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Rice is the most important source of food worldwide, providing energy, and nutrition

for more than half of the population worldwide. Rice grain quality is a complex trait

that is affected by several factors, such as the genotype and environment, and is

a major target for rice breeders. Cis-regulatory elements (CREs) are the regions of

non-coding DNA, which play a critical role in gene expression regulation. Compared

with gene knockout, CRE modifications can fine-tune the expression levels of target

genes. Genome editing has provided opportunities to modify the genomes of organisms

in a precise and predictable way. Recently, the promoter modifications of coding genes

using genome editing technologies in plant improvement have become popular. In this

study, we reviewed the results of recent studies on the identification, characterization,

and application of CREs involved in rice grain quality. We proposed CREs as preferred

potential targets to create allelic diversity and to improve quality traits via genome

editing strategies in rice. We also discussed potential challenges and experimental

considerations for the improvement in grain quality in crop plants.

Keywords: rice, cis-regulatory element, genome editing, grain quality, upstream open reading frame

INTRODUCTION

Rice provides major nutrients and energy for more than half of the population worldwide. In the
last 30 years, rice yield has been continuously improved through implementing a series of breeding
programs (Xu et al., 2020). Meanwhile, the demand for high quality, multiresistance, and wide
adaptability of rice variants is also increasing, especially for the high-quality rice under conditions
of improved living standards (Rao et al., 2014). Generally, rice grain quality is a combination of
milling, appearance, eating, cooking, nutritional, and hygiene traits (Zhou et al., 2020). Therefore,
to meet the needs of consumers and producers, researchers have to understand the molecular
mechanisms and genetic basis that determines rice quality, and breeders and seed companies have
to develop rice varieties with excellent quality and high yield. However, the direct regulation of
coding genes for target traits is difficult and is often accompanied by negative effects; therefore, it
cannot achieve the expected effect. For instance, Pérez et al. (2019) used CRISPR/Cas9 to introduce
mutations affecting the Wx gene [encoding granule-bound starch synthase I (GBSSI)] in the rice
endosperm. The amylose content (AC) declined to as low as 5% in homozygous seeds, accompanied
by abnormal cellular organization in the aleurone layer and amorphous starch grain structures.
Plant genetic engineering efforts to improve grain quality in crop plants using well-characterized
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promoter elements to modify the expression of regulatory
genes and/or transcription factors (TFs) have proven to be
advantageous (Yang et al., 2019). Therefore, in this perspective,
we mainly discussed the identification and analysis of cis-
regulatory elements (CREs) involved in rice grain quality and
the modification of CREs via genome editing technologies for the
improvement in rice grain quality.

GENETICS AND GENOMICS OF RICE
GRAIN QUALITY

In general, four main quality traits, namely, milling properties,
appearance, nutritional value, and cooking quality, are widely
used to assess rice grain quality (Zhou et al., 2020).With the rapid
development of high-throughput technologies and functional
genomics, many genes controlling important quality traits have
been cloned in rice, and some molecular mechanisms have been
characterized (Zhou et al., 2020). Milling quality is a complex
grain trait, including the recovery of brown,milled, and head rice.
Several major quantitative trait loci (QTLs) are associated with
rice milling quality, such as qBRR-10, which influence brown rice
recovery (Ren et al., 2016). Rice grain shape is an important index
of appearance quality and yield, and several related genes and TFs
have been studied (Huang et al., 2013). For example, GS3, GW5,
GLW7, GW8, GS2, and GS9 are the main genes or transcription
regulators affecting variations in rice grain shape and size. In
addition, genes such as GL7/GW7, GL3.1, GS5, GW2, and GL3.3,
which were identified in natural variants, have profound effects
on grain shape and functions, and their mechanisms have been
studied (Huang et al., 2013). The composition and structure
of starch play crucial roles in rice grain quality, especially for
eating and cooking quality. Enzymes involved in the starch
synthesis pathway (including GBSS, SS, SBE, ISA, and PUL) and
associated TFs (i.e.,Dull,OsEBP89,OsRSR1, andOsbZIP58) have
been clearly determined in rice (Zhou et al., 2020). Many major
functional genes have been identified, which affect nutrients such
as seed proteins, essential amino acids, vitamins, minerals, and
anthocyanins (Das et al., 2020). Similarly, grain quality-related
genes and their metabolic pathways have been studied in other
crops, and the results have been discussed in a recent review

Abbreviations: ARFAT, auxin response factor; AtHB1, Arabidopsis thaliana

HomeoBox 1; FZP, Frizzle panicle; GBSS, Granule-bound starch synthase; GL3.1,

Grain length 3.1; GL3.3, Grain length 3.1; GLW7, Grain length and weight on

chromosome 7;GS2, Grain size on chromosome 2;GS3, Grain size on chromosome

3; GS5, Grain size on chromosome 5; GS9, Grain shape on chromosome 9;

GSE5, Grain size on chromosome 5; GW2, Grain width 2; GW5, QTL for

grain width and weight on chromosome 5; GW7, Grain width 7; GW8, Grain

width 8; ISA, Isoamylase; LsGGP2, GDP-L-galactose phosphorylase 2; OsAAP6,

Amino acid permease 6; OsbZIP18, basic leucine zipper transcription factor

18; OsbZIP58, basic leucine zipper transcription factor 58; OsEBP89, Oryza

sativa ethylene-responsive element binding protein, clone 89; OsGluA2, glutelin

type-A2 precursor; OsMADS1, MADS-domain transcription factor; OsPLDα1,

Phospholipase D alpha 1; OsREM20, Oryza sativa REPRODUCTIVE MERISTEM

20; OsRSR1, Rice starch regulator 1; OsSPL16, squamosa promoter binding

protein-like 16; PHO1, PHOSPHATE1; PUL, pullulanase; qBRR-10, Brown rice

rate on chromosome 10; qSH1, QTL of seed shattering in chromosome 1; SAUR26,

SMALL AUXIN UP RNA gene 26; SBE, starch-branching enzyme; SEBF, silencing

element binding factor; SS, soluble starch synthase; TGW2, 1000-grain weight 2.

(Birla et al., 2017). The characterization of these quality-related
genes has laid the foundation for the improvement in rice quality.
Although many genes related to crop grain quality have been
explored, and their genetic mechanisms have been analyzed,
how these genes can be better used in breeding production and
commercial utilization requires further study.

CIS-REGULATORY ELEMENTS AND THEIR
MINING IN PLANTS

Fundamentally, in addition to genes, many elements present
in the plant genome control the gene expression levels
via interactions with DNA or regulatory proteins. Limited
genetic diversity restricts the amount and effectiveness of the
improvement in rice quality. Recent results showed that genetic
changes in CREs of genes play important roles in shaping
phenotypic diversity by altering gene expression (Swinnen et al.,
2016).

CIS-Regulatory Elements: Important
Regulators of Gene Expression
The CREs are the noncoding DNA containing binding sites
for TFs or other regulatory molecules that affect transcription,
and they ultimately guide plant growth and development,
cell differentiation, and responses to various stresses (Lu
et al., 2018). Therefore, the whole genome identification and
functional characterization of CREs involved in the DNA–
protein interactions is a key aspect to understand plant
transcription regulation (Lu et al., 2018). Generally, CREs
in eukaryotes include promoters, enhancers, and other CREs,
among which enhancers tend to be much more variable (Meng
et al., 2021). Enhancers that drive transcription are independent
of their distance and location from their cognate promoters,
which allows a gene to be regulated bymultiple remote enhancers
with different spatiotemporal activities (Meng et al., 2021).
The sequence structure of promoters of quality-related genes
is relatively simple and conserved, and their functions have
been clarified in rice. The identification and functional analysis
of CREs are also in progress in rice (Swinnen et al., 2016).
More comprehensive collections and analyses of CREs in rice
are necessary, which will accelerate the fine-tuning of the
improvement in rice quality via CRE editing.

Mining CREs Based on “Omics”
The systematic identification of CREs in plant genomes is
critically important to understand the transcriptional regulation
and its exploitation for the improvement in quality. Some
important results have been obtained using approaches involving
sequence conservation within short distances from target genes
(Huang et al., 2020a). Additionally, some databases, such as
PlantCARE, which store all plant transcription sites, consensus
sequences, and matrices described in the literature, can also be
used to predict possible CREs for one or more genes (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/). Several
limitations are as follows: sequence conservation can be
restricted, CREs that are far from their target genes will not be
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detected, and we have less information regarding their tissue
specificity and functionality (Lu et al., 2018).

Generally, CREs are preferentially located in the accessible
chromatin regions (España et al., 2017). Therefore, genomics
and epigenomics are used to identify and analyze CREs. For
example, the alignment of the upstream sequences of OsPLDα1
orthologs across 34 rice accessions revealed sequence variations
and identified CREs involved in differential transcription of
orthologs, which resulted in the low expression of OsPLDα1
and reduced free fatty acid content in the oil, facilitating good
quality bran oil (Kaur et al., 2020). A genome-wide association
study (GWAS) screen of 45 natural accessions and the pif4
mutant in Arabidopsis identified CREs affecting SAUR26 gene
expression (Wang et al., 2021). Similar CRE mining strategies
have been reported in rice (Ho and Geisler, 2019). The whole
genome transcriptome profiling usingmicroarrays was employed
to discover CREs associated with drought and salinity stress
tolerance in rice (Mishra et al., 2018).

In addition, CREs can be identified based on their elevated
sensitivity to enzymes such as the bacterial transposase Tn5,
DNase I, and micrococcal nuclease (MNase) (Zhang et al.,
2016; Lu et al., 2017; Zhao et al., 2020). The coupling of
chromatin accessibility assays with the high-throughput DNA
sequencing, such as DNase-seq, MNase-seq, self-transcribing
active regulatory region sequencing (STARR-seq), and assay
for transposase-accessible chromatin using sequencing (ATAC-
seq), represents an important technological development and
has enabled the identification of CREs on a genome-wide scale
(Lu et al., 2018). Numerous putative CREs were identified in
plant species through the strategies of genetic, epigenomic, and
functional molecular characterization (Lu et al., 2019). A major
limitation to these assays is the lack of cell-type resolution and
the paucity of information regarding which CREs function in
specific tissues or cell types at the genome-wide scale, especially
in endosperm tissue, which is closely related to rice quality.

Moreover, ribosome profiling (ribo-seq) provides a viable
strategy to analyze active translation by determining ribosome
occupancy in a transcriptome-wide manner, which can then be
used to identify valid upstream open reading frames (uORFs),
a type of CRE (Lulla et al., 2019). However, the large-
scale identification of uORFs has not been reported in rice.
Thus, ribo-seq is expected to be an effective tool to identify
rice quality-related uORFs. Furthermore, combined with the
multiomics data, such as RNA sequencing (RNA-seq), chromatin
immunoprecipitation sequencing (ChIP-seq), and proteomics,
CREs and their related TFs could be mined more accurately
(Farmer et al., 2021).

THE KEY ROLES OF CIS-REGULATORY
ELEMENTS IN THE IMPROVEMENT IN
RICE QUALITY

Unlike changes to protein-coding genes, which often result in
easily interpretable loss-of-function alleles, the mutations of
CREs offer the potential of fine-tuning gene expression without
other adverse effects, leading to improved rice quality (Huang

et al., 2020a; Zeng et al., 2020). Therefore, more attention should
be paid to CREs and their influence on gene expression.

Employing both bioinformatic and experimental methods,
CREs involved in gene regulation have been identified, and most
of the genes affected by these CREs have been found to encode
TFs that regulate plant development (España et al., 2017). Several
universal CREs have been identified in the 5′ upstream region of
the starch synthetase gene, lysine metabolism genes, and seed-
storage protein genes in rice and/or other crops (Table 1) (Chen
et al., 2012). Recent studies have shown that CREs play an
important role in improving rice quality traits (Table 1).

The ARFAT and SEBF elements have been identified as CREs
that might act as repressors in regulating OsPLDα1 expression,
which lead to decreased free fatty acid content in oil and improve
the flavor and quality of rice bran oil (Table 1) (Kaur et al., 2020).
Two common variations in the potential CREs of the OsAAP6
5′-untranslated region (5′-UTR) seem to be associated with grain
protein content diversity and nutritional quality, mainly in indica
cultivars (Peng et al., 2014). A single nucleotide polymorphism
(SNP) located in the OsGluA2 promoter region is associated
with its transcript expression level and grain protein content
diversity (Yang et al., 2019). For amino acids, natural variations
in the OsbZIP18 promoter contribute to branched-chain amino
acid levels in rice (Sun et al., 2020). Two consensus nucleotide
polymorphisms in the Chalk5 promoter in rice varieties might
partly account for the differences in Chalk5 mRNA levels that
contribute to natural variation in grain chalkiness (Li et al., 2014).
GRAIN WIDTH 7 (GW7) is an important gene that controls
cell division in the spikelet hulls, and its expression is regulated
by the repressive TF, i.e., GRAIN WIDTH8 (GW8). A mutation
in the CRE in the promoter of GW7 led to enhanced GW7
expression and ultimately to the improved yield and grain quality
(Sakamoto and Matsuoka, 2008; Wang et al., 2015). Similarly,
natural variation in the promoter of GSE5 contributes to grain
size diversity, and that in TGW2 determines rice grain width and
weight (Duan et al., 2017; Ruan et al., 2020). A novel variation in
the FRIZZLE PANICLE (FZP) gene promoter improved rice grain
number and yield (Wang et al., 2020).

UPSTREAM OPEN READING FRAMES:
IMPORTANT CIS-REGULATORY
ELEMENTS IN THE 5′ LEADING
SEQUENCE

Upstream open reading frames, as translational regulatory
elements, are located in the 5′-UTR of eukaryotic mRNAs,
and generally inhibit the translation initiation of downstream
primary ORFs (pORFs) through ribosome stalling (Kurihara,
2020). In plants, uORFs have been predicted in ∼30% of the 5′-
UTRs of genes, and some of these uORFs have been reported
to regulate crucial growth and developmental processes (von
Arnim et al., 2014). Increasing numbers of excellent crop genes
have been identified and characterized (Zhou et al., 2020).
Furthermore, to improve crop characteristics, many genes that
regulate important traits are required to have a high translation
rate, rather than their functional loss or reduction (Xu et al., 2017;
Reis et al., 2020). Based on the knowledge that uORFs negatively
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TABLE 1 | Improvement in rice quality achieved via the modification of cis-regulatory elements.

Target trait Gene Target function Cis-elements-

dependent

regulation

CRE CRE core

sequence

CRE

location

Modification Target gene expression pattern References

Gene expression Tissue or

organ

Cooking and

eating quality

Wx Granule-bound starch

synthase I

Apparent amylose

content

unknown element,

A-box, CAAT-box,

Endosperm-box

TATAATAAT,

GGCCAATCT

Upstream,

Intron

Genome editing Downregulation Developing

endosperm

Huang et al.,

2020a; Zeng et al.,

2020

Nutritional

quality

OsbZIP18 Basic leucine zipper

transcription factor

Branched-chain

amino acids levels

/ / Upstream Natural variation Upregulation Leaves Sun et al., 2020

OsBCAT1 branched-chain

aminotransferase1

Branched-chain

amino acids levels

ACE element / Upstream Genome editing Upregulation Leaves Sun et al., 2020

OsBCAT2 branched-chain

aminotransferase2

Branched-chain

amino acids levels

C-box cis-element GTCA Upstream Genome editing Upregulation Leaves Sun et al., 2020

OsAAP6 Amino acid transporter Grain protein

content

copper-responsive

element,

Inr-element,

sulfur-responsive

element

/ Upstream Natural variation Diversity# Endosperms Peng et al., 2014

OsGluA2 Glutelin type-A2 precursor Grain protein

content

BIHD1OS / Upstream Natural variation Diversity Endosperms Yang et al., 2019

REP-1 Cysteine proteinase Glutelin

degradation

GA-responsive

element

TAACAGA,

TAACGTA,

CAACTC

Upstream Deletion and

point-mutation

Upregulation Seeds Sutoh and

Yamauchi, 2003

Kala4 bHLH transcription factor Anthocyanin

production

/ / Upstream Natural variation Upregulation Leaves Oikawa et al.,

2015

OsPLDα1 Lipolytic enzyme Free fatty acid

content and flavor

ARFAT element,

SEBF element

TGTCTC,

TTGTCTC

Upstream Natural variation Downregulation Immature

grains

Kaur et al., 2020

Chalk5 Vacuolar H+-translocating

pyrophosphatase

Grain chalkiness RY/G-box, CACT

tetranucleotide

CATGCA, CACT Upstream Natural variation Downregulation Endosperms Li et al., 2014

Appearance

quality and

yield

GS5 Serine carboxypeptidase Grain size ABA-responsive

element

/ Upstream Natural variation Upregulation Developing

seeds

Li et al., 2011; Xu

et al., 2015

qSH1/RPL BEL1-type HomeoBox gene Seed shattering RY-repeat / Upstream Natural variation Upregulation Abscission

layer

Konishi et al.,

2006
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TABLE 1 | Continued

Target trait Gene Target function Cis-elements-

dependent

regulation

CRE CRE core

sequence

CRE

location

Modification Target gene expression pattern References

Gene expression Tissue or

organ

Ghd7 CCT domain protein Grain number / / Upstream Natural variation Diversity Young stem

and leaves

Lu et al., 2012,

Xue et al., 2008

GW8/SPL16 SBP-domain transcription

factor

Grain shape,

quality, and size

/ / Upstream Natural variation Downregulation Developing

panicles

Wang et al., 2012

GW7 TONNEAU1-recruiting motif

protein

Grain shape and

quality

GTAC motif GTAC Upstream Natural variation Upregulation Young

panicles

Wang et al., 2015

FZP APETALA2/ETHYLENE

response factor

Grain width and

weight

CACTA

transposon

CACTA Upstream Natural variation Downregulation Young

panicles

Wang et al., 2020

GW6 Gibberellin-regulated GAST

family protein

Grain size CAAT-box CACACAAATCT Upstream Natural variation Upregulation Young

panicles

Shi et al., 2020

OsACBP2 Acyl-CoA-binding protein Seed development

and size

Skn-I-like motif GTCAT Upstream Deletion mutation Downregulation Seeds Guo et al., 2019

Eui1 GA-deactivating enzyme Plant height, grain

yield

RY

motif-containing

cis-silencing

element

CATGCA Intron T-DNA insertion

mutagenesis

Upregulation Young

panicles

Xie et al., 2018

OsREM20 B3 domain transcription

factor

Grain number per

panicle

CArG

box-containing

inverted repeat

CATTAATTAG Upstream Natural

variation/Genome

editing

Upregulation 1-week-old

seedlings

Wu et al., 2021

GSE5 Plasma

membrane-associated

protein

Grain size / / Upstream Natural variation Downregulation Spikelet hulls Duan et al., 2017

GLW7/SPL13 plant-specific transcription

factor OsSPL13

Grain shape and

yield

/ / 5′-UTR T-DNA insertion

mutagenesis

Upregulation Panicles and

florets

Si et al., 2016

TGW2 Cell number regulator Grain width and

weight

/ / Upstream Natural variation Upregulation Glumes Ruan et al., 2020

OsMADS1 CW domain-containing zinc

finger protein

Grain width CATTTC motif CATTTC Upstream Genome editing Downregulation Young

panicles

Huang et al.,

2020b

#Represents diversity in the regulation region of the target gene.
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affect the translation of the pORF, the strategy of modulating
uORFs to fine-tune the translation could be used to analyze gene
function and improve crop traits. For example, uORF TBF1-
mediated translation enabled engineered Arabidopsis and rice
broad-spectrum disease resistance without any reduction in grain
yield (Xu et al., 2017).

GENOME EDITING TOWARD BETTER
GRAIN QUALITY VIA TARGETING
CIS-REGULATORY ELEMENTS

All the earlier studies suggested that CRE modification can
regulate the expression of key genes for rice quality and effectively
improve grain quality. However, the identification of natural
mutations in the promoter regulatory regions of the gene is
time-consuming and difficult, which slows the improvement
in rice quality. Recently, genome editing technology has been
developed and optimized and has been applied successfully to a
large number of plants, which has accelerated the identification
and application of regulatory elements in gene promoter regions
in rice (Huang et al., 2020a; Zeng et al., 2020). Genome editing
is a versatile, relevant, and preferred technique for functional
genomics, as well as crop improvement, involving introducing
DNAmutations in the form of deletions and/or insertions or base
substitutions in target gene sequences (Fiaz et al., 2019; Tabassum
et al., 2021).

The starch synthase geneWx is very important for rice eating
and cooking quality; therefore, it has been a popular target for
study. Zeng et al. (2020) disrupted the Endosperm-box, A-box,
and CAAT-box of the promoter sequence and intron region
of the Wx gene using genome editing, which generated new
Wx alleles producing various ACs by quantitative regulation
of its expression. Novel Wx alleles, in which CREs in the Wx
promoter near a predicted TATA-box were edited using the
CRISPR/Cas9 system, produced fine-tuned amylose levels and
improved the rice grain quality (Huang et al., 2020a). The
deletion mutants of the CATTTC motif exhibited the lower
expression of OsMADS1 and produced narrower rice grains
(Huang et al., 2020b). Wu et al. (2021) enhanced rice grain
production by manipulating the CArG box-containing inverted
repeat sequence of OsREM20. Although there are only a limited
number of studies demonstrating successful editing of CREs
for crop improvement, it is anticipated that genome editing
techniques such as CRISPR/Cas9 will lead to further CRE editing
to improve rice grain quality.

For uORFs, editing the uORF of LsGGP2 increased oxidative
stress tolerance and the ascorbate content by ∼150% in lettuce
(Zhang et al., 2018). In Arabidopsis, a conserved peptide uORF
(CPuORF33) was identified in the 5′-UTR of AtHB1 mRNA,
which ensures a relatively low level of AtHB1 expression in
aerial parts and avoids adverse phenotypes (Ribone et al., 2017).
Similarly, there are several studies on the regulation of uORFs
in morphogenesis, signaling pathways, and nutrient absorption
stress response in Arabidopsis (Zhang et al., 2020). Reis et al.
(2020) identified the PHO1 uORF in the genomes of crops such
as rice, maize, barley, and wheat, which improved plant growth
under inorganic phosphorus (Pi)-deficient conditions. A tandem

repeat sequence in the 5′-UTR of GLW7 alters its expression by
affecting transcription and translation, resulting in enhanced rice
grain length and yield (Si et al., 2016). Hence, uORFs have great
potential to improve rice grain quality by positively regulating
target genes.

CONCLUSION AND FUTURE
PERSPECTIVES

The aim of the plant functional genomics is to explore the
key genes in plant growth and development, to determine their
regulatory mechanisms, and to fine-tune the gene expression
effectively, with the aim of improving traits for research and/or
commercial use. Crop quality is an important trait whose further
improvement requires increased research resources. Recently,
several crop quality-related genes and metabolic pathways
have been identified and explored (Zhou et al., 2020). In
addition, the high-throughput technologies have accelerated
the identification and analysis of these functional quality-
related genes (Hernandez-Garcia and Finer, 2014). However,
it is difficult to achieve the desired improvement in quality
through the direct manipulation of these elite genes. The
identification and modification of the CREs of these genes would
provide an appropriate approach to modulate their expression
(Huang et al., 2020c). The popularity of genome editing further
confirms that CREs are good potential targets to create new
alleles for the improvement in rice quality in transgene-free
derivatives (Figure 1).

Recently developed omics approaches, such as DNase-seq,
ATAC-seq, and ribo-seq, have identified certain CREs and
uORFs. Thus, a more comprehensive analysis of CREs in
promoter regions and uORFs in 5′ leading sequences will increase
opportunities for quality-related genome editing. Additionally,
these techniques are complex and have limitations, especially
in the study of CREs and uORFs related to endosperm traits
in rice. Hence, the development of an effective and simple
method or system for the CRE identification in rice seeds is
essential to improve rice quality. Moreover, CREs are very short
(usually only a few nucleotides), and constructing a uORFmutant
requires the start codon to be modified; therefore, more precise
genome editing techniques should be considered to avoid limited
protospacer adjacent motif (PAM) sites, off-target mutations, and
low homology-directed repair (HDR) efficiency.

In addition to the technological issues, there are significant
gaps in our knowledge of gene regulation in most species. At
present, studies on CREs and uORFs have mainly focused on
their identification and functional analysis (Hernandez-Garcia
and Finer, 2014). Given the importance of CREs for gene
expression in crops, in-depth studies, such as CRE regulatory
mechanisms and related metabolic connections, require further
research. Thus, the analyses of the CREs related to crop
quality and their transcriptional and translational regulatory
modifications are essential. It is hoped that the combination
of CREs and genome editing technologies will enable the
simultaneous manipulation of multiple traits in rice (Figure 1).

Moreover, it is not easy to forensically detect genome editing
events at the molecular level, especially as no foreign DNA exists
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FIGURE 1 | Schematic representation of the workflow depicting the application of genome editing approaches to obtain high grain quality rice. (A) CREs are identified

by multiomics strategies and bioinformatic approaches. Cis-regulatory sequences are linear nucleotide fragments of non-coding DNA. Their localization and

orientation in relation to genes and activity vary (Verter and Botha, 2010). uORFs, as translational regulatory elements, are located in the 5′ leader sequence of

eukaryotic mRNAs and generally inhibit the translation initiation of downstream pORFs (Kurihara, 2020). (B) Selection of the desired target DNA sequences of CREs

and uORFs, and recognition of PAM sequences for genome editing, which regulates gene expression at the transcription and translation levels, respectively. (C)

Efficiency evaluation using molecular identification and phenotypic analysis. For example, a genome editing strategy was used to edit the core promoter region of the

Wx gene, and the obtained Wxb−d8 mutant had a nine nucleotide deletion (Huang et al., 2020a). In the Wxb−d8 mutant, the predicted core promoter region was

disrupted, which decreased Wx expression compared with the wild-type Wxb and reduced the amylose content (%) in the mature rice seeds (Huang et al., 2020a).

The same method is applicable to edit the predicted uORF of GLW7 (Si et al., 2016). The deletion of predicted uORF in the GLW7 5′ leader sequence causing

increased expression levels of the GLW7 protein and enhanced rice grain length. Colored peaks represent different TF-binding events within CREs or uORFs, and

peak height indicates the chromatin accessibility from genomic data sets (i.e., DHase-seq and ATAC-seq). Lines with spaces beneath the TF-binding peak indicate

destroyed CRE or uORF sequences. (D) Comprehensive assessment of edited rice using multiomics strategies. (E) Obtaining the desired high-quality rice. CRE,

Cis-regulatory element; uORF, upstream open reading frame; pORF, primary open reading frame; PAM, protospacer adjacent motif; Wx, the Waxy gene encoding

granule-bound starch synthase I, which controls amylose synthesis in rice endosperm; Wxb, Nipponbare carrying the Wxb allele; Wxb−d8, the Wxb-d8 mutant with

nine nucleotide deletion of the core promoter region in Nipponbare (Wxb). GLW7, which is encoding the plant-specific TF OsSPL13, positively regulates cell size in the

grain hull, resulting in enhanced rice grain length and yield (Si et al., 2016); TF, transcription factor.
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in the line in which the regulatory element(s) are subtly edited.
Given this limitation, the downstream “omics” technologies that
can reveal the effects of the edits, such as proteomics and
metabolomics, should be considered to fully assess the changes of
proteins and/or their compositions in novel foodstuffs from the
edited crops. The integration of the in-depth understanding of
gene regulatory mechanisms and related networks, and genome
editing to identify and modify CREs at the single nucleotide level
in plant genomes, might represent a promising strategy for future
crop improvement.
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