
1999), (M4) 2216E Medium (Patrick, 1978), (M5) Soluble Starch
Medium (Jin et al., 2003), (M6) Gauze’s agar medium (El-Nakeeb
and Lechevalier, 1963), (M7) LB medium (Baev et al., 2006), (M8)
Beef-extract peptone AGAR medium (Kim et al., 2006).

All potentially different colonies are transferred to separate
plates with a sterile needle for further culture and purification.
Incubated on the same medium as the first time cultivated,
all colonies were streak for consecutive generations until no
different traits appeared. Then, under a microscope, all these
uncontaminated colonies were preliminarily divided into bacteria
and fungi according to the colony morphology.

1https://www.isa-arbor.com/

Endophytes Identification and Filtration
These uncontaminated endophyte strains were respectively
collected for DNA extraction using the CTAB method as
recommended (Stewart and Via, 1993), among which grinding
in the liquid nitrogen is equipped to improve extraction
rate and completeness on fungi (Cenis, 1992). The agarose
gel electrophoresis and NanoDrop optical density (OD)
value calculation were used to assess the quality (purity,
concentration, and completeness) of all DNA samples. The
pre-distinguished bacteria and fungi were separately carried
out the polymerase chain reaction (PCR) with the 16s rDNA
and internal transcribed spacer (ITS) primers. The primer
sequences were 27F (5′-AGAGTT TGATCCTGGCTCAG-
3′) and 1492R (5′-TACGGYTACCTTGTTACGACTT-3′) for
16s rDNA, and ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′)
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) for ITS.
The strains suspected to the same species were selectively
abandoned according to the colony morphology coupled
with 16s rDNA and ITS blast results. After that, the filtered
strains were used for the subsequent genome sequencing and
bioinformatics analysis.

Genome Sequencing, Assembly, and
Annotation
The genomic library (average insert size 200–400 bp) was
constructed at BGI (Shenzhen, China) and sequenced on
the BGISEQ-500 sequencing platform. For enough sequencing
depth for assembly, approximately 1 and 5 Gb data were
produced severally for bacteria and fungi. To obtain more
accurate genomes, the fungal DNA was also used to accomplish
sequencing on the PacBio Sequel System at BGI (Shenzhen,
China). Then, clean data were yield by removing adapter,
ploy-N, and low-quality reads from raw data. The bacterial
clean reads were assembled in SPAdes (v3.14.0) (Bankevich
et al., 2012) with the default parameters. The fungal clean
reads (produced in Pacbio) were assembled in Canu (v1.9)
(Koren et al., 2017) to form the draft genomes, which were
then polished in NextPolish (v1.0.5) (Hu et al., 2020) based
on these PE150 clean reads to be the final genome sequences.
CheckM (v1.0.13) (Parks et al., 2015) and BUSCO (v4.1.2)
(Simao et al., 2015) were selected to assess the quality of the
bacterial and fungal genomes, respectively. Prokka (v1.14.6)
(Seemann, 2014) was utilized to achieve gene prediction for
bacterial draft genomes, while GeneMark-ES (v4.48_3.60_lic)
(Ter-Hovhannisyan et al., 2008) was employed for the fungi. All
amino acid sequences were searched in the NCBI non-redundant
database (Sayers et al., 2012) in diamond (v2.0.4) (Buchfink
et al., 2015). KAAS2 (Moriya et al., 2007) was operated for
the KEGG annotations with 1E-6 E-value. Then, the pathway
was then reconstructed in the iPath3 (Darzi et al., 2018).
The Clusters of Orthologous Groups of proteins (COG) were
predicted in the eggnog-mapper (Huerta-Cepas et al., 2017,
2019).

2http://www.genome.jp/kegg/kaas/
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FIGURE 1 | The sampling diagram of Ginkgo roots. The red circles (A,B,C) represented the Ginkgo roots’ sampling sites, which were evenly located around the tree,
1.5 m horizontally away from the trunk and 1 m deep underground.

Species Classification and Phylogenetic
Analysis
Given that 16s rRNA genes (or ITS sequences) were not
always enough in species classification in some species of
high sequence similarities (Kalia et al., 2016), a composition
vector approach without sequence alignment was operated to
construct the phylogenetic tree based on the whole genome in
CVTree3 (Zuo and Hao, 2015). The K value was set to 6 as
recommended (Li et al., 2010). Meanwhile, other 255 species
from the GeneBank database were selected for a referential
comparison. Finally, the phylogenetic tree was readjusted in
MEGA-X (Kumar et al., 2018).

Ginkgo Data Acquisition
As one of the most ancient plants globally, the woody plant
Ginkgo biloba was predicted to possess a large genome of more
than 10 Gb (Zonneveld, 2012). It may be the main reason
why its high-quality whole genome was delayed for so many
years until it was first released in November 2016 on the
GigaScience GigaDB repository (Guan et al., 2016) with 41309
CDSs. This study directly downloaded this draft genome with its
annotation and repeated sequence information for the following
correlation analysis.

Repetitive Sequences Annotation
Repetitive sequences were elucidated ubiquity in eukaryotes,
and its analysis toward all species, including prokaryotes in a
specific environment, may help explore possible co-evolution

in this community. Here, the repeat library was constructed
based on all endophytes’ gathering using the de novo prediction
program RepeatModeler (V2.0.1) coupled with LtrHarvest
(V1.5.9), Ltr_retriever (V2.9.0), MAFFT (V7.471), CD-HIT
(V4.8.1), and Ninja (V0.95). Further, the TEclass (Abrusan
et al., 2009) platform classified unknown transposable element
(TE) consensus sequences into four categories according to
their transposition mechanism: DNA transposons, LTRs, LINEs,
SINEs. Finally, all classified repeat content was merged as the
reference repeat library to annotate all endophytes’ genomes in
RepeatMasker (V4.1.1).

LTR-RT Elements Analysis
The reverse transcriptase domains of Ty3/Gypsy
and Ty1/Copia with sequences EAYLDDLASRSRKRKDHPT
HLRLIFERCRYFRIRLNPNKCSFCVTSGRLLGFIVSTTGIMVDP
LKVGAIVQLPPPRTIVQLQSLQGKANFLRRFIANYAE and
WKVYQMDVKSAFLNGYLEEEVYVQQPPRYEVRGQEDKVY
RLKKALNGLKQAPRAWYSKIDSYMIKNEFIRSTSEPTLYTKV
NEQGQILIVCLYVDDLIY were used to search all predicted long
terminal repeat retrotransposons (LTR-RTs) in the endophytes
and the Ginkgo host by BLAST (Guan et al., 2016). The resultant
sequences annotated as these two LTR-RT superfamilies were
extracted to align in Muscle (Edgar, 2004) (V3.8.31) and then
construct phylogenetic trees in FastTree (Price et al., 2010)
(V2.1.11). Then, the predicted CDSs of LTRs in all isolates were
implemented BLASTN against the Ginkgo CDSs to obtain the
appraised parameters of their similarity.
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TABLE 1 | Species classification and draft genomes details.

ID Clean Reads Clean Base Q20(%) Scaffolds N50 Total base GC (%) Phylum Genus Strain Name Completeness** Contamination**

B1 8,077,780 1,211,667,000 91.96 788 58,194 4,464,241 75.09 Actinobacteria Cellulomonas Cellulomonas sp. Gbtc 1 99.42 3.10

B2 8,177,186 1,226,577,900 92.35 2854 217,091 4,364,846 64.91 Actinobacteria Microbacterium Microbacterium sp. Gbtc 1 99.49 4.04

B3 7,780,042 1,167,006,300 92.77 1328 261,072 3,203,135 67.79 Actinobacteria Microbacterium Microbacterium sp. Gbtc 2 98.98 1.04

B4 7,700,302 1,155,045,300 91.20 872 335,249 3,699,314 69.66 Actinobacteria Microbacterium Microbacterium sp. Gbtc 3 99.49 2.71

B5 6,419,050 962,857,500 92.65 683 83,970 2,604,457 72.86 Actinobacteria Micrococcus Micrococcus sp. Gbtc 1 98.70 2.17

B6 8,113,908 1,217,086,200 93.74 603 212,700 12,471,597 70.79 Actinobacteria Streptomyces Streptomyces sp. Gbtc 1 100.00 0.93

B7 7,856,820 1,178,523,000 91.79 846 229,965 12,366,605 70.06 Actinobacteria Streptomyces Streptomyces sp. Gbtc 2 100.00 2.07

B8 8,143,570 1,221,535,500 94.99 570 140,669 8,188,504 47.44 Bacteroidetes Chitinophaga Chitinophaga sp. Gbtc 1 100.00 1.40

B9 6,479,862 971,979,300 94.21 645 176,100 4,432,220 68.85 Deinococcus-
Thermus

Deinococcus Deinococcus sp. Gbtc 1 100.00 1.13

B10 8,530,228 1,279,534,200 97.40 544 936,783 3,904,465 41.12 Firmicutes Bacillus Bacillus sp. Gbtc 1 100.00 0.98

B11 8,542,264 1,281,339,600 97.29 1026 297,657 5,888,847 35.01 Firmicutes Bacillus Bacillus sp. Gbtc 2 99.18 0.61

B12 8,065,252 1,209,787,800 96.55 1303 360,451 5,633,953 38.15 Firmicutes Bacillus Bacillus sp. Gbtc 3 99.43 5.92

B13 8,075,842 1,211,376,300 94.57 669 2,312,843 4,500,332 45.78 Firmicutes Bacillus Bacillus sp. Gbtc 4 99.59 0.69

B14 8,577,766 1,286,664,900 97.25 370 603,252 5,818,852 35.33 Firmicutes Bacillus Bacillus sp. Gbtc 5 99.00 1.95

B15 7,934,722 1,190,208,300 97.37 647 1,012,143 4,074,767 46.04 Firmicutes Bacillus Bacillus sp. Gbtc 6 99.79 3.89

B16 8,563,006 1,284,450,900 97.55 1046 606,321 4,944,037 37.65 Firmicutes Lysinibacillus Lysinibacillus sp. Gbtc 1 99.34 1.16

B17 8,346,556 1,251,983,400 94.52 608 105,487 8,054,014 58.94 Firmicutes Cohnella Cohnella sp. Gbtc 1 99.18 1.35

B18 8,132,312 1,219,846,800 94.51 1083 450,483 6,778,071 51.84 Firmicutes Paenibacillus Paenibacillus sp. Gbtc 1 99.73 1.56

B19 7,764,668 1,164,700,200 92.78 724 267,255 6,732,356 63.55 Proteobacteria Mesorhizobium Mesorhizobium sp. Gbtc 1 99.51 1.76

B20 5,063,008 759,451,200 95.10 1010 207,593 6,334,492 65.56 Proteobacteria Achromobacter Achromobacter sp. Gbtc 1 99.53 4.27

B21 8,358,042 1,253,706,300 94.32 607 329,603 8,180,439 66.23 Proteobacteria Burkholderia Burkholderia sp. Gbtc 1 100.00 0.80

B22 37,292,636 5,593,895,400 96.37 1316 606,720 5,720,401 54.41 Proteobacteria Pantoea Pantoea sp. Gbtc 1 99.84 2.15

B23 5,589,226 838,383,900 94.43 805 82,214 4,221,366 66.73 Proteobacteria Stenotrophomonas Stenotrophomonas sp.
Gbtc 1

99.89 0.90

F1* 33,295,803 4,799,334,750 93.91 18 3,752,118 29,114,197 49.16 Ascomycota Aspergillus Aspergillus sp. Gbtc 1 – –

F2* 34,022,048 5,097,121,946 96.58 16 4,075,796 37,929,866 47.45 Ascomycota Aspergillus Aspergillus sp. Gbtc 2 – –

*F1 and F2 belong to the Kingdom Fungi. The highly accurate long-read sequences produced on the PacBio Sequel Systems were used to assemble the draft genomes. The pair-ended data (listed in this table) were
added in the polish process after the assembly.
**The Completeness and Contamination was calculated in the checkM program. “–” means the non-applicable items for checkM analyses.
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RESULTS

Endophyte Isolation
In total, 63 endophyte strains were isolated from Ginkgo root
tissues, as listed in Supplementary Table 1. Then, after the
suspected same species were selectively abandoned according to
the colonies’ morphology (Supplementary Figure 1) and the
blast results of the 16s rDNA and ITS sequences (Supplementary
File 1), 23 bacterial strains and 2 fungal strains were chosen to be
used for the subsequent genome sequencing and bioinformatics
analysis. The phylum Actinobacteria included seven strains of
four genera, while Firmicutes included nine strains of four
genera; both occupied the most of all classified isolates in
terms of quantity (Table 1). Of note, the Phylum Proteobacteria
screened five genera, which may contain the most considerable
phylogenetic diversity.

Sequencing, Assembly, and Annotation
As the detailed information listed in Table 1, a total of
207,584,048 clean reads (BGISEQ-500, 2 × PE150) was obtained
to include 31,137,607,200 clean bases for bacteria isolates.
Their average Q20 was 94.59%, ranging from 91.20 to 97.55%,
indicating the high accuracy guarantee for assembly. As to the
two fungi, 848,064 and 1,791,961 sequence entries were collected
with a total bases of 9,678,732,196 and 4,017,770,803 bp. As
expected, the average sequence lengths were above 1K bases
(11,412 and 2,242 bp, respectively).

Influenced by splicing and assembly parameters, and the
species characteristics, 23 bacterial draft genomes were built
with various scaffolds (from 370 to 2854). The N50 sizes varied
from 58,194 to 2,312,843 bp. Meanwhile, the draft genomes
sizes were from 2,604,457 to 12,471,597 bp. Comparing with the
GeneBank genome database, all these draft genomes had similar
genome sizes to their neighborhood species. All the sequencing
depths we calculated were far more than 50×, which was enough
for assembling high-quality genomes in most software (Desai
et al., 2013). Undoubtedly, the overall G + C content of draft
genomes varied with the phylogenetic relationship. The Phylum
Actinobacteria species had higher G + C content than others, up
to 75.09%, while the Firmicutes species own comparatively lower
G + C content. Besides, the Proteobacteria species also possessed
high G + C content. Deinococcus sp. Gbtc 1 (ID: B9, 68.85%
G + C) seemed to verify the fact that the genus Deinococcus
may have high G + C content (McDonald, 2001) as reported.
Moreover, it is reasonable to confirm that most genes are
included in the current draft genomes because the completeness
estimates were all above 98.7%, while the contamination was all
less than 0.16%.

Considering that fungi generally have a larger genome than
bacteria, the introduction of the Single Molecule, Real-Time
(SMRT) Sequencing technology is necessary to improve the
assembly results, especially for eukaryotes. Here, coupled with
the pair-ended PE150 reads, the Pacbio output was assembled
into two high-quality draft genomes of the Aspergillus (16 and 18
contigs). Aspergillus sp. Gbtc 1 (ID: F1) possessed a 29,114,197 bp
genome with a N50 of 3,752,118 bp, while Aspergillus sp. Gbtc

2 (ID: F2) had a genome of 37,929,866 bp with a 4,075,796 bp
N50. Both had a G + C content of less than 50%, similar to these
existed strains in the GeneBank database. On the other side, the
BUSCO completeness was 74.9 and 74.5%, which was as large as
three strains of the closest phylogeny (Supplementary Figure 2),
showing the assemblies’ acceptability.

Phylogenetic Analysis
Generally, the thread of 97% 16s rRNA similarity was
proposed as a golden criterion in bacterial classification
for many years (Stackebrandt and Goebel, 1994). However,
the dataset is becoming broader and broader, reducing
the discrimination of 16s rRNA with high conservation
significantly. Whereafter, a series of other genes were
chosen as the variable markers in succession, such as gyrB
(Yamamoto and Harayama, 1995), recA/B (Pascual et al.,
2010), and rpoD (Parkinson et al., 2011). Nevertheless,
different organisms are not consistent in the heterogeneity
of these housekeeping genes (Yamamoto and Harayama,
1998; Wang et al., 2007). In this research, CVTree3 used
the whole genomes of all isolates and the items from the
open-access database to infer a more accurate phylogenetic
tree. Unlike a single marker gene, namely 16s rRNA etc.,
simultaneous analyzing all bacterial and fungal genomes
exhibits another advantage that all results can be presented
in a phylogenetic tree (Figure 2). Due to 16s rRNA and
ITS pre-classification, almost all strains were assigned into
diverse clades properly, for instance, in fungi, Aspergillus
sp. Gbtc_1 was likely to be phylogenetically affiliated to the
species Aspergillus fumigatus, while Aspergillus sp. Gbtc_2
might be a member of the species Aspergillus flavus or
Aspergillus parasiticus alternatively. Additionally, a similar
situation was observed in the bacterial Kingdom: 13 strains
were severally affiliated to multiple species seemingly,
including Cellulomonas hominis, Streptomyces hyaluromycini,
Chitinophaga rupis, Bacillus cereus, Bacillus megaterium,
Bacillus paralicheniformis, Bacillus velezensis, Lysinibacillus
fusiformis, Paenibacillus chitinolyticus, Achromobacter
mucicolens, Burkholderia pyrrocinia, and Stenotrophomonas
rhizophila. In fact, species identification and classification are
not absolutely unique, but only reflect relative phylogenetic
relationships, as we all know.

Functional Annotation and Classification
These indicators aforementioned suggested that the 25
draft genomes we assembled here were suitable for further
bioinformatics analysis. The two fungi own significantly more
CDSs, rRNAs, and tRNAs than most bacteria (Supplementary
Table 2). Two Streptomyces (B6 and B7) strains expressed much
larger genomes with ≥ 10,000 CDSs than other bacteria. The
genus Burkholderia also appeared to be a large genome (∼8 Mb
with 7126 CDSs) owner in the Bacteria Kingdom. Of all the
databases used in this study, the Nr database had the highest
percentage of similar entries. It is noteworthy that high gene
annotation ratios were obtained in function prediction, which
were all above 97%. However, as the host, the Ginkgo genome’s
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FIGURE 2 | The phylogenetic tree of all isolates and other open-access strains based on the whole genomes. The red font strains with five-pointed stars ahead
indicated the Ginkgo isolates. The same genus individuals were backgrounded with the same color. The arc-shaped line segment on the outermost circle
represented the Kingdom of bacteria and fungi.

annotation rate is only 68.12% (Guan et al., 2016), revealing
unknown species-specific genes in the Ginkgo genome.

Here, we performed the COG classification to survey the
functional profile. The annotation rate varied from 76.82
to 91.13%, and all annotated genes were separated into
26 groups (Figure 3). Overall, irrespective of the category
“Function unknown (S),” relatively more genes belonged to
“Transcription (K),” “Amino acid transport and metabolism
(E)” and “Carbohydrate transport and metabolism (G)” for

most bacteria. Signally, Cohnella sp. Gbtc 1 possessed 16.8%
annotated genes belonging to the category “Carbohydrate
transport and metabolism (G),” seemingly revealing its more
robust carbon metabolism. However, the situation of the fungi
was significantly different. The RNA process (A) and the
biosynthesis of the secondary metabolites (Q) was much more
prosperous. For Ginkgo, the categories “Signal transduction
mechanisms (T)” and “Posttranslational modification, protein
turnover, chaperones (O)” exhibited higher gene portion, as well
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FIGURE 3 | The functional categories based on the COG annotation. Each row represents the same functional classification. (A) The COG categories of Ginkgo
biloba genes. (B) The COG categories of genes for all individual strains. The red color density indicated the percentage of genes in this functional category to the
total genes annotated in each species’ COG database. At the same time, these percentage values (keep one decimal place) were marked in every square grid.

as “Secondary metabolites biosynthesis, transport and catabolism
(Q).” Summarily, within this regional Ginkgo roots (we can
regard it as a host-parasite community), bacteria tended to pay
more attention to primary metabolism. Simultaneously, fungi
and the host Ginkgo have stronger secondary metabolism, which
may be closely related to the host’s environmental tolerance.

Secondary Metabolism
Generally, microorganisms may promote the secondary
metabolism by participating directly or indirectly in their hosts
(Hassan and Mathesius, 2012; Gluck-Thaler and Slot, 2015),
even if some secondary metabolic processes only occur in the
eukaryotic field. In detail, elicitors and metabolic precursors
are the primary forms for plant endophytes. So, in Ginkgo, not
only its secondary metabolites contribute to its tolerance to the
abiotic and biotic stresses, mainly containing flavonoids and
terpenoid lactones (Guan et al., 2016), but also there may be
a series of endophytes playing critical roles in these processes
through multiple synergistic effects. Therefore, a variety of
secondary metabolic pathways in the Ginkgo root community
are analyzed in this study.

Flavonoid Biosynthesis
The whole pathway of flavonoid biosynthesis is relatively
complete in the Ginkgo genome (Figure 4A). The first
regulatory step of flavonoid biosynthesis was cinnamoyl-CoA’s
transformation to pinocembrin chalcone by chalcone synthase
(CHS), which can also catalyze p-coumaroyl-CoA to naringenin
chalcone, caffeoyl-CoA to eriodictyol chalcone, and feruloyl-CoA
to homoeriodictyol chalcone. A total of 17 genes were putatively
annotated as CHS genes, including one belonged to Sample
B6, two belonged to Sample F2, and the rest belonged to the

Ginkgo host. However, no putative genes were identified to code
chalcone isomerase (CHI) and flavanone 3-hydroxylase (F3H) in
all endophytes. Herein, CHI is responsible for converting various
chalcones into flavonoid monomers (pinocembrin, liquiritigenin,
butin, and naringenin), while F3H catalyzes these flavonoid
monomers into dihydroflavonols. Notably, both Ginkgo and the
fungi F1 potentially possess the ability to reduce dihydroflavonols
to the precursors of anthocyanin synthesis (viz. cis-3,4-
leucopelargonidin, leucocyanidin, and leucodelphinidin), as 17
and 1 copy of dihydroflavonol 4-reductase (DFR) genes were
identified in their genomes, respectively. After dehydrogenation
and dehydration by anthocyanidin synthase (ANS), these
precursors were catalyzed into the colorful anthocyanin class of
flavonoids (cyanidin, delphinidin, pelargonidin). The functional
annotation indicated that only Ginkgo involved 8 ANS genes
in the genome. Additionally, 5 Ginkgo genes and 1 F1 gene
were defined as anthocyanidin reductase (ANR) encoders. More
prominently, up to 54 genes (47 of Ginkgo, 3 of F1, and 4 of
F2) encode the flavonoid 3′-monooxygenase (F3M), indicating
potential frequent collaborative transformation among various
flavonoids like kaempferol and quercetin. So, the host Ginkgo
may play a major role in the synthesis of flavonoids in this root
community, under the assist of several putative genes originated
from bacteria (B6 and B8) and these two fungi.

Non-flavonoid Polyphenolics Biosynthesis
More and more polyphenolic compounds are being investigated
for their potential application in the pharmaceutical industry.
They are always constructed from cinnamic acids via
a series of condensation reactions in phenylpropanoid
biosynthesis. As a major precursor, the cinnamic acid is
derived from the phenylalanine and leading into flavonoids,
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FIGURE 4 | The main secondary metabolism pathways. (A) The biosynthesis sketch of flavonoid and non-flavonoid polyphenolics in the Ginkgo root community. The
R labels represent a hydrogen atom, a hydroxyl, or a methoxy in all chemical structures. (1) trans-cinnamic acid; p-coumaric acid; caffeic acid; ferulic acid; (2)
cinnamoyl-CoA; p-coumaroyl-CoA; caffeoyl-CoA; (3) isoliquiritigenin; butein; (4) pinocembrin chalcone; naringenin chalcone; eriodictyol chalcone; (5) pinocembrin;
liquiritigenin; butin; naringenin; eriodictyol; (6) apiforol; luteoforol; (7) pinobanksin; garbanzol; fustin; dihydrokaempferol; dihydroquercetin; dihydromyricetin; (8)
galangin; kaempferol; quercetin; myricetin; (9) 5-deoxyleucopelargonidin; 5-deoxyleucocyanidin; cis-3, 4-leucopelargonidin; leucocyanidin; leucodelphinidin; (10)
afzelechin; (+)-catechin; (+)-gallocatechin; (11) pelargonidin; cyanidin; delphinidin; (12) (–)-epiafzelechin; (–)-epicatechin; (–)-epigallocatechin; (13) liquiritigenin;
garbanzol; naringenin; dihydrokaempferol; (14) butin; fustin; eriodictyol; dihydroquercetin; (15) apigenin; kaempferol; (16) luteolin; quercetin. (B) The biosynthesis
sketch of terpenoid backbone and their derivatives in the Ginkgo root community. (C) The biosynthesis sketch of isoquinoline alkaloid backbone in the Ginkgo root
community.
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monolignols, lignins, and lignans, while it also branch off
into hydroxycinnamates (Zou et al., 2019). Therefore, these
polyphenolics’ biosynthesis is based on the shared substrates,
e.g., p-coumaroyl-CoA and feruloyl-CoA, inevitably leading to
the existence of competition.

In addition to the flavonoid metabolism, other genes encoding
crucial enzymes were observed in several bacterial and fungal
strains, putatively participating in the biosynthesis of non-
flavonoid phenolic substances in this Ginkgo root community. In
the phenylpropanoid biosynthesis, the cinnamate 4-hydroxylase
(C4H) hydroxylates the cinnamic acid or cinnamoyl-CoA
into p-coumaric acid or p-coumaroyl-CoA, herein 13 and
1 copy of its encoder genes were located in Ginkgo and F1
genomes. Then, the synthesis of caffeic acid and caffeoyl-
CoA is accomplished through the coordination of shikimate
O-hydroxycinnamoyltransferase (HCT), coumaroylquinate
3′-monooxygenase (C3’H) and caffeoylshikimate esterase
(CSE) from their precursor p-coumaroyl-CoA. Three C3’H
genes were observed in Sample F2, potentially assisting
the host to complete this critical process. Two kinds of
methyltransferase, namely caffeic acid 3-O-methyltransferase
(COMT) and caffeoyl-CoA O-methyltransferase (CCOMT),
were responsible for the transformation of caffeic acid (or
caffeoyl-CoA, caffeic aldehyde, caffeyl alcohol) to ferulic acid
(feruloyl-CoA, coniferyl aldehyde, coniferyl alcohol), as well
as from 5-hydroxyferulic acid (or 5-hydroxyferuloyl-CoA,
5-hydroxyconiferaldehyde, 5-hydroxyconiferyl alcohol) to
sinapic acid (or sinapoyl-CoA, sinapoyl aldehyde, sinapyl
alcohol) in the downstream of metabolism. In this course, 19
COMT (CCOMT) isoforms were identified in the bacteria and
fungi. Meanwhile, 23 genes were predicted to code ferulate-
5-hydroxylase (F5H), with one belonged to bacterial strain
B6. In the other direction, the downstream derivatization of
these precursor acids is accomplished by 4-coumarate-CoA
ligase (4CL), cinnamoyl-CoA reductase (CCR), and cinnamyl-
alcohol dehydrogenase (CAD) in turn, to produce p-coumaryl
alcohol, caffeyl alcohol, coniferyl alcohol, 5-hydroxyconiferyl
alcohol, and sinapyl alcohol. These three enzymes were all
putatively encoded in the Ginkgo host, while only five 4CL
genes from three bacteria strains were annotated, and the
two fungi strains involved both 4CL and CAD isoforms.
The current favored viewpoint endorses that p-coumaryl
alcohol, coniferyl alcohol, 5-hydroxyconiferyl alcohol, and
sinapyl alcohol are the direct precursors of the lignins (p-
hydroxyphenyl lignin, guaiacyl lignin, 5-hydroxy-guaiacyl
lignin, and syringyl lignin). These monolignol oxidation
occurs through peroxidase (PRD), peroxiredoxin (PRDX),
or catalase-peroxidase (CPRD), thereof Ginkgo genome
containing all annotated PRD genes and two PRDX genes
while several bacterial and fungal strains affording 9 CPRD
genes and one PRDX gene. As for the lignans biosynthesis, a
pivotal branchpoint enzyme named pinoresinol/lariciresinol
reductase (PLR) were detected in Ginkgo and Fungus F1;
nevertheless, the ones involved in the downstream derivation,
like secoisolariciresinol dehydrogenase (SIRD), pluviatolide
synthase, pluviatolide 4-O-methyltransferase, bursehernin
5′-monooxygenase, 5′-demethylyatein 5′-O-methyltransferase,

and deoxypodophyllotoxin synthase, have not been observed
in all organisms.

Terpenoid Backbone and Their Derivatives
Biosynthesis
Terpenoid is a class of the most abundant secondary metabolites
in nature, wildly produced in the bacteria, fungi, and higher
plants. More than 50 thousands of terpenoids have been
discovered to be biologically active ingredients, comprising
monoterpenes, sesquiterpene, diterpene, triterpene, and
tetraterpenes (Zhang et al., 2017a). As a good model for
diterpene research in higher plants, Ginkgo is well known for its
wealthy diterpenoids of ginkgolides and bilobalide (Maclennan
et al., 2002), and markedly recommended as the therapeutic
usage to antagonize platelet-activating factor (PAF). Therefore, it
is meaningful to thoroughly excavate the genes related to terpene
synthesis to study all species’ mutual evolution and synergy
in this community.

In general, all terpenoids are derived from two isomeric
precursors, isopentenyl diphosphate (IPP) and dimethylallyl
diphosphate (DMAPP). IPP and DMAPP are synthesized in
the mevalonic acid (MEV) pathway and the 2-C-methyl-D-
erythritol-4-phosphate (MEP) pathway (Lichtenthaler, 1999;
Lange et al., 2000). In the MEV pathway (Figure 4B), three
acetyl-CoA molecules are condensed and transformed into
MEV and then subjected to multiple steps of phosphorylation
and decarboxylation reactions to produce IPP. The MEP
pathway is started with the combination of glyceraldehyde 3-
phosphate and pyruvate into 1-deoxy-D-xylulose 5-phosphate,
and then further catalyzed to MEP. It is then formed into
2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEC) through
three successive reactions before MEC is further catalyzed to
obtain a mixture of IPP and DMAPP of 5:1. Besides, IPP
and DMAPP can be isomerized to each other with isopentenyl
diphosphate isomerase (IDI). As basic C5 units, alternative
assembly of two, three, or four these units via prenyltransferases
may yield geranyl diphosphate (GPP), farnesyl diphosphate
(FPP) and geranylgeranyl diphosphate (GGPP), which serve as
the immediate precursors for diverse monoterpenoids (C10),
sesquiterpenoids (C15), diterpenoids (C20), triterpenoids (C30),
and tetraterpenoids (C40). In this study, a nearly integrated
pathway of terpenoid backbone biosynthesis was observed in
the root community. As well as the Ginkgo host, almost
all bacterial strains were capable of producing IPP and
DMAPP through the MEP pathway via 1-deoxy-D-xylulose-
5-phosphate synthase (DXPS), 1-deoxy-D-xylulose-5-phosphate
reductoisomerase (DXR), 2-C-methyl-D-erythritol 4-phosphate
cytidylyltransferase (MCT), 4-diphosphocytidyl-2-C-methyl-D-
erythritol kinase (CDPMEK), 2-C-methyl-D-erythritol 2,4-
cyclodiphosphate synthase (ME), (E)-4-hydroxy-3-methylbut-2-
enyl-diphosphate synthase (HDS) and 4-hydroxy-3-methylbut-
2-en-1-yl diphosphate reductase (HDR). Although a widely
accepted view indicates that the plant host may inherit genes in
the MEP pathway from a prokaryote endosymbiont (Vranova
et al., 2013), more evidence needs to be investigated in this
community. The MEP pathway may probably take place in the
plastids of Ginkgo. It is worth noting that Aspergillus sp. Gbtc_2
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(F2) was discovered to hold a contiguous gene unit of CDPMEK
and MECPS gene in its genome.

On the other side, the MVA pathway reconstruction indicated
that strains B1, F1, F2 and Ginkgo presumably facilitated the
synthesis from acetyl-CoA to IPP cooperatively. Excluding errors
in gene prediction and functional annotation, the Ginkgo host
may lose the capacity to produce mevalonate-5P due to a
lack of mevalonate kinase (MVK); only B1, F1, and F2 each
possessed one copy of the MVK gene. Intriguingly, B1 (putatively
affiliated to gram-positive Cellulomonas hominis) became the
unique strain in all endophytes to retain both MEP and
MVA pathways to produce IPP and DMAPP. Additionally, 99
copies of the acetyl-CoA C-acetyltransferase (ACAT) gene were
observed, most belonging to bacterial strains (Supplementary
File 2). The genes of hydroxymethylglutaryl-CoA synthase
(HMGS), hydroxymethylglutaryl-CoA reductase (HMGCR),
phosphomevalonate kinase (PMVK), and diphosphomevalonate
decarboxylase (MVD) were mainly discovered in Ginkgo
and fungal genomes.

A series of GPPS, FPPS, and GGPPS genes were identified
in the downstream pathway, encoding synthases to transform
IPP and DMAPP into GPP, FPP, and GGPP. Only one GPPS
gene from Ginkgo was scanned out, while 47 and 10 CDSs
were annotated to be GGPPS and FPPS genes, respectively.
Remarkably, the KEGG results depicted that FPPS genes were
classified into two groups (K00787 and K00795), and GGPPS
genes were classified into three groups (K00804, K13787,
K13789). These sequences were significantly different between
eukaryotes and prokaryotes, and K13789 contained the genes
from Ginkgo and endophytic bacteria, in which there may
be close homology.

However, the pathway regeneration exhibited an incomplete
biosynthesis of monoterpenoid with only three enzyme
genes [K15095 (+)-neomenthol dehydrogenase, K12467
myrcene/ocimene synthase, K07385 1,8-cineole synthase]. As to
the biosynthesis of sesquiterpenoid and triterpenoid, one and
two CDSs were found closest to the (+)-alpha-barbatene/beta-
chamigrene/thujopsene synthase and NAD+-dependent
farnesol dehydrogenase genes, which are responsible for
changing FPP to sesquiterpenoids, like (+)-alpha-barbatene,
(+)-beta-chamigrene, and (+)-thujopsene. Moreover, farnesyl-
diphosphate farnesyltransferase and squalene monooxygenase
were discovered to retain genes in both Ginkgo and the two
fungi, to transfer the farnesyl of FPP to the triterpenoid
precursors, squalene and (S)-squalene-2,3-epoxide. Meanwhile,
one alarm was the presence of squalene-hopene/tetraprenyl-
beta-curcumene cyclase genes in bacteria and fungi rather than
Ginkgo, which made us concerned with the derived bridge
of the endophytes.

Considering the predominance of ginkgolides in Ginkgo,
we interestedly discussed the diterpenoid biosynthesis here.
Initiated by the protonation from GGPP under the copalyl
diphosphate synthase (CPS), the copalyl diphosphate (CPP) was
further catalyzed into levopimaradiene after allylic diphosphate
ionization, cyclization, hydride shift, methyl migration, and
deprotonation (Schwarz and Arigoni, 1999). Nevertheless, there
were no CPS or levopimaradiene synthase (LPS) genes found in

all genomes. Reciprocally, acting as a critical kind of hormones
throughout the plant life-cycle, gibberellins (GA) harbored a
continuing pathway in the host, which is a matter of course.
Thereof, the genes of ent-copalyl diphosphate synthase and
ent-kaurene oxidase occupied the largest number of isoforms
in Ginkgo’s genome. Intriguingly, one ent-kaurenoic acid
monooxygenase gene from F1, one gibberellin 2beta-dioxygenase
gene from B6, and three gibberellin-44 dioxygenase genes from
F2 were also involved in this community, potentially facilitating
and regulating the biosynthesis of GAs.

Carotenoids are 40-carbon tetraterpenoids condensed and
derived from two GGPP molecules by diverse critical enzymes,
including phytoene synthase (PSY), phytoene desaturase (PDS),
zeta-carotene desaturase (ZDS), and others. Herein, we observed
a two-approach process from phytoene to lycopene in this
community: (1) cPDS/PDS - ZDS; (2) cPDS – C-ISO –
ZDS – P-ISO. Subsequently, the lycopene is always converted
into two branches in the downstream. One is that lycopene
β-cyclase (LCY-B) transformed the parent molecule to γ-
carotene and then to β-carotene in a two-step reaction, whereas
the other is that lycopene ε-cyclase (LCY-E) catalyzed it
into δ-carotene and ε-carotene, in which the δ-carotene is
further catalyzed to α-carotene and lutein (Hirschberg, 2001).
However, from an overall perspective, gene annotation depicted
a carotene transformation way pointing to the xanthophyll
cycle in this community. Although LCY-B, beta-carotene 3-
hydroxylase (CHY), and beta-ring hydroxylase (rHY) each
were capable of acting on these two branches, and one
carotenoid epsilon hydroxylase (CEH) gene was harbored in
the Ginkgo genome, the lack of LCY-E may lead to the failure
in downstream biosynthesis of δ-carotene ε-cyclase, α- carotene
and even lutein.

Isoquinoline Alkaloid Backbone Biosynthesis
As a group of nitrogen-containing natural products, alkaloids
exist in approximately 20% of plant species, like Opium poppy
and Madagascar periwinkle (Facchini and De Luca, 2008).
In another aspect, a remarkable number of endophytes were
speculated to produce distinct classes of alkaloids to exert
effects on pathogenic fungi, insects, and birds (Schardl et al.,
2004; Fuchs et al., 2017). Not coinciding with other secondary
metabolites, various alkaloid categories are unrelated in terms
of synthesis and derivation. However, common patterns have
become apparent in indole alkaloid or isoquinoline alkaloid
(morphine, sanguinarine, etc.). As aromatic-L-amino-acid/L-
tryptophan decarboxylase (K01593) became the sole enzyme
we identified in the indole alkaloid biosynthesis of this root
community; detailed insight was excavated to the biosynthesis of
isoquinoline alkaloid.

Notoriously, isoquinoline alkaloid biosynthesis begins
with the transformation from tyrosine to dopamine
and 4-hydroxyphenylacetaldehyde (4HPAA) through
decarboxylation, hydroxylation, and deamination (Sato
et al., 2007). The norcoclaurine synthase (NCS) condenses
dopamine and 4HPAA to yield (S)-norcoclaurine (Facchini,
2001). Then, the norcoclaurine is converted to coclaurine by
norcoclaurine 6-O-methyltransferase (NC6OMT), sequentially
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followed by a series of reactions to N-methylcoclaurine, 3′-
hydroxy-N-methyl coclaurine and reticuline by coclaurine
N-methyltransferase (CNMT), N-methylcoclaurine 3′-
monooxygenase (NM3H), and 3′-hydroxy N-methylcoclaurine
4′-O-methyltransferase (3HMC4OMT).

Available data suggested strict reaction specificities of
NC6OMT, 3HMC4OMT, and CNMT (Morishige et al.,
2000), suggesting that the pathway is optional between the
norcoclaurine branch and the norlaudanosoline branch
before the central intermediate reticuline is ready for the
next biosynthesis of isoquinoline alkaloid. In this study, we
only observed the early part of the backbone biosynthesis
(Figure 4C). A lack of 4-hydroxyphenylpyruvate decarboxylase
and 4-hydroxyphenylacetaldehyde synthase may lead to the
deficiency of 4HPAA in this root tissue, although a few
aspartate aminotransferases or the monofunctional tyrosine
aminotransferase (K00815) were annotated to potentially
catalyze L-tyrosine to 4-hydroxyphenylpyruvate. On the other
branch, the process from tyrosine to dopamine is relatively
integrated in this unit. Ginkgo genome was constructive to
harbor 6 CDSs of tryptophan decarboxylase (TRDC) and 13
CDSs of primary-amine oxidase (AO); these two proteins were
also found in bacteria and fungi. The tyrosine 3-hydroxylase
(T3H) in B21 and B23 were responsible for converting L-tyrosine
into L-dopa, while the tyrosinase (TYR) in B6, B7, B8, B12,
and F2 catalyze both L-tyrosine into L-dopa and tyramine
to dopamine. Additionally, as well as TRDC, the tyrosine
decarboxylase (TYDC) was putatively included in the genomes
of B7, B8, F1, and F2, to accomplish the transmission from
L-tyrosine to tyramine and L-dopa to dopamine. Noteworthily,
the manufacture of dopamine is likely dependent more on
endophytes rather than the Ginkgo host, especially the strains B7
(named as Streptomyces sp. Gbtc_2) and F2 (named as Aspergillus
sp. Gbtc_2). So, it can be inferred that the synthesis of dopamine
is achieved through the cooperation of endophytes and the
Ginkgo host to a certain extent, although it is impossible to put
together all genomes to compose an entire metabolic pathway of
isoquinoline alkaloid biosynthesis.

Repetitive Sequences and Transposable
Element
The endophytes’ genomes were estimated to comprise various
repetitive sequences (Supplementary Table 3). Using the de novo
method, from 2.15 to 17.14% of the assembled genomes were
masked as transposable elements and tandem repeats. Visibly,
most bacterial strains seemed to comprise a larger proportion
of repetitive sequences than the fungal ones. Numerically,
Aspergillus sp. Gbtc 2 (F2) covered a lower repeating sequence
ratio than Aspergillus sp. Gbtc 1 (F1), although it had a
much larger genome, which may be derived from its colossal
gene content. Apart from the common simple repeats, the
retroelements and the DNA transposons accounted for the
central part of repetitive sequences. Streptomyces sp. Gbtc 1,
Gbtc2 and Mesorhizobium sp. Gbtc 1 (B6, B7, B19) harbored
more DNA transposons (≥450 sequences) than other bacterial
endophytes. Of the retroelements, the LTR elements revealed a

majority against the SINEs and LINEs. Noteworthily, Bacillus sp.
Gbtc 2, Gbtc 3, Gbtc 5, and Aspergillus sp. Gbtc 2 (B11, B12,
B14, F2) embraced relatively more prosperous SINEs than others.
Further on, of the LTR elements, the Ty3/Gypsy superfamily
was ubiquitous in all isolated individuals, while the Ty1/Copia
superfamily was only detected in Aspergillus sp. Gbtc 1.

To verify whether these two abundant superfamilies have
undergone lateral gene transfer (LGT) between Ginkgo and the
endophytes, the conserved transcriptase domains were carried
out further multiple alignment. The phylogenetic tree of the
Ty3/Gypsy superfamily (Figure 5A) inferred eight potential
clades, four (Clade 2, 4, 7, 8) of which were notably observed
as Ginkgo-specific clusters. Clade 1 and 2 displayed substantially
higher diversity than other clades, possibly indicating the ancient
origins of these subfamilies with diversification. Based on the
E-value of 1E-5, six sequences exhibited high homology to
these included in the Ginkgo host, though divided into different
subfamilies. Two Ty3/Gypsy-like sequences from Microbacterium
sp. Gbtc 2 and Streptomyces sp. Gbtc 2 (B3 and B7) were clustered
to Clade 1, during one of Cohnella sp. Gbtc 1 (B17) in Clade 3
and another of Deinococcus sp. Gbtc 1 (B9) in Clade 6. It is worth
mentioning that Microbacterium sp. Gbtc 1 (B2), Aspergillus sp.
Gbtc 2 (F2), and the Ginkgo host shared almost one remarkably
similar sequence snippet to form a separate superfamily (Clade
5), indicating a potentially common ancestor. In the phylogenetic
tree of the Ty1/Copia superfamily (Figure 5B), LTR-RTs from
several endophytes and the Ginkgo host depicted a slightly
different pattern that no clades were clustered to be easily
distinguished. Three homologies of Ty1/Copia were observed
in Microbacterium sp. Gbtc 1 (B2) within different branches,
while two excerpts involved in Bacillus sp. Gbtc 2 (B11)
emanated relatively longer evolutionary distance. Additionally,
two sequences from Bacillus sp. Gbtc 1 (B10) and Burkholderia
sp. Gbtc 1 (B21) overlapped well to reveal their conservatism.

Furthermore, gene exchange potential between endophytes
and the Ginkgo host through LTR-RTs was estimated in
Figure 5C. A total of 57 CDS (detail listed in Supplementary
File 3) predicted from endophytes’ LTR-RTs were homologous
to Ginkgo sequences. Generally speaking, the lower E-value
and the higher query coverage indicate a higher potential for
gene cross-species communication. Here, 16 pieces with the
desired E-value (<1E-100) and >75% query coverage in the
comparison coincided with the unique Ginkgo CDS (Gb_09036);
nevertheless, it was annotated as a hypothetical protein. So,
in terms of these manifestations, the genetic communication
was probably widespread between endophytes and the host
Ginkgo, and retrotransposons may be one form of the cross-
species gene exchange.

DISCUSSION

General Comparison of Ginkgo
Endophytic Genomes
With the draft genome sequencing and analysis, we have
performed the first comparative genomic study between
the published Ginkgo genome (Guan et al., 2016) and its
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FIGURE 5 | Evolution of LTR-RTs in all isolates and Ginkgo. (A) The phylogenetic tree of the Ty3/Gypsy superfamily predicted in all isolates and Ginkgo. The lines of
the same color indicated the same endogenous strain, and the black lines indicated the sequences of the Ginkgo host. (B) The phylogenetic tree of the Ty1/Copia
superfamily predicted in all isolates and Ginkgo. (C) The BLASTN output of CDSs predicted in all LTRs in isolates against the Ginkgo CDSs. The shade of red
rectangles means the magnitude of the E-value, and the length of the blue bar indicates the coverage of the query sequence of CDSs predicted in all LTRs in
isolates. Multiple cases in each row represent multiple LTR-RTs of the same endophyte.

25 endophytes of significant phenotypic differences. Articles
reported that some endogenetic strains belonging to the genera
Streptomyces, Bacillus, Burkholderia, and Aspergillus were already
discussed on their biosynthesis of phenolic and flavonoid (Qiu
et al., 2010), enzymes (Yuan et al., 2010), fungal inhibition (Yuan
et al., 2012), and the taxonomy classification (Yan et al., 2018)
in Ginkgo. Herein, 12 new genera strains isolated from Ginkgo
root were first described as Ginkgo endophytes. Compared to the
others, the GC contents of the Phylum Actinobacteria were much
higher, in accordance with the paradigm that Actinobacteria
are universally high-GC organisms in free-living environments
(Ghai et al., 2012). Generally, a higher GC content means a
higher optimal growth temperature for prokaryotes (Musto et al.,
2006). Firmicute strains harbored significantly lower GC content
than other Phyla, potentially representing special lineages in the
endogenous environment.

The COG annotation showed a differentiated function map.
The functional genes of most bacteria are mainly concentrated in
the COG categories [K], [C], [G], and [E], indicating a potential
metabolic dominance in transcription, energy production and
conversion, carbohydrate transport and metabolism, amino acid
transport and metabolism. Besides, the COG category [M] was
also of higher occupancy in bacteria than the fungi; a plausible
explanation is that bacteria is always smaller than fungi to
require more efficient utilization of nutrients from the external
environments (Zhang et al., 2017b). Notably, two Streptomyces
strains (B6 and B7), with a large genome (∼12 Mb, ∼11,000
CDSs), harbored more genes involved in transcription (Category
[K]) than other bacterial isolates, which may be related to their
higher proportion of secondary metabolic genes in Category [Q].
The proof that a large set (around 12% of the total chromosome)
of regulatory genes was employed for metabolic regulation may
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support this inference (Romero-Rodriguez et al., 2015). However,
the proportion of B6 genes classified into Category [G] is
significantly lower than the reported one (Harunari et al., 2018),
although both were assumed to be Streptomyces hyaluromycini,
which may suggest the potential of gene loss in carbohydrate
transport and metabolism. As a comparison, the strain B17, high
similar to Cohnella phaseoli in phylogeny, contained a prominent
proportion of genes annotated in this category, although there
is currently no relevant report explaining the specific reasons.
These results provided a tip of the iceberg of the metagenome in
Ginkgo roots.

Endophytes Potentially Compensate or
Share Part of Secondary Metabolism
Pathways in Ginkgo Root
For a long time, the coexistence and evolution of endophytes
and their plant host have established a special relationship,
which may influence the production of active metabolites in
plants (Jia et al., 2016). The past few years have witnessed the
significant contribution of metabolite detection as one of the
most intuitive methods in life sciences research. Nevertheless,
the diversification and the complexity of the components
always lead to analytical variability, ion suppression and
metabolite identification, which has become the bottleneck for
the metabolome study (de Jong and Beecher, 2012). Preliminary
analysis based on comparative genomics may be a powerful
means to simplify metabolite research, especially in the unknown
field of endophyte-host study.

The biosynthesis of polyphenols is an essential branch
of phenylpropanoid metabolism, usually originating from the
phenylalanine conversion. Up to now, few bacterial counterparts
were observed to simultaneously harbor the phenylalanine
ammonia-lyase (PAL), 4CL and CHS genes, reflecting the
conceivable inexistence of directly producing chalcones in
bacteria (Moore et al., 2002). Here we propose a new conjecture
based on our analysis results: a variety of endogenous bacteria
can work together to convert phenylalanine to chalcones
in a microenvironment in a complementary manner. The
isolates B21, B6, and B3, seemingly supported our conjecture
due to their inclusion of the PAL, 4CL and CHS genes in
their genomes, respectively. Besides, the endogenous fungus
F2 (high homologous to Aspergillus flavus) harbored these
three genes to expand our insights. The homologous genes
of CHI was reported to exist in some fungi, slime molds
and γ-proteobacteria, while these species with CHI-like genes
often lack orthologous genes for the upstream enzyme CHS
(Gensheimer and Mushegian, 2004), which seems to run counter
to our results here. Evidences suggested that endophytic fungi
can participate in their plant hosts’ flavonoid metabolism by
producing new flavonol (Yan et al., 2013) or metabolizing
glycosylated flavonoids into aglycone (Tian et al., 2014). In this
study, endogenous fungi potentially have sufficient ability to
derivatize downstream flavonoids by adding hydroxyl groups.
Given the competition, most polyphenolics (flavonoids, lignins,
lignans, and hydroxycinnamates) are synthesized from the same
substrates (Zou et al., 2019), endophytes and the Ginkgo host

may be involved in the regulation of material flow at the
same time. As for the synthesis of lignins, there is no relevant
evidence supporting the promoting effect of synthesis, yet most
reports have pointed out that endophytic bacteria and fungi
can accelerate lignins’ decomposition (Koide et al., 2005; Shi
et al., 2015). It seems to be inconsistent with the appearance
that two lignin synthetase (CPRD, PRDX) genes were found
in multiple isolates, which may be the first time to uncover
the possibility of promoting lignin synthesis for the endophytes
parasitized in the plant. On the other side, some endophytes
may directly or indirectly synthesize lignans, yet the material
conversion mechanism is not precise. For instance, Trametes
hirsuta became a novel alternative source of aryl tetralin lignans
as an endophyte of Podophyllum hexandrum (Puri et al., 2006).
The metabolites of endophytes were tended to promote the lignan
synthesis in the host (Kumar et al., 2012). Herein, the sole PLR
gene belonging to Aspergillus sp. Gbtc_1 indicated the feasibility
of regulating the transformation from alcohols to lignans for
Ginkgo, which may expand the view of the lignan synthesis
field by endophytic microorganisms. Unfortunately, including
the Ginkgo host, the synthesis pathway of hydroxycinnamates is
not fully presented in this study.

Ginkgolides are an important class of active terpenoids in
Ginkgo, which appeared to be independently biosynthesized in
leaves and roots and stored in root bark and stem as hydroxylated
forms (Huh and Staba, 1993). Since the LPS cDNA was first
cloned and functionally characterized from Ginkgo (Schepmann
et al., 2001), ginkgolide biosynthesis has gradually entered the
public eyes. However, the authors exerted the inadequacy of
LPS genes for homology comparison and analysis due to their
insufficient sequence conservation (Schepmann et al., 2001; Ro
and Bohlmann, 2006). This is the possible reason why this critical
enzyme cannot be predicted here in the Ginkgo host, because
its existence is indisputably actual. Like Pestalotiopsis uvicola
GZUYX13 (Qian et al., 2016) and Fusarium oxysporum SYP0056
(Cui et al., 2012), multiple endophytes were isolated from Ginkgo
trees and proved to produce ginkgolides. Although there is no
reported evidence to uncover the detail of the synthesis process in
these endophytes, an existing case may be able to give researchers
great inspiration. The endophytes did not share the significant
sequence homology of taxol biosynthetic genes with the Taxus
brevifolia, but indicating a novel taxol biosynthesis pathway
potentially independently developed in themselves (Heinig et al.,
2013). Therefore, it needs further confirmation that whether the
ginkgolide-producing endophytes in Ginkgo advocate a similar
rule as the taxol-producing endophytes in Taxus. Nonetheless,
when the mutant strain, Aspergillus aculeatinus BT-2, increased
taxol production, the high expression of MVA pathway genes
and GGPPS genes gave us favorable thinking (Qiao et al.,
2020), because ginkgolides and taxol are both diterpenoid natural
derivates. Also, exogenous and endogenous increase of GGPPS
can increase taxol’s fungal production (Soliman et al., 2017);
this evidence pushed us to think that the enhancement of
MVA and MEP pathways is also very likely to promote the
synthesis of active ingredients in host plants. Fortunately, the
endophytic fungus Alternaria alternata TPF6 has been proven
to increase paclitaxel synthesis by enhancing the MVA pathway

Frontiers in Plant Science | www.frontiersin.org 14 July 2021 | Volume 12 | Article 704985

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-704985 July 9, 2021 Time: 11:56 # 15

Zou et al. Symbiosis of Ginkgo and Endophytes

and co-overexpressing heterologous IDI genes (Bian et al., 2017).
In this study, the Ginkgo host has a complete MEP pathway to
synthesize IPP and DMAPP, while IDI genes were only identified
in the multiple isolates, indicating the probably key role of
these endophytes in regulating the mutual transformation of
these two components. If the MEP pathway of Ginkgo came
from an endosymbiotic prokaryote as widely accepted (Vranova
et al., 2013), the MVK gene involved in the original MVA
pathway of Ginkgo might have a non-high-homology replaceable
copy, or it may be compensated by endophytes due to a long-
term symbiotic relationship, like Cellulomonas sp. Gbtc_1 (B1)
here. Although most bacteria and the Ginkgo host contain
a complete MEP pathway, B1 may be the only endogenous
bacteria with almost complete MEP and MVA pathways in our
isolates. On the other hand, in the root environment herein,
the Ginkgo host and endophytic bacteria may play a leading
role in carotenoid synthesis. Previously, quite a few reports have
confirmed that bacteria are a large natural source of carotenoids,
including Flavobacterium spp., Agrobacterium spp., Micrococcus
spp., Chromobacterium spp., Rheinheimera spp. and so on (Ram
et al., 2020). Novel carotenoids have also been discovered in
Deinococcus radiodurans and Thermus thermophiles to withstand
extreme environmental stresses such as radiation, oxidation,
and desiccation (Tian and Hua, 2010). So, given that stressful
environments usually lead to the accumulation of carotenoids
(Paliwal et al., 2017), we speculate that no matter whether there
is material communication and regulatory interaction between
endophytic bacteria and Ginkgo cells or not, jointly resisting
environmental pressure may be their ultimate goal.

Isoquinoline alkaloids are one of the most extensive natural
products in the plant kingdom, e.g., in the families of
Annonaceae, Fumariaceae, Papaveraceae, and Rutaceae (Gao
et al., 2008). Most of them are biosynthesized from tyrosine
and show inhibitory properties against universally pathogenic
fungi (Zhao et al., 2019). However, mycobionts of lichens,
Streptomycetes and several fungi like Penicillium (Trisuwan
et al., 2010) and Aspergillus (Kohno et al., 1999) were able to
produce a few isoquinolines. They are all produced biogenetically
by amination in the polyketide pathway (Yang et al., 2012).
So far, there is no relevant research discussing the metabolic
characteristics of Ginkgo endophytes in terms of isoquinoline
alkaloids. Herein, no superior numbers of alkaloid-related genes
were discovered, although Ginkgo has a solid adaptability
to environmental pressure; the possible explanation is that
ginkgolides and flavonoids are its main environmental tolerance
guarantees, or that Ginkgo-specific genes constitute the unknown
alkaloid synthesis pathways. Gene function mapping shows that
most CDSs annotated to the alkaloid-related pathways were
gathered in the isoquinoline alkaloid biosynthesis. Moreover,
the large number of these copies are focused on the dopamine
synthesis and the L-dopa degradation. As for as our knowledge
goes, dopamine plays an important role in signal transduction
in plants, and is a precursor of essential alkaloids (Lundström
and Agurell, 1971). However, L-dopa has a significant two-sided
effect that its considerable accumulation can increase toxicity and
act as a feeding repellent, and the ROS damage generated after
autooxidation cannot be ignored (Soares et al., 2014). This study

may indicate that Ginkgo can convert L-dopa into dopamine,
but its bacterial and fungal endophytes may play a potential
regulatory role between these two components.

Cross-Species Transfer of Repetitive
Sequences and Genes May Occur
Between the Endophytes and the Ginkgo
Host
The cross-species exchange of genetic information has been
a research hotspot for many years. The LGT, also known as
horizontal gene transfer (HGT), was the most well-known
form of the cross-species genetic exchange. Originated from
bacteria and archaea, LGT often occurs in the phagocytic-
lifestyle prokaryotes with a relatively high incidence (Ochman
et al., 2000), while its situation in the eukaryotic field is more
complicated. Gene transfer usually promotes eukaryotes
acquiring functions from the prokaryotic genome and
enables eukaryotes to settle in a new environment. The
most typical example is the endosymbiotic theory (Zimorski
et al., 2014). Higher-level genetic information exchange is
gradually uncovered between multiple species areas, such as
bacteria, fungi, animals, and plants. In general, the greater
the period of the symbiotic relationship between species, the
more likely LGT will occur. Therefore, we approve that the
root of the longevous wild Ginkgo is a suitable choice for
studying the genetic information exchange between higher
plant hosts and endophytes. There are many ways to evaluate
gene lateral transfer, but the generally accepted method is the
phylogenetic tree analysis based on sequence similarity, although
sometimes accuracy and universality not very appropriate
(Bapteste et al., 2004).

Moran and Jarvik firstly reported that the genes responsible
for the various colors of aphids were derived from the fungi
(Moran and Jarvik, 2010). These genes involved in carotenoid
synthesis have been integrated into the host genome, but the
larger introns and larger intergenic regions were obtained in the
aphid copy, obviously indicating the probable self-modification
by the host. Another example, the insect host delineated the
pick-up of nearly the entire genome from the endophytes
Wolbachia that most of these sequences were non-functional
fragments (Dunning Hotopp et al., 2007; Zhaxybayeva and
Doolittle, 2011). Here, insertion and integration into the host
genome is an important step for this process. However, it is still
ambiguous that the numerous and widely distributed LTR-RTs
may also be lateral gene transferred between species. Guan et al.
(2016) presented phylogenetic trees of the LTR-RTs superfamilies,
Ty3/Gypsy and Ty1/Copia, to show the evolutionary but not the
gene transfer relationship between Ginkgo biloba, Physcomitrella
patens, Picea abies, Populus trichocarpa, and Zea may. Therefore,
we believe that gene transfer can be defined as the exchange
of genetic information across very distant species, rather
than the differential evolutionary succession of closely related
species based on a common ancestor. As earlier reports, all
LTR-RTs have surprising sequence similarities with vertebrate
retroviruses (Flavell, 1999), such as the decisive fact that at
least one LTR retroposon in Drosophila was confirmed to be an
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infectious retrovirus (Kim et al., 1994). This lays the foundation
for our speculation that cross-species genetic exchange may
also occur in the internal environment of symbiotic plants,
even if the probability may be low. Our results seem to be
following our conjecture that the two LTR-RT superfamily have
a small number of highly similar sequences. The high sequence
similarity across Kingdoms can be undoubtedly regarded as a
typical LGT behavior. Moreover, dramatically, almost all isolated
CDSs involved in endophytic bacteria LTR-RTs shared striking
sequence similarities with the same CDS from Ginkgo; seemingly,
LTR-RT became a rare unit flowing between the Ginkgo host
and the endophytes to exchange genetic information. For this
process, unfortunately, this CDS function cannot be estimated,
and further experimental exploration is needed.

CONCLUSION

This research is the first insight into the potential symbiosis-
evolution relationship between the Ginkgo biloba and the
endophytes in root. A total of 25 endophytic strains were
screened and distributed in 16 genera of 6 phyla, including
Bacillus, Microbacterium, Streptomyces, Aspergillus, etc. Due
to the significant morphological diversities of these isolates,
the functional classification profile of COG annotation shows
diversified characteristics. The KEGG pathway comparison
indicated that endophytes might participate in the secondary
metabolism of the Ginkgo host in a shared or complementary
manner, including the synthesis and derivation of flavonoids and
terpenoids. Besides, the repetitive sequence analysis delineated
a few endophytic sequences belonging to the two LTR-RT
superfamilies, Ty3/Gypsy and Ty1/Copia, exhibiting extremely
high similarity to that of the Ginkgo host. Moreover, a series
of CDSs involved in such LTR-RT sequences were found highly
homologous to one CDS of the Ginkgo host, potentially implying
that LTR-RT became a rare unit flowing between the Ginkgo
host and the endophytes to exchange genetic information.
Comparative genomics is the primary analytical method, but
many complex experiments are needed to verify our conjecture
in this research. In short, these findings have promoted a
deeper understanding of the relationship between Ginkgo and
its endophytes, and provided a favorable reference for the
subsequent development of Ginkgo resources and the utilization
of endophytic metabolism engineering.
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