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Trichoderma can induce plant hormone signal pathways mediating plant defenses,
resulting in broad-spectrum resistance to phytopathogens. Herein, Malus sieversii
seedlings were treated with Trichoderma biofertilizer and/or Alternaria alternata f. sp.
mali, and transcriptome analysis revealed significant differential expression. There was
a high similarity between the transcriptome expression profiles of Trichoderma-induced
and A. alternata-infected M. sieversii samples for genes related to jasmonic acid (JA),
ethylene, and salicylic acid (SA) signaling pathways. Additionally, Trichoderma biofertilizer
activated numerous disease-resistant genes (ERF, NAC, bHLH, and STK) and defense
response genes (DRP, ABC, and HSP). Among transcription factors, members of the
ERF family were the most differentially expressed (18 ERFs), indicating that they may be
closely related to defense responses. Among ERFs, differential expression of MSERF105
was the most significant (upregulated 27.6-fold compared to controls). MsERF105
was heterologously expressed in PdPap poplar (Populus davidiana x Populus alba
var. pyramidalis Louche), and following infection with A. alternata (Aal), transgenic
PdPap-MsERF105s plants displayed lower malondialdehyde (downregulated 41.4%)
and reactive oxygen species (ROSs) levels, and higher reductase activities, especially
superoxide dismutase (SOD; upregulated 77.5% compared to PdPap-ROK2 plants).
Furthermore, the lesion areas of PdPap-MsERF105s leaves were significantly smaller
(0.2%) than those of PdPap-ROK2 leaves (~26.0%), and the cell membrane integrity
was superior for PdPap-MsERF105s leaves. Thus, MsERF105 enhanced the resistance
of PaPap poplar to Aal, presumably because MsERF105 activates the expression of
PR1 and PDF1.2. In conclusion, Trichoderma biofertilizer modulated the differential
expression of numerous disease resistance genes and defense response genes in
M. sieversii in response to pathogen attack, and MsERF105 played important roles in
this process.
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INTRODUCTION

Trichoderma can penetrate and colonize plant roots, triggering
plant defense responses, and is commonly used as an inducer
of plant defenses against pathogens (Poveda, 2021). The
presence of fungal prey and the availability of root-derived
nutrients may have been major attractors for the ancestors of
Trichoderma to establish themselves in the rhizosphere and
thereby facilitate the evolution of positive interactions with plants
(Druzhinina et al., 2011). In Trichoderma-root interactions,
Trichoderma secretes molecules that trigger induced systemic
resistance, such as xylanases, peptaibols, swollenin, and cerato-
platanins (Rosa et al., 2012). Eliciting plant response protein
11 (Epll) secreted by Trichoderma formosa triggers immune
responses against Tomato mosaic virus infection in Nicotiana
benthamiana, and against Alternaria brassicicola infection in
Brassica rapa subsp. chinensis, by activating genes (JAZI,
JAR1.2, CALS1, NPRI, PALI, and EDSI) related to defense
responses (Cheng et al, 2018). Additionally, 6-pentyl-alpha-
pyrone from Trichoderma koningii induces systemic resistance
in tobacco against tobacco mosaic virus (TMV), stimulates
the activities of pathogenesis-related (PR) enzymes [superoxide
dismutase (SOD), peroxidase (POD), and polyphenol oxidase),
and upregulates the expression of defense-related genes (PR-a,
PR-b, and PR-10) (Taha et al., 2021).

In recent years, numerous studies have contributed to
uncovering the molecular basis of the beneficial effects
of Trichoderma on plants. Trichoderma-induced plant
transcriptome expression profiles display high similarity to
those induced by pathogen infection (Cheng et al, 2018).
Furthermore, Trichoderma-induced plant resistance against
pathogens is mainly mediated by jasmonic acid (JA), ethylene
(ET), and salicylic acid (SA) signaling pathways (Gelsomina et al.,
2018). Inoculation with Trichoderma asperellum WKSSO2-4-18
strongly induced six defense-related genes in soybean seedlings,
namely, those involved in the SA pathway (endoglucanase
and chalcone synthase) and the JA/ET pathway (chitinase,
defensin precursor, allene oxide synthase, and basic POD
genes) (Pimentel et al., 2020). In addition, in tomato induced
by Trichoderma erinaceum, SIWRKY31 and SIWRKY37 are
upregulated, whereas SIWRKY4 is downregulated, resulting in
increased resistance to the vascular wilt pathogen Fusarium
oxysporum f. sp. lycopersici (Aamir et al., 2019). Plants treated
with Trichoderma harzianum T22 displayed overexpression
of transcripts encoding several families of defense-related
transcription factors (bZIP, MYB, NAC, ERF, and WRKY),
suggesting that the fungus contributes to the priming of plant
responses (Coppola et al., 2019). Besides, in our previous, it is
found that Trichoderma rossicum T7 (TroT7) and T. harzianum
T2 (ThaT2) can enhance the resistance of Malus sieversii to
F. oxysporum and Alternaria alternata f. sp. mali (Aalm) (Fang
et al, 2019). Thus, Trichoderma can trigger plant defense
responses in different pathways.

ERF transcription factors are the largest branch of
the AP2/ERF transcription factor superfamily, which is
characterized by a conserved AP2 binding domain of 57-66
amino acids (Huang et al, 2020). The AP2/ERF domain

contains two conserved elements, namely, YRG and RAYD
(Okamuro etal., 1997). ERF genes are involved in responses
to biotic stresses through plant hormone signaling pathways
(Caarls et al., 2016). Similarly, soybean GmERF3 transgenic
tobacco can respond to the regulation of many plant hormones,
such as SA, JA, and ET (Zhang et al, 2009). In addition,
in transgenic tobacco, the transcription factor GmERF3
activated some PR genes expression, and improved the
resistance of tobacco to Ralstonia solanacearum, A. alternata
(Aal), and TMV (Zhang et al., 2009). Overexpression of
ZmERFI105 can improve the resistance of maize to northern
leaf blight (Exserohilum turcicum), while the erfl05 mutant
showed the opposite phenotype. In addition, the activities
of SOD and POD in ZmERF105 overexpression lines
were significantly higher than those in wild-type plants
(Zang et al., 2020). Similarly, overexpression of ZmERF105
enhanced the expression of PR genes such as ZmPRla,
ZmPR2, ZmPR5, ZmPR10.1, and ZmPRI10.2 (Zang et al,
2020). AtERF96 overexpression enhances the resistance of
Arabidopsis thaliana to necrotic pathogens such as Botrytis
cinerea and Pectobacterium carotovorum by upregulating
the expression of PDFIl.2a, PR-3, PR-4, and ORA59
(Catinot et al., 2015).

In the present study, M. sieversii seedlings were treated
with Trichoderma biofertilizer or Aalm, and differentially
expressed genes (DEGs) were analyzed by RNA sequencing
(RNA-Seq). Gene ontology (GO) function classification,
Clusters of Orthologous Groups (COG) function classification,
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
classification analyses were conducted. In addition, differential
expression of transcription factors was explored. The M. sieversii
MSERFI05 gene was heterologously expressed in Populus
davidiana x Populus alba var. pyramidalis Louche (PdPap
poplar), and PdPap seedlings were infected with Aal. The
antioxidant ability of transgenic PdPap-MsERF105s plants
was evaluated by determining malondialdehyde (MDA) and
reactive oxygen species (ROSs) content, reductase (SOD, POD,
and CAT) activities, resistance to Aal, relative lesion area, and
cell membrane permeability. Differential expression of defense
response genes (PRI and PDF1.2) was assessed. Based on the
above results, the functions of ERFs in defense responses in
M. sieversii were evaluated.

MATERIALS AND METHODS

Plant Material and Strains

Malus sieversii seeds from a Xinjiang wild fruit forest were
germinated in the laboratory (temperature 28°C and humidity
70%) to obtain 2-month-old seedlings. Apple-spotted defoliation
pathogen Aalm was obtained from the Key Laboratory of
Biogeography and Bioresource in Arid Land, Xinjiang Institute
of Ecology and Geography. Poplar leaf blight pathogen Aal was
obtained from the State Key Laboratory of Tree Genetics and
Breeding (Northeast Forestry University, China). Agrobacterium
tumefaciens EHA105 and the pROK2 vector were used for the
genetic transformation of PdPap poplar. PdPap poplar seedlings
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were cultured aseptically in a liquid rooting medium at 25°C
(Ji et al., 2017).

Preparation of Trichoderma Biofertilizer
Spores of TroT7 and ThaT2 were separately inoculated into
potato dextrose agar (PDA) medium and cultured at 28°C
for 1 week. Both Trichoderma strains were identified in a
previous study (Ji et al., 2021). Spores were collected and
diluted to 10® spores/ml. The number of spores was counted
using a blood cell counting board. Next, 10 ml of spore
suspension was added to 300 g solid fermentation medium
(thickness 1-1.5 c¢m) and mixed. The solid fermentation
medium for Trichoderma comprised rice husk (19.9% w/w),
wheat bran (5% w/w), (NH4),SO4 (0.1% w/w), and H,O
(75% w/w). The tray was then sealed with preservative film.
TroT7 and ThaT2 were cultured at 28°C for 1 week, spores
of both Trichoderma strains were mixed (1:1) as Trichoderma
biofertilizer, and the concentration of conidia in the biofertilizer
was 10% spores/ml.

Collection of Samples for RNA-Seq
Two-month-old M. sieversii seedlings were subjected to four
different treatments, three biological replicates each treatment
were set. The samples treated without Trichodema biofertilizer
and Aalm, as negative control, were collected at 0 h, the other
samples were collected at 6 and 48 h post-induction (hpi),
and all samples were stored at —80°C for RNA-Seq. For the
Tri treatment, seedlings were irrigated with 50 ml Trichodema
biofertilizer (10% spores/ml), one leaf of each seedling was
stabbed, and inoculated without Aalm mycelium. For the Aalm
treatment, seedlings were irrigated with 50 ml sterilized water,
and one leaf of each seedling was stabbed and inoculated with
0.6 cm disks containing Aalm mycelium, which was cultured
in PDA medium at 28°C for 10 days, and 0.6 cm disks
were cut with a hole punch. For the Tri + Aalm treatment,
seedlings were irrigated with 50 ml Trichodema biofertilizer
(108 spores/ml), and one leaf of each seedling was stabbed and
inoculated with 0.6 cm disks containing Aalm mycelium. For the
negative control, seedlings were irrigated with 50 ml sterilized
water, one leaf of each seedling was stabbed and inoculated
without Aalm mycelium.

RNA-Seq

Total RNA was extracted using the cetyltrimethylammonium
bromide (CTAB) method (Jiang and Zhang, 2003), following
analysis of RNA quality using a NanoDrop 2000C instrument
(Thermo, Germany), mRNA was enriched using Oligo (dT)
magnetic beads and randomly interrupted. Using mRNA as a
template, the first and second cDNA strands were synthesized
with random hexamers, then purified double-stranded cDNA was
end-repaired with T4 DNA Polymerase (Promega, Madison, W1,
United States) by inoculation at 37°C for 30 min, and a poly-A
tail was attached to the sequencing connector. Finally, the cDNA
library was obtained by PCR enrichment (Aird etal., 2011). High-
throughput sequencing of RNA-Seq samples was performed by
Mumina hiseq (Solexa, United Kingdom) after the library was

tested with an Agilent 2100 instrument (Agilent, Palo Alto, CA,
United States).

Based on sequencing by synthesis technology, an Illumina
hiseq high-throughput sequencing platform was used to sequence
the cDNA library to produce a large number of high-quality reads
(raw data). This was filtered to remove joined and low-quality
reads to obtain high-quality clean data, which was assembled
using Trinity software (Grabherr et al., 2011). Then, GO, COG,
and KEGG classifications were conducted according to the
previous studies (Ashburner et al, 2000; Ogata et al., 2000;
Tatusov et al., 2001).

Expression of Genes Involved in Plant
Hormone Signal Pathway Using RT-qPCR

Following the three treatments (Tri, Aalm, and Tri + Aalm)
at 28°C and 70% humidity, the treatment of samples was the
same as that described for RNA-Seq, three plants (biological
replicates) each treatment were set. Leaf samples were collected
at 6 and 48 hpi, and untreated seedlings served as controls,
leaf samples were collected at 0 hpi. Total RNA was extracted
using the CTAB method, and reverse-transcribed into cDNA
for quantitative real-time polymerase chain reaction (RT-
qPCR). The gene-encoding MsActin (MZ605395) in M. sieversii
was used as an internal reference. Three technical replicates
were performed for each ¢cDNA sample. Primers for RT-
qPCR (Supplementary Table 1) were designed by using
Primer Premier 6.0 software (PREMIER Biosoft, San Francisco,
CA, United States).

Expression of ERF Family Genes Using
RT-gPCR

The method is the same as given in the section “Expression
of genes involved in plant hormone signal pathway using
RT-qPCR.” Following the three treatments (Tri, Aalm, and
Tri + Aalm) at 28°C and 70% humidity, three plants (biological
replicates) each treatment were set. Leaf samples were collected
at 0, 3, 6, 12, and 24 hpi, and untreated seedlings served as
controls. Three technical replicates were performed for each
cDNA sample. Primers for RT-qPCR (Supplementary Table 1)
were designed by using Primer Premier 6.0 software (PREMIER
Biosoft, San Francisco, CA, United States).

Construction of the Plant Expression
Vector pROK2-MsERF105 and Poplar

Transformation

The MsERF105 gene was cloned by PCR using a sense primer
(5'-ATCGTCTAGAGAGTTTCTAAATATGGCATCAGAAGC-
3’) containing an Xbal (Promega, WI, United States)
site  (underlined) and an antisense primer (5'-
CGATGGTACCTCAAATAACCATGAGCGGAGGATATC-3')
containing a Kpnl (Promega, United States) site (underlined).
The resulting MsERF105 PCR product and the pROK2 vector
were double digested with Xbal and Kpnl at 37°C for 4 h, and
ligated using T4 DNA ligase (Promega, United States) at 4°C for
12 h, to generate the pROK2-MsERF105 construct. MsERF105
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was transferred into PdPap poplar using the A. tumefaciens-
mediated transformation system, and empty vector pROK2
was transferred in PdPap to generate the PdPap-ROK2 control.
The method was described in detail in our previous study
(Jietal., 2016).

The Resistance of Transgenic

PdPap-MsERFs Plants to Aal

Aal was cultured in a PDA medium at 28°C for 10 days, and
0.6 cm disks were cut with a hole punch. Leaves from PdPap-
MSsERF105s and the control PdPap-ROK2 plants were stabbed
with a needle, covered with 0.6 cm disks, and cultured at 28°C
for 5 days, three biological replicates each treatment were set. The
relative area of disease spots was calculated by the Chalkiness 1.0
program (China). First, infected leaves were scanned to obtain
digital images, the software accurately determined the location
and profile of disease spots, and the relative area of disease spots
was evaluated (Zheng and Wu, 2008).

Determination of MDA Content and

Reductase Activity

Following treatment of PdPap-MsERF105s and the control
PdPap-ROK2 plants with 0.6 cm disks containing Aal mycelia,
leaves were collected at 0, 3, 6, 12, 24, 48, and 72 hpi, 0.1 g
was weighed using an analytical balance, ground in a pestle
and mortar with liquid nitrogen, and the leaf powder was
added to extraction solution (from the kit mentioned below)
and centrifuged at 1,100 x g for 10 min, three biological
replicates each treatment were set. The supernatant was used
to determine the MDA content using an MDA-2-Y kit (Suzhou
Comin Biotechnology Co., Ltd., china). The activities of SOD,
POD, and catalase (CAT) were determined using dedicated
kits (POD = A084-3; SOD = A001-1; CAT = A007-1; Nanjing
Jiancheng Bioengineering Institute, China), three biological
replicates each treatment were set.

Leaf Staining for ROS Quantification and

Plant Membrane Integrity

Evans blue and nitrotetrazolium blue chloride (NBT) were
dissolved in 10 mM phosphate-buffered saline (pH 7.8), and
diaminobenzidine (DAB) were dissolved in 50 mM Tris-
acetate buffer (pH 5.0) (Hernandez et al.,, 2001), and the final
concentration of the staining solution was 1 mg/ml. NBT and
DAB staining solutions were used immediately after preparation.
Following treatment of PdPap-MsERF105s and the control
PdPap-ROK?2 plants with 0.6 cm disks containing Aal mycelia for
3 days, leaves were cut and stained with each of the three staining
solutions as described in our previous study (Ji et al., 2021), and
10 biological replicates of each treatment were set.

Differential Expression of Defense
Response Genes in PdPap-MsERFs

Plants

Following treatment of PdPap-MsERF105s and the control

PdPap-ROK2 plants with 0.6 cm disks containing Aal mycelia,
leaves were collected at 0, 3, 6, 12, 24, 48, and 72 hpi, and

the expression levels of two PRI genes and two PDF1.2 genes
were determined by RT-qPCR, three biological replicates and
technical replicates each treatment were set, respectively. The
gene encoding PdActin in PdPap poplar served as an internal
reference. The method was the same as described above for RT-
qPCR analysis of ERF family genes. All primers are listed in
Supplementary Table 1.

Statistical Analysis

Statistical analysis was performed using SPSS 17.0 (IBM Corp.,
Armonk, NY, United States). Data are expressed as the mean
of three or more independent replicates = SD. Analysis of
variance was conducted using Duncan’s test, and p < 0.05 was
considered significant.

RESULTS

Differential Expression Following
Treatment of M. sieversii With

Trichoderma Biofertilizer and/or Aalm
Following treatment with Trichoderma and/or Aalm, the gene
expression pattern of M. sieversii was significantly different
from that of controls, and the three replicate treatments yielded
highly similar results, especially the three control replicates,
which shared > 98% similarity (Figure 1A and Supplementary
Table 2). In addition, the gene expression patterns of M. sieversii
treated with Trichoderma biofertilizer and/or Aalm at the
same timepoint were also similar (Figure 1A). Furthermore,
the number of differential genes in M. sieversii treated with
Trichoderma biofertilizer or Aalm was less than that following
treatment with both, and more genes were upregulated than
downregulated under all treatment conditions (Figure 1B).

Trichoderma Biofertilizer Induces Plant
Hormone Signal Transduction Pathways

in M. sieversii

Following treatment of M. sieversii with Trichoderma
biofertilizer, GO function analysis showed that the identified
DEGs were linked to response to stimulus, immune system
process, and signal transducer activity categories (Figure 2A).
Meanwhile, COG function classification also indicated the
DEGs were closely related to signal transduction mechanisms
(130 DEGs, 7.99% of all COG annotation genes) and defense
mechanisms (23 DEGs, 1.41% of all COG annotation genes;
Figure 2B). Finally, KEGG classification analysis indicated that
the DEGs were involved in plant hormone signal transduction (40
DEGs, 5.12%) and plant-pathogen interactions (21 DEGs, 2.69%;
Figure 2C), such as Auxin/indole3-3 acetic acid (AUX/IAA),
JA, and SA signal transduction pathways. Following treatment
of M. sieversii with Trichoderma biofertilizer and/or Aalm, the
expression patterns of related DEGs were relatively similar
to each other. Compared with Aalm treatment, Trichoderma
biofertilizer induced higher expression levels (Figures 2D,E),
which indicates that Trichoderma biofertilizer may activate
JA and SA signal transduction pathways by upregulating the
expression of MYC2 and NPRI.
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Differentially Expressed Genes Related

to Defense Responses in M. sieversii

Following treatment of M. sieversii with Trichoderma biofertilizer
and/or Aalm, expression levels of numerous resistance genes and
defense response genes were significantly different (Figure 3).
Resistance genes included STK, LRR-RLK, AP2/ERF, NAC, bHLH,
MYB, and HSF. Differences in expression of these resistance
genes were more significant after treating M. sieversii for 6 h
than 48 h (Figure 3A). AP2/ERF, NAC, bHLH, MYB, bZIP,
and leucine zipper genes were upregulated and downregulated
after treatment for 6 h. These transcription factors can positively
or negatively regulate downstream gene expression. Defense
response genes included DPR, ABC, HSP, and PR, and the

expression levels of the defense response genes were significantly
upregulated after treatment for 6 and 48 h (Figure 3B).
Thus, following treatment with Trichoderma biofertilizer and
Aalm, expression levels of transcription factors were altered,
and defense response genes were activated in response to
pathogen attack.

Differential Expression of ERF
Transcription Factor Family Genes

ERF transcription factors are closely related to plant defense
responses. Following treatment with Trichoderma biofertilizer
for 6 h, the number of deferentially expressed genes belonging
to the AP2/ERF superfamily was more than other transcription
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FIGURE 2 | Trichoderma biofertilizer activates the plant hormone signal transduction pathways. (A) GO function analysis after M. sieversii treated with Trichoderma
fertilizer for 6 h. (B) COG function classification of consensus sequence after M. sieversii treated with Trichoderma fertilizer for 6 h. (C) KEGG classification analysis
after M. sieversii treated with Trichoderma fertilizer for 6 h. (D) DEGs involved in AUX/IAA, JA, and SA, after M. sieversii treated with Trichoderma fertilizer for 6 h.
(E) Verify expression of genes in panel (D) using RT-gPCR. The data were counted by RT-gPCR, ANOVA was conducted using Duncan’s method, and p < 0.05 was
considered significant. The gene sequences have been deposited in GenBank, c23659.graph_c1 (MZ736861), c36501.graph_c0 (MZ736862), c18973.graph_c0
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gene ontology, JA: jasmonic acid, KEGG: Kyoto Encyclopedia of Genes and Genomes, RT-qgPCR: quantitative real-time PCR, SA: salicylic acid.

factor families, including total of 19 AP2/ERF superfamily
genes (Figure 4A). We, therefore, speculated that ERF family
genes are widely involved in responding to pathogen attack in
M. sieversii. The transcriptome data revealed that 11 ERF genes
were differentially expressed, and expression levels of MsERFI105
were the highest among ERF family genes (Figure 4B). RT-qPCR
analysis of ERF family genes also confirmed that Trichoderma
biofertilizer strongly induced ERF genes expression, but mostly
the expression of MsERF105 (Figure 4C). Thus, MsERF105 was

selected for heterologous expression in transgenic PdPap plants
to assess gene function.

Antioxidant Ability of Transgenic
PdPap-MsERF105 Plants

Pathogen attack can cause an elevation in ROS, resulting
in severe damage to plants. Herein, transgenic PdPap-
MsERF105s plants were treated with Aal, and the MDA
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content (<11.7 nmol/g at 72 hpi) was significantly lower
than that of controls (18.7 nmol/g at 72 hpi) after 24 hpi,
but the MDA content was not significantly different between
PdPap-MsERF105s and control plants before 12 hpi (Figure 5A).

Furthermore, the activities of SOD, POD, and CAT were
determined. The results showed that following treatment with
Aal, the activities of SOD and CAT were significantly increased
in PdPap-MsERF105s plants compared to controls after 6
hpi, and SOD activity peaked at 48 hpi. Additionally, values
were > 105.1 nmol/min/g for all the three replicates, compared
with only 64.2 nmol/min/g for controls (Figure 5B). POD activity
was also significantly increased compared to controls at 12
hpi, and it peaked at 48 hpi. Again, values for all the three
replicates were > 63.8 nmol/min/g, compared with only 55.0
nmol/min/g for the controls (Figure 5C). CAT activity increased
over time, values were > 268.2 nmol/min/g for all the three
replicates, and they were increased by ~37.9% compared to
the controls (194.5 nmol/min/g; Figure 5D). After infection by
Aal for 3 days, DAB and NBT staining showed that PdPap-
MSsERF105s leaves were lighter brown or blue in color compared
to those of controls (Figures 5E,F), indicating that PdPap-
MSERF105s leaves contained less ROS than control leaves after
pathogen attack.

Resistance of Transgenic

PdPap-MsERF105s Plants to Aal

To further verify the resistance ability of PdPap-MsERF105
plants, leaves were inoculated with Aal mycelium disks. The
results revealed no lesions on the leaves of all the three PdPap-
MsERF105s replicates at 5 days postinfection (dpi), but there
were large lesions on leaves of the controls at 5 dpi, and the
relative lesion area was 26% (Figure 6A). In addition, following
infection by Aal for 5 days, Evens blue staining results showed
that PdPap-MsERF105s leaves were lighter blue than those of the

controls (Figure 6B), indicating that the cell membrane integrity
of PdPap-MsERF105s plants was better than that in the controls
after pathogen attack.

Differential Expression of Defense
Response Genes in PdPap-MsERF105

Plants

To explore whether MsERF105 could activate the expression
of downstream defense response genes, the expression levels of
two PRIs (PRI-1 and PRI-2) and two PDFI.2 proteins (PDF1.2-
I and PDFI1.2-2) were determined. The results showed that
following infection by Aal, expression levels of PRI-1 were
significantly higher than the controls, with an increase after 12
hpi and a peak at 48 hpi. For Pap-MsERF105-3, the increase
was 7.41 (22.89)-folds (Figure 7A). PRI-2 expression levels
were also increased in all the three PdPap-MsERF105s replicates
after 24 hpi (Figure 7B). The expression levels of two PDFI1.2
genes were upregulated after 24 hpi, and increased over time,
and the expression levels of PDF1.2-1 were the highest (24.4-
folds) in PdPap-MsERF105-2 (increased by 18-fold compared
with the control PdPap-ROK2 (Figure 7C). Expression levels
of PDFI1.2-2 were the highest (24.8-fold) in PdPap-MsERF105-
2, an increase of ~28-fold compared with the control PdPap-
ROK?2 (Figure 7D).

DISCUSSION

Trichoderma genus, the widely used biocontrol agents, can
induce plant hormone signal pathways, and thereby endow plants
with broad-spectrum resistance to phytopathogens (Manigundan
et al., 2016). Herein, M. sieversii seedlings were treated with
Trichoderma biofertilizer and/or Aalm, and transcriptomes
showed significant differences between treatments. M. sieversii
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seedlings treated with Trichoderma biofertilizer and Aalm yielded
more DEGs than seedlings treated with either agent alone.
We subsequently investigated which genes were differentially
expressed and explored their functions.

Gene ontology, COG, and KEGG classifications showed
that many DEGs were involved in signal transduction and
defense mechanisms. Additionally, following treatment with

Trichoderma biofertilizer and Aalm, JAZ and MYC2 in the JA
signal pathway and NPRI in the SA signal pathway displayed
significant differential expression. Previous studies also showed
that tomato root colonization by Trichoderma activated the
SA hormone signal pathway to limit nematode root invasion,
and it enhanced the JA hormone signal pathway to antagonize
the deregulation of JA-dependent immunity against nematodes,
and further impeded nematode performance both locally and
systemically at multiple stages of parasitism (Medina et al., 2017).
Analysis of plant hormones demonstrated that treating with
T. harzianum T22 before or concurrent with Cucumber mosaic
virus infection led to systemic resistance through JA/ET and SA
signaling pathways in tomato (Antonella et al., 2016). Thus, like
pathogens, Trichoderma biofertilizer can also activate hormone
signaling pathways and defense responses in M. sieversii, and
thereby protect plants against pathogen attack.

Trichoderma  biofertilizer ~activated numerous disease
resistance genes and defense response genes. Disease resistance
genes included kinase genes (STK, LRR-RLK, and MAPK)
and transcription factor genes (ERF, NAC, bHLH, and HSF),
many of which are responsible for activating downstream
defense response genes, such as DRP, ABC, and HSP. Previous
studies showed that JA and SA induced increased expression of
OsMSRPKI1 (a serine/threonine protein kinase) in Oryza sativa
(Lee etal., 2006), and overexpression of Nicotiana repanda NrSTK
(a serine/threonine protein kinase) in the susceptible tobacco
variety Honghuadajinyuan, which significantly enhanced
resistance to the black shank (Gao et al., 2015). DRP has a
predicted N-terminal signal anchor sequence that targets DRP
to subcellular membranes or the plasma membrane, but unlike
signal peptides, this is not removed by signal peptidase. Plant
DRP interacts with pathogen effector proteins, which protect
plants from pathogens attack (Takemoto et al., 2012).

Plant ABC transporters play very diverse roles, and some
are involved in the transport of defense-related secondary
metabolites, defense responses, and cell detoxification, all of
which are crucial for plant survival under stress (Devanna et al.,
2021). Heat shock proteins (HSPs) are produced in response to
stress stimuli. They bind to hydrophobic surfaces of unfolded
proteins, preventing their aggregation, and allowing the correct
folding of stress-damaged proteins, preventing further cell
damage (Piterkovd et al., 2013). Our current results indicated that
Trichoderma biofertilizer could strongly induce the expression of
resistance genes in M. sieversii, and not just genes related to JA
and SA signaling pathways.

Among transcription factors, ERF family members were
the most differentially expressed, hence we speculated that
they are closely related to defense responses. Among ERFs,
MSERF105 was the most significantly differentially expressed.
Previous studies showed that ERFs play important roles in
regulating plant biotic stress tolerance (Miiller and Munné-
Bosch, 2015). For example, soybean GmERF113 was significantly
induced by Phytophthora sojae, ethylene, and methyl jasmonate,
and GmERF113 overexpression caused increased resistance to
P. sojae, and positively regulated the expression of the PR genes
PRI and PRI0-1 (Zhao et al., 2017). Overexpression of Gossypium
barbadense GbERFbD in tobacco increased disease resistance to
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Verticillium dahliae (Liu et al., 2017). Thus, MsERFI105 may play
an important role in the defense responses of M. sieversii.

To explore the functions of MsERF105 in defense responses,
the protein was heterologously expressed in PdPap poplar.
Following treatment with Aal, the MDA content was determined,
and NBT and DAB staining indicated that the antioxidant ability
of transgenic PdPap-MsERF105s plants was superior to that of
PdPap-ROK2 plants, presumably because MsERFI05 enhanced
the activity of reductases (SOD, POD, and CAT). Similarly, under
cold stress, when Cynodon dactylon CdERF1 was heterologously
expressed in Arabidopsis plants, the MDA content was reduced,
and the activities of SOD and POD were elevated (Hu et al., 2020).
Furthermore, the activities of SOD and POD in ZmERF105-
overexpressing lines were markedly higher than in wild-type
maize lines after infection with E. turcicum (Zang et al., 2020).
Thus, MsERF105 may help to clear ROS after pathogen attack.

Following treatment with Aal mycelia, lesions on PdPap-
MsERF105s leaves were significantly smaller than those on
PdPap-ROK2 leaves, and cell membrane integrity in PdPap-
MsERF105s leaves was better than in PdPap-ROK?2 leaves. This
suggests that MsERF105 enhanced the resistance of PaPap poplar
to Aal, possibly because MsERFI05 activates the expression
of PRI and PDF1.2. Additionally, overexpression of AcERF2
induced the accumulation of transcripts of plant defense-related
genes (PR1, PR2, and PR5), and increased Arabidopsis resistance
to the pathogens Pseudomonas syringae pv. tomato DC3000 and
B. cinerea (Sun et al., 2018). Overexpression of ZmERFI05 in
soybean enhanced the expression of several PR genes, including
ZmPRI1a, ZmPR2, ZmPR5, ZmPR10.1, and ZmPR10.2, following
infection with E. turcicum (Zang et al., 2020). These results
indicate that MsERFI105 plays a positive modulatory role in
response to pathogen infection in M. sieversii.

In conclusion, Trichoderma biofertilizer not only activated
JA and SA signaling pathways but also induced the differential
expression of numerous disease resistance genes and defense
response genes, especially ERF transcription factor family
members. Heterologous expression of MsERFI105 significantly
enhanced the antioxidant and antipathogen abilities of transgenic
PdPap poplar. The findings suggest that MsERF105 is crucial for
the response to pathogen attack in M. sieversii.
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