
REVIEW
published: 27 September 2021
doi: 10.3389/fpls.2021.708233

Frontiers in Plant Science | www.frontiersin.org 1 September 2021 | Volume 12 | Article 708233

Edited by:

Marcelino Perez De La Vega,

Universidad de León, Spain

Reviewed by:

Youxiong Que,

Fujian Agriculture and Forestry

University, China

Mulatu Geleta,

Swedish University of Agricultural

Sciences, Sweden

*Correspondence:

Channappa Mahadevaiah

C.Mahadevaiah@icar.gov.in

Chinnaswamy Appunu

C.Appunu@icar.gov.in

Specialty section:

This article was submitted to

Plant Breeding,

a section of the journal

Frontiers in Plant Science

Received: 11 May 2021

Accepted: 24 August 2021

Published: 27 September 2021

Citation:

Mahadevaiah C, Appunu C, Aitken K,

Suresha GS, Vignesh P, Mahadeva

Swamy HK, Valarmathi R,

Hemaprabha G, Alagarasan G and

Ram B (2021) Genomic Selection in

Sugarcane: Current Status and Future

Prospects.

Front. Plant Sci. 12:708233.

doi: 10.3389/fpls.2021.708233

Genomic Selection in Sugarcane:
Current Status and Future Prospects
Channappa Mahadevaiah 1*, Chinnaswamy Appunu 1*, Karen Aitken 2,

Giriyapura Shivalingamurthy Suresha 3, Palanisamy Vignesh 1,

Huskur Kumaraswamy Mahadeva Swamy 1, Ramanathan Valarmathi 1,

Govind Hemaprabha 1, Ganesh Alagarasan 1 and Bakshi Ram 1

1Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India, 2CSIRO (Commonwealth Scientific

and Industrial Research Organization), St. Lucia, QLD, Australia, 3Division of Crop Production, ICAR-Sugarcane Breeding

Institute, Coimbatore, India

Sugarcane is a C4 and agro-industry-based crop with a high potential for biomass

production. It serves as raw material for the production of sugar, ethanol, and

electricity. Modern sugarcane varieties are derived from the interspecific and intergeneric

hybridization between Saccharum officinarum, Saccharum spontaneum, and other wild

relatives. Sugarcane breeding programmes are broadly categorized into germplasm

collection and characterization, pre-breeding and genetic base-broadening, and varietal

development programmes. The varietal identification through the classic breeding

programme requires a minimum of 12–14 years. The precise phenotyping in sugarcane

is extremely tedious due to the high propensity of lodging and suckering owing to

the influence of environmental factors and crop management practices. This kind of

phenotyping requires data from both plant crop and ratoon experiments conducted over

locations and seasons. In this review, we explored the feasibility of genomic selection

schemes for various breeding programmes in sugarcane. The genetic diversity analysis

using genome-wide markers helps in the formation of core set germplasm representing

the total genomic diversity present in the Saccharum gene bank. The genome-wide

association studies and genomic prediction in the Saccharum gene bank are helpful

to identify the complete genomic resources for cane yield, commercial cane sugar,

tolerances to biotic and abiotic stresses, and other agronomic traits. The implementation

of genomic selection in pre-breeding, genetic base-broadening programmes assist in

precise introgression of specific genes and recurrent selection schemes enhance the

higher frequency of favorable alleles in the population with a considerable reduction

in breeding cycles and population size. The integration of environmental covariates

and genomic prediction in multi-environment trials assists in the prediction of varietal

performance for different agro-climatic zones. This review also directed its focus on

enhancing the genetic gain over time, cost, and resource allocation at various stages

of breeding programmes.
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INTRODUCTION

Sugarcane is an important agro-based industrial crop cultivated
in tropical and sub-tropical regions; it serves as a rawmaterial for
the production of sugar, bioethanol, and bioenergy (Hoang et al.,
2015). Globally, sugarcane is cultivated in 28.19 million hectares
which produces 2059.74 million tonnes of canes annually with
average productivity of 72.80 t ha−1 (FAOSTAT, 2019). As a C4
plant, it is a high biomass producing crop generating around 279
million tonnes of lignocellulosic biomass residues, i.e., leaves and
bagasse, per year worldwide (Chandel et al., 2012). The adoption
of new varieties has enhanced the cane and sugar yield in India,
Australia, Brazil, and South Africa (Burnquist et al., 2010; Ram
and Hemaprabha, 2020; Schmitz et al., 2020). Modern breeding
approaches, such as genomic selection involving inter and multi-
disciplinary approaches (Crossa et al., 2017), are required to
further enhance the genetic gain for cane yield and sugar yield.

Sugarcane is an exemplary crop that exploits the heterosis
from the wild genetic resources. The modern cultivars are
interspecific and intergeneric hybrids of Saccharum officinarum,
Saccharum spontaneum, and other related genera (Bhat and Gill,
1985; Sreenivasan and Ahloowalia, 1987; Grivet and Arruda,
2002; Lekshmi et al., 2017). The basic clones of Saccharum
species significantly contributed to the heterosis and genetic base
diversification in sugarcane germplasm. The in-depth pedigree
analysis of the modern sugarcane cultivars and breeding lines
revealed that a limited number of germplasm and basic species
were used in the varietal development programmes (Jackson,
2005). The pedigree analysis of Indian ‘Co’ varieties exhibited
that only two S. spontaneum accessions viz., S. spontaneum CBE
and S. spontaneum Java were used in the breeding programmes
(Kumar et al., 2012). The pedigree analysis of notified thirteen
varieties in India (Figure 1) depicts the narrow genetic base in
cultivated varieties and these varieties are derived from the clones
of a limited basic Saccharum species such as 17 accessions of S.
officinarum and its derivatives, one Saccharum barberi, two S.
spontaneum, and one Erianthus arundinaceus derived clone and
two foreign clones. Though the diverse wild genetic resources
were used in the pre-breeding andmany breeding lines or genetic
stocks were identified (Mohanraj and Nair, 2014; Nair et al.,
2017), it might not have selected or captured all the desirable
genes in the background of undesirable linkage drags. Hence,
there is a requirement to take the advantage of the genome-wide
markers and genomic selection for effective utilization of genetic
resources in the sugarcane breeding programme.

Sugarcane breeding has been performed in three phases
(Jackson, 2005). First is the crossing and selecting among the
S. officinarum clones. Second is the interspecific hybridization
and nobilization of canes. Third is the intermating or recurrent
selection among the nobilized cane to develop the commercial

Abbreviations: CCS, Commercial cane sugar; QTL, Quantitative trait loci; NGS,

Next-generation sequencing technologies; GBS, Genotyping by sequencing; SNP,

Single nucleotide polymorphism; GWAS, Genome-wide association studies; BLUP,

Best linear unbiased prediction; RR-BLUP, Ridge regression BLUP; LASSO, Least

absolute shrinkage and selection operator; GBLUP, Genomic BLUP; RKHS,

Reproducing kernel Hilbert space; DArT, Diversity arrays technology; taBLUP,

Trait associated BLUP; sBLUP, Super BLUP; cBLUP, Compressed BLUP.

canes. The genetic variability in the present working sugarcane
germplasm is not fully exhausted or no yield plateau was
observed in sugarcane (Edm et al., 2005), but there is evidence
of slow genetic gain (Wei and Jackson, 2017). Additionally,
new variability is continuously created through pre-breeding in
many countries (da Silva, 2017; Nair et al., 2017; Cursi et al.,
2021), yet the application of genomic selection in sugarcane
is capable of capturing the entirety of the allelic variability
and enhancing the generic gain (Deomano et al., 2020; Hayes
et al., 2021; Voss-Fels et al., 2021; Yadav et al., 2021). The
recent review on genomic selection in sugarcane highlighted
the recurrent selection schemes (Yadav et al., 2020) and we
reviewed the feasibility of genomic selection at various stages of
sugarcane breeding programmes, such as germplasm evaluation
and formation of core germplasm, pre-breeding and genetic
base-broadening programmes, and multi-environmental trails of
breeding lines.

GENOMIC SELECTION IN SUGARCANE

The genetic gain for commercial sugar yield can be improved
either by enhancing the cane yield or sucrose content, and both
traits were reported to have a poor genetic correlation (Jackson,
2005). Both cane yield and sucrose were governed by many
quantitative trait loci (QTL) or genomic regions (Hoarau et al.,
2002; Ming et al., 2002; Aitken et al., 2008). The narrow-sense
heritability and very high non-additive genetic variance for cane
yield (Brown et al., 1968; Hogarth, 1971; Hogarth et al., 1981;
Barbosa et al., 2005; Wei and Jackson, 2017), the selection of
parents solely based on breeding values do not improve the
genetic gain for cane yield (Wei and Jackson, 2017). The utility of
genome-wide markers such as single nucleotide polymorphism
(SNP) for prediction of breeding values of parents and genotypes
through genomic selection approaches were demonstrated in
other crops (Unterseer et al., 2014; Yu et al., 2014; Aitken et al.,
2016; Pandey et al., 2017; Roorkiwal et al., 2018; Saxena et al.,
2018; Li et al., 2019). The Diversity Array Technology (DArT),
Axiom 345K SNP, and Affymetrix Axion 100K SNP arrays were
now available (Heller-Uszynska et al., 2011; Berkman et al., 2014;
Aitken et al., 2016; Song et al., 2016; You et al., 2018) and
utilized for genomic prediction studies in sugarcane (Gouy et al.,
2013; Deomano et al., 2020; Hayes et al., 2021; Voss-Fels et al.,
2021; Yadav et al., 2021). The accuracy of genomic prediction
or selection studies depends on many parameters such as robust
statistical models, genome-wide markers, and parameters related
to training and testing populations such as population structure,
trait heritability, trait architecture, genetic diversity, and genetic
relatedness (Meuwissen et al., 2001; Zhang et al., 2017; Berro
et al., 2019).

Genomic Prediction Models
The genomic prediction models are statistical models, which
combines the pedigree data, genotypic data, phenotypic data,
and environmental covariates to estimate the genomic estimated
breeding values (GEBV) and enhance the prediction accuracies
(Meuwissen et al., 2001; Rincent et al., 2012; Heslot et al., 2014;
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FIGURE 1 | In-depth pedigree analysis of notified sugarcane varieties in India stipulating the total genetic variability present in the field. They are derived from the

limited germplasm viz., 17 clones of S Saccharum officinarum and its derivatives (pink color), one clone of Saccharum barberi (orange), two clones of Saccharum

spontaneum (gray), one genetic stock IG91-1100 derived from intergeneric hybridization between sugarcane (CoC 772) and Erianthus arundinaceus (blue), and two

foreign clones (green). The implementation of genomic prediction in sugarcane germplasm characterization and genomic selection in pre-breeding aids in

introgression and augmentation of more favorable alleles, base-broadening of working germplasm, and finally deploying more number of favorable genes into the

target environments.

Frontiers in Plant Science | www.frontiersin.org 3 September 2021 | Volume 12 | Article 708233

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Mahadevaiah et al. Genomic Selection in Sugarcane

Malosetti et al., 2016; Monteverde et al., 2019). This is a multi-
disciplinary approach involving computer science, genetics,
quantitative genetics, statistics, bioinformatics, mathematics,
physics, and machine learning to deduce the estimated breeding
values (Crossa et al., 2017). The genomic prediction models also
involve cross-validation to determine their accuracies (Burgueño
et al., 2012; Rincent et al., 2012, 2017). Most of the statistical
models, such as ridge-regression best linear unbiased prediction
(RR-BLUP), BayesA, BayesB, BayesC, least absolute shrinkage
and selection operator (LASSO), and genomic BLUP (GBLUP),
estimate the additive genetic variance or breeding values (Wang
et al., 2018b). In sugarcane genomic prediction studies, genomic
models such as BayesA, BayesB, Bayesian LASSO, Bayesian
GBLUP, and reproducing kernel Hilbert space (RKHS) were used
to predict the commercial cane sugar (CCS) and cane yield
in early and advance breeding experiments in Australia. The
prediction accuracy (0.25–0.45) was highly encouraging under
additive genomic models. The prediction accuracies for CCS
in advanced clonal selection trials which was higher than the
early clonal trials and, vigorous selection in early clonal trials
did not affect the prediction accuracies of advanced selection
trials. The reverse trend was observed for cane yield, wherein
the prediction accuracies in advanced trials were less than that
of early clonal trials (Deomano et al., 2020) and it was attributed
to the competition effects in smaller plots (Jackson and McRae,
2001). Three additive genomic models namely GBLUP, genomic
single step, and BayesR were tested against 3,984 breeding
lines genotyped with 26K SNP, achieving satisfactory prediction
accuracies (0.30–0.44) with 5% improvement for CCS and fiber
without any improvement for cane yield due to competition
effects in early breeding trials (Hayes et al., 2021).

The non-additive genetic variance significantly contributes
to the heterosis in sugarcane and the low narrow-sense
heritability is one of the causes for slow genetic gain to cane
yield (Wei and Jackson, 2017). RKHS and extended GBLUP
genomic models captures the non-additive genetic variance
(Endelman, 2011; Jiang and Reif, 2015; Momen and Morota,
2018; Momen et al., 2018; Varona et al., 2018) and RKHS
genomic model was used in sugarcane genomic selection (Gouy
et al., 2013; Yadav et al., 2021). In simulation studies, genetic
gain due to additive genomic model was almost double than
the phenotypic selection and the genomic selection enhanced
the rapid increase in frequencies of favorable alleles. Whereas,
under the non-additive model, the genetic gain under genomic
selection was still higher than the phenotypic selection and the
success of the genomic selection depends on genomic breeding
schemes, clonal population and stage of breeding programmes
(Voss-Fels et al., 2021). In another study, extended GBLUP
incorporated with additive, dominance, epistatic, and average
genome-wide heterozygosity components to dissect the non-
additive variance for cane yield, CCS, and fiber. The large
portion of variance was attributed to dominance variance for
cane yield and epistatic genetic variance for both cane yield and
CCS. The epistatic genetic variance (additive × additive genetic
variance) and variance due to genome-wide heterozygosity
had accounted significant portion of genetic variance for
both cane yield and CCS under additive-dominance-epistatic

and additive-dominance-epistatic-genome-wide heterozygosity
genomic models (Yadav et al., 2021).

Genomic prediction models are evolving science, and several
modifications of the genetic relationship matrices were reported
to enhance the prediction accuracies. The trait associated BLUP
(taBLUP) make use of the trait-specific relationship matrix which
captures the genetic variance of a locus, whose elements were
derived based on the probability of a marker locus identical by
descent and genetic variance of a trait. The genetic architecture
was incorporated into the kinship matrix by assigning the
suitable weight to the markers identified through genome-
wide association studies (GWAS) and additionally improved by
removing the duplicate trait-specific markers associated with
the same (Zhang et al., 2010; Wang et al., 2018a). Further, the
elements of kinship matrices were modified by assigning the
markers to bins or real quantitative trait nucleotides identified
in GWAS. In super BLUP (sBLUP), the maximum likelihood
association between the traits and markers were enhanced by
incorporating the elements of kinship matrices by the markers
identified within a bin or real quantitative trait nucleotide
identified in GWAS.Whereas, in compressed BLUP (cBLUP), the
kinship matrices were derived by clustering the genotypes into
groups and each group was treated as a random effect (Wang
et al., 2018a). Further studies are required to understand the
impact of sBLUP and cBLUP in the background of additive,
dominance, epistatic and genome-wide heterozygosity models
for improving the prediction accuracies in sugarcane.

Genome-Wide Markers
One of themost commonly raised issues in the sugarcane genome
analysis is that it exhibits hyperploidy. Hyperploidy is a major
problem in SNP identification among polyploids, as it may lead
to false SNP calling in crops like sugarcane and strawberry. The
challenges in SNP identification and SNP selection criteria in
polyploids were recently reviewed (You et al., 2018; Manimekalai
et al., 2020). In recently formed polyploid genomes, such as
sugarcane, the problem is 2-fold for SNP calling. On the
other hand, there is a paucity of high-end algorithms and
computational methods, as large numbers of the available SNP
analyzing tools are not suitable for the polyploid genome. Two
relevant kinds of technology gaps have been identified in the
sugarcane SNP genotyping. The first is that of homoeologous
SNPs required to differentiate from the true allelic SNPs in
polyploid crops. For read alignment, Bowtie-2 and Burrows-
Wheeler Aligner - Maximal Exact Matches (BWA-mem) identify
the read alignments based on the number of mismatch scores
(Clevenger et al., 2015) and Universal Network-Enabled Analysis
Kit (UNEAK) SNP discovery pipeline is also included in the Trait
Analysis by aSSociation, Evolution and Linkage - Genotyping by
sequencing (TASSEL-GBS) (Elshire et al., 2011; Lu et al., 2013).
The various advanced sequencing platforms have demonstrated
their role in diploid/polyploid crops. The Illumina platform
presents the most robust and cost-effective method of polyploid
genome analysis through short-read sequencing, even though
a longer read length is preferred to sequence genomes like
sugarcane, which possess high levels of repetitive regions (You
et al., 2018). Currently, PacBio offers long-read sequencing on
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an average read length of 15 kb through single-molecule real-
time sequencing (Manimekalai et al., 2020). However, researchers
from developing nations are not able to use PacBio or any other
advanced platforms due to the higher sequencing costs. Cheaper
sequencing costs would facilitate in-depth sequence coverage,
which is a preferred strategy in outcrossing species. In diploids,
7.7x coverage is sufficient, whereas the tetraploid, autotetraploid,
and autoactoploid require 15x, 48x, and 100x, respectively, for
accurate SNP genotyping by GBS. For example, the suggested
sequencing depth in potatoes is 60x to avoid type I and type II
errors in SNP genotyping (Clevenger et al., 2015).

The second problem for the generation of robust SNP data is
the raw data analysis of the sequence reads that are generated.
Data duplications, such as PCR duplication, is a common
problem faced by many computational biologists (Clevenger
et al., 2015). It is very difficult to categorize the natural
duplication from PCR duplication, which results in incorrect
InDel/SNP calling even in diploids (Li, 2014). Despite severe
limitations, some of the researchers have successfully identified
the SNPs through the Next Generation Sequencing (NGS)-
enabled method, genotyping-by-sequencing (GBS): 20K SNPs
(164 wheat DH lines), 76K SNPs (14 sugarcane accessions), and
84K SNPs (151 sugarcane clones) (Poland et al., 2012; Yang et al.,
2017). The Universal Network-Enabled Analysis Kit (UNEAK
pipeline) was developed as a referencemethod and supplemented
with the TASSEL-GBS SNP calling software useful for complex
genomes (Lu et al., 2013). Several studies have identified large
numbers of SNP markers in sugarcane through GBS (Balsalobre
et al., 2017; Yang et al., 2017) or hybridization-based target
enrichment method combined with NGS (Song et al., 2016) or
the generation of an Axiom SNP array (Aitken et al., 2016).
Assuming the pseudo-diploid model, the heterozygous alleles of
single-dose markers were scored as one group and used in the
genomic prediction studies in sugarcane (Deomano et al., 2020;
Hayes et al., 2021; Voss-Fels et al., 2021; Yadav et al., 2021).
Though this has resolved multi-dosage effects of markers, it does
not reflect the true genomic complexity of sugarcane (Voss-Fels
et al., 2021) and yet the considerable improvement in genomic
prediction accuracies for cane and sugar yields under the additive
and non-additive genetic models is found worthy in sugarcane.
Furthermore, the use of these multi-dose markers in breeding
remains a challenge and there exists a further need to address
the computational challenges for the utilization of multi-dose
markers in complex polyploid crops like sugarcane.

Population Structure, Genetic Diversity,
and Relatedness of Training and Testing
Populations
The design of the training and testing populations has to
consider several parameters such as trait heritability, population
structure, genetic architecture, size of the training and validation
populations, and genome-wide distribution of markers. Genomic
prediction accuracies are influenced by the population structure
and genetic relatedness of training and testing populations
(Windhausen et al., 2012; Sallam et al., 2015). The population
structure arises either due to linkages between the similar alleles
or genomic regions among closely related individuals or due to

the linkage disequilibrium of similar genomic regions among
the distantly related individuals, which does not decay over
the fewer generations of selfing or crossing. Both linkage and
linkage disequilibrium contribute to the population structure and
requires due considerations in genomic prediction (Daetwyler
et al., 2012). The minimal population structure, maximum
genetic diversity among the training population and proximal
genetic relatedness between training and testing populations
amplified the genomic prediction accuracies (Clark et al., 2012;
Daetwyler et al., 2012; Guo et al., 2014; Sallam et al., 2015).
To achieve the same, several statistical approaches were used
in different studies such as k-vertex connected graph with the
maximum number of edges and the K-mean clustering strategy
(Maenhout et al., 2010), clusters of relationship coefficients
matrices (Saatchi et al., 2011), CD mean and generalized
CD (Rincent et al., 2012, 2017), stratified sampling based on
Euclidian distance and Ward’s hierarchical clustering, CDmean,
PEVmean, and stratified CDmean (Isidro et al., 2015), and the
weighted additive relationship matrix with a stratified sampling
(Zhang et al., 2010; Wang et al., 2018a; Berro et al., 2019).

Several GWAS studies revealed that population structure is
evident in sugarcane. The population structure analysis in the
panel comprising of 134 accessions of cultivars and popular
parental lines displayed a very strong linkage disequilibrium
with four different groups (Barreto et al., 2019). The population
structure analysis in a 96 genotypes panel comprising of wild
species by using the target region amplified polymorphism
(TRAP) markers presented the two subgroups for sucrose
metabolic pathways and three subgroups for lignin metabolic
pathways. Most of the traditional cultivars, accessions of S.
spontaneum and Erianthus spp. formed one subpopulation,
whereas the modern cultivars were assigned into the second
subpopulation (Junior et al., 2020). The population structure
analysis in 97 elite and historic sugarcane varieties by using
6,534 InDel and SNP markers revealed the strong structural
differentiation into two major subgroups and a stronger marker-
trait correlation with sucrose traits (Fickett et al., 2019).
Sugarcane crop is a photosensitive crop which requires specific
environmental regimes for plant developmental activities (Baez-
Gonzalez et al., 2017). The crop growth and developments
differ with agro-climatic zones such as tropical and subtropical
regions. The spatial variation is well-known in sugarcane and
the association mapping based on a single location resulted
in the identification of markers, which does not possess any
significance for utilization in sugarcane breeding programmes
(Wei et al., 2010). Therefore, the formation of training and
testing populations has to provide due consideration to the
multi-environmental evaluation and environmental covariates to
enhance the genomic prediction accuracies (Pandey et al., 2020)
in sugarcane.

Trait Heritability and Genetic Architecture
in Training and Testing Populations
The genetic architecture of quantitative traits describes the
characteristic features of broad-sense heritability or proportion
of heritable total phenotypic variation, referring to the number of
genes, genomic regions, the magnitude of gene effects, and their
relative contributions to the additive, non-additive and epistatic
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gene actions (Holland, 2007). Broad-sense heritability accounts
for the total heritable variation or genotypic variation due to
additive and non-additive genes. The narrow-sense heritability
explains the proportion of genetic variation governed by additive
genes. Broad-sense heritability is beneficial for the prediction of
the genetic gain due to the selection of superior plant types in
ground nursery, and narrow-sense heritability used to predict the
better parental cross combination in hybridization programmes
(Jackson, 2005). However, sugarcane has a long history of low
narrow-sense heritability for cane yield (Wei and Jackson, 2017),
a large proportion of genetic variability governed by non-additive
genes (Yadav et al., 2021). Hence, parental selection based on
meager breeding value does not help to enhance the genetic
gain in sugarcane (Wei and Jackson, 2017). Very high broad-
sense heritability was reported in sugarcane for stalk number,
stalk diameter, brix, bagasse, fiber, and lignin content (Gouy
et al., 2013). The make use of genome-wide markers and genomic
selection aids in assessing the non-additive genetic variance in
order to increase the frequency of favorable alleles in the breeding
populations and selection of heterotic clones in sugarcane (Voss-
Fels et al., 2021; Yadav et al., 2021).

GENOMIC SELECTION SCHEMES FOR
SUGARCANE BREEDING PROGRAMMES

The genomic selection schemes applied at various stages of
sugarcane breeding such as germplasm characterization and
core germplasm formation, pre-breeding, and genetic base-
broadening programmes, selection of parents for hybridization
and prediction of progeny performance, varietal development
and deployment are summarized in Table 1. The feasibility and
suitability of these schemes in sugarcane breeding programmes
are discussed.

Genomic Prediction and Core Collection in
Field Gene Banks
The large number of germplasm collections maintained at gene
banks have issues of germplasm duplication, the constraint of
rejuvenation of a large number of accessions, unsatisfactory
phenotyping, and utilization in breeding programmes (Díez
et al., 2018). The core set formation is highly significant in
resolving the problems of duplications and the ideal core
collection is composed of 10% of the entire germplasm collection,
representing 70% of the alleles of the entire germplasm (Brown,
1989). The various strategies such as stratified random sampling
(Brown, 1989) and sampling based on multivariate clustering
(Franco et al., 2005) were used in the core collection of
germplasm. The molecular markers were also used in core
germplasm formation in various crops (Zaharieva et al., 2001;
Hao et al., 2006; Krichen et al., 2012; Dutta et al., 2015; Liu et al.,
2015). The advent of next-generation sequencing technologies
(NGS) and reduction in the cost of sequencing have given a
new avenue for genome-wide SNP discovery and their utilization
in genomic prediction in germplasm and core germplasm.
Genome-wide marker-based germplasm characterization and
core collection are validated in crops like wheat (Crossa et al.,

2016b; Kehel et al., 2020), sorghum (Yu et al., 2016), soybean (De
Azevedo Peixoto et al., 2017), and cauliflower (Thorwarth et al.,
2018).

The global collections of sugarcane germplasm aremaintained
at World Collections of Sugarcane and Related Grasses
(WCSRG), Canal Point, Florida, and the Indian Council
of Agriculture Research (ICAR)-Sugarcane Breeding Institute,
Coimbatore, India. About 1,002 accessions and 3,345 accessions
of Saccharum germplasm are maintained at Canal point and
Coimbatore, respectively (Amalraj and Balasundaram, 2006;
Nayak et al., 2014). Besides, wild relatives are also maintained
in Fiji, Brazil, Australia, China, and many other countries and
are actively being used in the breeding programme (Ramdoyal
and Badaloo, 2002; Wang et al., 2008; da Silva, 2017; Bhuiyan
et al., 2019; Cursi et al., 2021). Several studies of core collection
in Saccharum germplasm are described based on morphological
features and molecular markers (Balakrishnan et al., 2000;
Tai and Miller, 2001; Balakrishnan and Nair, 2003; Amalraj
et al., 2006; Nayak et al., 2014; Shadmehr et al., 2017; Tena
Gashaw et al., 2018; Fickett et al., 2019). The phenotypic
characterization of Saccharum germplasm has many hurdles.
First, tall and long duration crops are more prone to lodging
and sucker development, which directly influences biomass
and cane yield and juice quality parameters (Berding et al.,
2005). Second, sugarcane is a photosensitive crop and spatial
variation or morphological expressions are influenced by specific
environmental regimes (Waldron et al., 1967; Gosnell, 1973;
Pereira, 1983; Shanmugavadivu and Rao, 2009; Wei et al.,
2010). Third many countries prohibited the field evaluation
of S. spontaneum germplasm which are classified as noxious
weed due to their fast-growing, spreading type with rhizatomous
roots (Todd et al., 2017). Fourth, morphological characterization
of germplasm based on fewer morphological descriptors and
environmentally sensitive quantitative data does not reflect the
complete genetic variability of Saccharum germplasm and unlike
the utilization of genome-wide markers that helps to capture
the complete genetic variability of genetic resources (Nybom
and Lācis, 2021). Therefore, germplasm characterization and
the formulation of core germplasm by using genome-wide
markers could be the best option for crops like sugarcane which
additionally captures the complete genetic variability.

In-depth pedigree analysis of the sugarcane germplasm has
shown that only a limited number of basic Saccharum species
clones were used in the development of breeding lines in
sugarcane (Jackson, 2005; Kumar et al., 2012). These breeding
lines were further advanced through recurrent selection and
utilized in the varietal developmental programmes (Jackson,
2005). The pedigree analysis of Indian “Co” varieties (Figure 1)
showed that only two S. spontaneum accessions viz., S.
spontaneum CBE and S. spontaneum Java, were used in the
breeding programmes (Kumar et al., 2012). Although there were
efforts made to utilize the Saccharum germplasm in sugarcane
hybridization programme for pre-breeding and base-broadening
programmes (Wang et al., 2008; Mohanraj and Nair, 2014; da
Silva, 2017; Nair et al., 2017; Cursi et al., 2021), still it was
not a complete utilization of Saccharum germplasm or all the
favorable alleles contributing to the cane yield and sucrose.
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TABLE 1 | The application of genomic prediction and genomic selection in sugarcane breeding programmes.

Sl. no Breeding programmes Objectives Similar studies in other crops

1 Characterization of Saccharum field

gene bank by using genome-wide

markers

To characterize the Saccharum field gene bank for genomic

diversity, to establish identity of accessions and to verify the

duplications in gene banks.

Maize (Lu et al., 2009)

Rye (Bolibok-Bragoszewska et al., 2014)

Apple (Buiteveld et al., 2021)

2 Core collections of Saccharum field

gene bank

Core sampling of Saccharum and allied germplasm representing

the total genomic diversity present in the gene bank.

Soybean (Jeong et al., 2019)

Wheat (Pascual et al., 2020)

Rice (Kumar et al., 2020a)

3. Genomic prediction in Saccharum

gene bank

To expedite the characterization of Saccharum germplasm for

cane yield, commercial cane sugar (CCS) and tolerances to

biotic and abiotic stresses.

Sorghum (Yu et al., 2016)

Wheat landraces (Crossa et al., 2016b;

Kehel et al., 2020)

Soybean (Peixouto et al., 2016)

Cauliflower (Thorwarth et al., 2018)

4. Genome-wide association studies

and genomic prediction

To identify the genomic regions associated with agronomic traits

(cane yield and CCS) and, biotic and abiotic stress tolerances.

Eucalyptus (Müller et al., 2017)

Winter wheat (Kristensen et al., 2019;

Odilbekov et al., 2019)

Wheat and Barley (Tsai et al., 2020)

Maize (Liu et al., 2021)

5. Pre-breeding or wide hybridization or

nobilization

To introgress new alleles and genomic regions from Saccharum

germplasm identified through germplasm characterization,

GWAS and genomic prediction studies into the working

germplasm.

Maize (Gorjanc et al., 2018)

Eucalyptus (Tan et al., 2017)

Pear (Kumar et al., 2019)

6. Genetic base-broadening To improve the breeding value of the genetic stocks identified

from pre-breeding by backcrossing with parental lines or

recurrent selection

Eucalyptus (Tan et al., 2017)

Wheat (Singh et al., 2018)

Pear (Kumar et al., 2019)

Maize (Mayer et al., 2020)

7. Recurrent selection breeding

programmes (Gouy et al., 2013)

To augment the favorable alleles in the population/parental pool

for cane yield, CCS, and tolerances through recurrent selection

cycles

Rice (Grenier et al., 2015)

Brassica napus (Zhao et al., 2016)

Maize (Müller et al., 2017)

Blueberry (Ferrão et al., 2021)

8. Genomic prediction of parental cross

combination and hybridization

Prediction of parental cross/progenies combination through

estimated breeding values, general and specific combining

ability of parental lines

Apple (Kumar et al., 2020b)

Maize (Kadam et al., 2016; Jarquin et al.,

2021; Liu et al., 2021)

Wheat (Lado et al., 2017)

Cassava (Wolfe et al., 2017)

9. Progeny assessment and clonal

selection (Deomano et al., 2020;

Hayes et al., 2021; Yadav et al., 2021)

Prediction of superior plant types/progenies based on the

broad-sense heritability or additive and non-additive genetic

variance

Cassava (Wolfe et al., 2017)

Eucalyptus (Resende et al., 2017)

Sugarcane (Deomano et al., 2020; Hayes

et al., 2021; Yadav et al., 2021)

Oil palm (Nyouma et al., 2020)

Macadamia nut (O’Connor et al., 2021)

10 Multi-environment trial or deployment

of cultivars to target environments

To predict the genotype × environment interactions in

multi-environment trials and to identify the stable varieties

suitable for the target environment

Barley (Oakey et al., 2016)

Chick pea (Roorkiwal et al., 2018)

To predict the marker × environment interaction in

multi-environment trials and identify the environment sensitive

genomic regions

Maize (Schulz-Streeck et al., 2013)

Wheat (Lopez-Cruz et al., 2015; Crossa

et al., 2016a)

Rice (Monteverde et al., 2019)

Incorporation of environmental covariates into the genomic

models and to predict the impact of environmental covariates on

genotype performance and deployment of varieties.

Wheat (Heslot et al., 2014)

Barley (Malosetti et al., 2016)

Rice (Monteverde et al., 2019)

Therefore, characterization of the Saccharum germplasm with
genome-wide markers and genome-wide association studies
certainly identifies the alleles contributing to the cane yield,
sucrose content, and other agronomic traits. The genome-
wide markers capture the complete genetic variability present
in germplasm and are also useful in the formulation of core
germplasm, improving the precision of selection in gene-specific
introgression in pre-breeding and enriching the favorable alleles

and genes in genetic base-broadening and recurrent breeding
programmes. The two major concerns of a sugarcane breeder, as
described by Jackson (2005) viz., the concern of narrow genetic
base and potential opportunities to broaden the genetic base
by utilizing a large number of basic Saccharum germplasm,
were easily addressed by adopting the genomic prediction in
Saccharum gene bank and genomic selection schemes in pre-
breeding and genetic base-broadening programmes. As described
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in sorghum (Yu et al., 2016), Saccharum germplasm can be used
for genomic prediction by considering the part of the germplasm
as the training population and the remaining germplasm as the
validation population.

Genomic Selection for Pre-breeding and
Genetic Base-Broadening Programme
Pre-breeding and genetic base-broadening is the most important
component of the sugarcane breeding programme followed in
many countries (Ramdoyal and Badaloo, 2002; Wang et al.,
2008; Matsuoka et al., 2014; da Silva, 2017; Cursi et al., 2021).
The importance of S. spontaneum and other Saccharum spp.
in the development of cultivars for bioenergy and commercial
sugar production has been previously reviewed (Wang et al.,
2008; Matsuoka et al., 2014; da Silva, 2017; Cursi et al.,
2021) and novel genetic resources for disease resistance were
identified (Bhuiyan et al., 2019). The utilization of S. spontaneum
accession “Mandalay” in varietal development programmes
resulted in many varieties in Australia (Reffay et al., 2005;
Piperidis et al., 2021) and the high yield sugarcane cultivar
LCP 85-384 has genetic lineage from S. spontaneum and S.
barberi (Milligan et al., 1989). The studies involving genotyping
of 400 markers in 232 biparental populations, which were
derived from crosses involving Mandalay as a grandparent,
exhibited that 25% of genomic regions originated from the
“Mandalay” (Reffay et al., 2005). Consistent efforts were made
to utilize wild genetic resources to broaden the genetic base
of Indian working germplasm involving many Saccharum spp.
such as S. officinarum, S. robustum, S. spontaneum as well as
E.arundinaceus, and Erianthus bengalense (Mohanraj and Nair,
2014; Ravinder et al., 2015; Nair et al., 2017). Nevertheless,
phenotypic selection might not have captured the complete
favorable alleles. Furthermore, the utilization of genome-
wide markers, genome-wide association studies, and genomic
selection helped in enhancing the frequency of favourable
alleles and minimising the linkage drag, which are commonly
associated with wide-hybridization and genetic base-broadening
programmes in sugarcane (Roach, 1989).

Pre-breeding, a bridge between crop improvement and plant
genetic resources, provides an opportunity for introgression
of desirable genes with minimal linkage drag and enhances
the adaptability of the cultivars (Sharma et al., 2013). It is
combined with genomic-assisted selection which is helpful in the
identification of climate-smart alleles/haplotypes in gene banks
and in the development of climate-resilient varieties (Varshney
et al., 2018). Moreover, it was also demonstrated in other clonally
propagated crops (Tan et al., 2017; Kumar et al., 2019). In similar
ways, the feasibility of genomic prediction in sugarcane pre-
breeding has to be explored and the methodology is described
in Figure 2. The pre-breeding in Saccharum spp. requires 3–4
generations of backcrossing with recurrent parents. Pre-breeding
in sugarcane involves the following steps: (i) genome-wide
association studies in germplasm and identification of elite
accessions with more number of desirable genes/trait-specific
accessions; (ii) hybridization between elite accessions with noble
S. officinarum clones or commercial sugarcane varieties;

(iii) identification of true interspecific hybrids through
genomic/cytoplasmic/5S rRNA/Inter Transcriber Spacer
specific markers; (iv) optimization of the training and testing
populations at each generation or back cross programmes which
generally requires 3–4 generations of backcrossing/crossing with
commercial sugarcane varieties; (v) genomic prediction model
building and retraining of the genomic prediction models to
optimize and predict the genotype with the highest Genomic
Estimated Breeding Value (GEBV) for utilization in the next
generation of backcrossing or crossing. The genomic prediction
model could also be able to help in the swift development of
genetic stocks in pre-breeding and genetic base-broadening
in sugarcane.

Genomic Selection for Superior Parental
Cross Combination and Clonal Selection at
an Early Stage
The varietal development programme in sugarcane breeding is a
kind of recurrent selection. The parental lines for hybridizations
are selected based on breeding values estimated from the
performance of families or progenies of proven crosses (Chang
and Milligan, 1992; Jackson, 2005; Burnquist et al., 2010; Lingle
et al., 2010; Stringer et al., 2010; Mendes de Paula et al.,
2020). Sugarcane is a clonally propagated crop, amenable for the
exploitation of both additive and non-additive gene action. The
additive genetic variance determines the proportion of genetic
variability transmitted to progenies or breeding value. This is
helpful in the selection of an elite parental pool and prediction
of parental cross combinations. The proportion of non-additive
genetic variance is suitable for the selection of elite plant types
from the ground nursery (Jackson, 2005; Mendes de Paula et al.,
2020). A very high significant Specific Combining Ability (SCA)
variance is observed for cane yield in an unselected population
of 35 families indicating the predominance of non-additive
genetic variance (Zhou, 2020). The evaluation of 79 families
derived from 38 parental lines revealed the predominance of
non-additive genetic variance for cane yield and additive genetic
variance for brix and sucrose (Mendes de Paula et al., 2020).
Sugarcane has a long history of low narrow-sense heritability and
a higher proportion of non-additive genetic variance for cane
yield as compared with CCS (Wei and Jackson, 2017; Mendes
de Paula et al., 2020; Zhou, 2020; Yadav et al., 2021). Hence, the
selection of parental lines based on breeding value does result
in a low genetic gain and require due consideration for non-
additive genetic variance in the choice of a parental pool for
hybridization programmes.

The breeding programme in sugarcane is aimed at enhancing
the genetic gain for CCS and cane yield. There is no strong
correlation between cane yield and CCS. The absence of a
large correlation between the cane yield and CCS indicates that
either gene governing these traits are independent or acting
pleiotropically (Jackson andMcRae, 2001; Zaharieva et al., 2001).
Both traits are polygenic traits, governed by many genes with
minor effects (Hoarau et al., 2002; Ming et al., 2002; Aitken
et al., 2008), and the genetic gain through phenotypic selection
is low, as the probability of progenies with combinations of
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FIGURE 2 | Genomic selection schemes for pre-breeding and genetic base-broadening programmes in sugarcane. The sugarcane pre-breeding requires three or

more number of backcrossing with recurrent parents. Wild relatives such as S. spontaneum, Saccharum robustum, and S. barberi are used as male parents and S.

officinarum or improved “Co” canes are used as female parents. Cycle 1 requires hybridization between S. officinarum or “Co” canes with wild species and Cycle-2

requires backcrossing progenies derived from cycle-1 with S. officinarum or “Co” canes. The genomic selection schemes are required to be applied in both cycle-1

and cycle-2. The true Fl at Cycle-1 identified by molecular markers and genomic models are required to train at every backcrossing to improve the genomic prediction

accuracy.

superior alleles for sucrose and cane yield is very low (Jackson,
2005). The recurrent selection combined with family evaluation
increases the probability of the accumulation of favorable alleles
in the population and the chances of selecting the superior
plant types combined with both cane yield and CCS is high
(Chang and Milligan, 1992; Lingle et al., 2010). The genomic
prediction schemes are extensively used in other crops for
estimation of non-additive genetic variance and prediction of
the best of parental cross combination based on their general
and specific combining ability variances and effects (Kadam
et al., 2016; Lado et al., 2017; Wolfe et al., 2017; Jarquin
et al., 2020; Wang et al., 2020). The encouraging results of
genomic prediction in recurrent selection schemes are also

reported in many crops (Zhao et al., 2016; Ferrão et al., 2021).
Recently, the genomic selection for recurrent selection schemes
suitable to sugarcane was reviewed (Yadav et al., 2020) and
encouraging results for estimating the breeding values based
on additive genetic variance with high prediction accuracies
are demonstrated (Gouy et al., 2013; Deomano et al., 2020;
Hayes et al., 2021). The simulation and empirical research
have demonstrated the significant contribution of non-additive
genetic variance and genome-wide heterozygosity for cane yield
and CCS in sugarcane (Voss-Fels et al., 2021; Yadav et al., 2021).

At present, the parental cross combination in sugarcane is
selected based on breeding values and past proven crosses. A
large number of crosses are made and 30–50,000 of progenies
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are evaluated for identification of superior plant types combined
with high cane yield, CCS, and resistance to many diseases
like smut, red rot, and yellow leaf disease and tolerances to
abiotic stresses (Park et al., 2007; Nair, 2011). The clonal trials
are evaluated in single row experiments and advanced trials
in multiple row experiments. The evaluation and selection in
the ground nursery and clonal trials have many technical and
logistics problems. First, a large portion of genetic variability
for CCS is governed by additive genes and there is a high
correlation between early and advanced clonal selection cycles.
For cane yield, the non-additive genetic variance contributes
significantly to the genetic variance and is highly influenced
by environmental factors. The correlation between the smaller
and larger plot experiments is very low for the cane yield as
compared with CCS due to field competitive effects. Hence,
the selection of clones in the ground nursery and early clonal
trials are less reliable (Jackson and McRae, 2001). Second,
the lodging and suckering propensity in the ground nursery
and clonal trials are major hurdles for breeders in choosing
the superior plant types. Third, trait measurement for sucrose
content varies with a sound cane, i.e., millable cane developed
from first formed tillers, and non-sound canes, i.e., millable
canes developed from late emerged tillers. For example, CCS is
highly variable with sound and non-sound canes (Berding et al.,
2005; Jackson, 2005). Fourth, the crop expression varies with
agro-climatic regions, such as tropical and subtropical regions
and the location-specific ground nursery essentially requires for
identification of location-specific varieties (Park et al., 2007;
Nair, 2011). Considering all these factors, genomic selection
could assist the breeders in the selection of potential genotypes
that combine with the high cane yield, CCS, and tolerance to
biotic and abiotic stresses. With the accurate multi-environment
phenotyping of the parental pool and populations derived from
recurrent selection schemes, the genomic prediction could help
in identifying the plant types suitable to different agro-ecological
regions and even a common phenotype suitable across zones.
Additionally, it helps in reducing the population size to be
evaluated in the ground nursery and subsequent clonal trials.
Genomic selection is a evolving science, and genomic prediction
models fitted with additive and non-additive components and
genome-wide heterozygosity has demonstrated its efficiency in
sugarcane (Gouy et al., 2013; Deomano et al., 2020; Hayes
et al., 2021; Voss-Fels et al., 2021; Yadav et al., 2021). Further
developments in data science, training, and retraining of genomic
statistical models will impart benefits to the sugarcane breeders
in the selection of the superior cross combinations and varieties
in sugarcane.

Genomic Predictions for Environment
Covariates and Varietal Deployment
The genotypes developed from the breeding programmes are
adapted to the specific environments and the differential
performance of genotypes in different environments is due to
genotype × environment (G × E) interactions. The repeatable
G × E factors in multi-environment trials are estimated through
single dimension based statistical models such as ANOVA and

regression approaches. The ANOVA based statistical model
partitioning the G × E interactions into the main effect
of genotypes, environments and their interactions as fixed
effects/variables and residuals/error components as random
variables (Elias et al., 2016). The linear regression-based
G×E interaction (Finlay and Wilkinson, 1963) introduce the
slopes for environmental means and identifies the genotypes
based on the slope and trait mean value. The G × E
interactions caused by several factors (Gauch, 2006) and
statistical models viz., additive main effects and multiplicative
interaction effects model (AMMI), site regression model (SREG),
shifted multiplicative model (SHMM), genotype regression
model (GREG), and completely multiplicative model (COMM),
are used for partitioning of the G × E interactions into more
than one factor (Elias et al., 2016). The linear and multiplicative
models that treat the genotypes and environments as fixed effects
do not consider the heterogeneity of variance. They are suitable
only for the balanced dataset as they do not consider the variable
replication numbers, which can be accommodated under mixed
effect models.

The mixed model framework permits the utilization of
correlated heterogeneous variance under the variance-covariance
structure of random variables and estimates the association
between known environmental and genetic parameters. Factor
regression is used for the analysis of multi-environmental trials
and statistically helps to test the sensitivity of genotypes with
environmental covariates (Gauch et al., 2008). The partial least
square regression analysis on G × E interaction allows the use
of environmental covariates as independent variables to find
the most influential environmental variables contributing to
the interactions (Vargas et al., 1998). The factorial regression
analysis offer aid in integrating the environmental covariates into
the model and determine the most influential environmental
parameters affecting the trait/QTL expression (Malosetti et al.,
2004).

The genomic prediction models can be applied to multi-
environment trials, which require characterization of G ×

E interactions over locations, environments and years. The
covariance structures of markers, pedigree, environmental
covariates, marker × environmental covariates are incorporated
into the genomic models to predict the G × E interactions,
environmental sensitivity of the genotypes, and identify the
environment-sensitive genomic regions/QTL contributing to the
G × E interaction and assessing the prediction accuracy in
untested environments (Crossa et al., 1999; Burgueño et al., 2012;
Schulz-Streeck et al., 2013; Heslot et al., 2014; Montesinos-López
et al., 2016; Oakey et al., 2016; Monteverde et al., 2019). Multiple
environment-genomic prediction models demonstrated the
prediction of the genome-wide environment-specific genomic
regions and the model envisaged the environmental covariates
associated with phenology and crop growth models (Malosetti
et al., 2016).

The differential response of genotypes to different
environments is highly evident in sugarcane such as: (i)
sandy soils have high discriminative powers in differentiating
the environments and genotypes (Glaz and Kang, 2008); (ii)
multi-environment trials involving seven locations revealed
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the significance of genotype × location interaction, which is
higher than genotype × crop year interaction and inferred
that testing genotypes across locations are more important
than repeating the trials in the same locations (Guilly et al.,
2017); (iii) time of ratooning/planting and harvesting season
contributes significantly to the G × E interactions for cane
yield and sugar yield (Gilbert et al., 2006), partly due to the
non-repeatable interactions (Ramburan, 2014); (iv) spatial
variation also significantly contributes to the G × E interactions
in sugarcane (Wei et al., 2010). Therefore, multi-environment
trials play a crucial role in the selection of stable region-specific
better-performing varieties suitable for cultivation across
locations. In the Australian sugarcane varietal development
programme, the final stage of clonal selection is chosen through
evaluation in the final assessment trials conducted in four
agro-climatic zones viz., Northern, Burdekin, Central, and
Southern regions (Park et al., 2007). The Louisiana varietal
identification programme involves replicating the Outfield
Variety Tests in many locations (Breaux, 1984). The Brazilian
breeding programme under Rede Interuniversitária para o
Desenvolvimento do Setor Sucroenergético (RIDESA, Brazil)
network requires assessment in multiple locations and harvests
in the final phase of recommendation of clones (Barbosa
et al., 2012). In India, sugarcane growing regions are broadly
categorized into five different agro-climatic regions or zones,
namely Peninsular, North-West, North-East, North-Central,
and East-Coast regions, wherein each zone has its multi-
environment trials for final varietal identification (Nair, 2011).
The implementation of genomic schemes by integrating with
environment covariates for the prediction of clonal performance
in each agro-climatic zones certainly helps in the identification
of the environment-specific genomic regions and superior clones
combined with cane yield, CCS, and tolerances to biotic and
abiotic stresses. The genomic prediction for clonal performance
in different locations is validated for cane yield, CCS, and
fiber content with high prediction accuracy (Yadav et al., 2021)
and further research is required to address the challenges of
genomic modeling to accommodate more parameters related to
environmental parameters.

GENETIC GAIN PER UNIT COST AND UNIT
TIME, AND RESOURCE ALLOCATION

The genomic selection reduces the number of selection cycles
and reduce the duration of the breeding cycles. The genetic
gain in breeding has to be assessed in terms of gain per unit
time and cost rather than the gain per cycle (Bernardo, 2008).
The superiority of genetic gain due to genomic selection over
the phenotypic selection and marker-assisted selection with the
reduced cost and duration of selection was demonstrated inmany
crops (Bernardo and Yu, 2007; Wong and Bernardo, 2008; Yabe
et al., 2018). The genomic selection minimizes the phenotyping
and maximizes the genotyping and is worth considering when
the phenotyping cost is much higher than genotyping (Bernardo
and Yu, 2007). In Indian conditions, the cost of genotyping
through 50K SNP chips and genotyping by sequencing is around

Rs. 10,500.00 per sample. The cost of genotyping in a ground
nursery or progeny assessment trials, which accommodates
12,000 seedlings per ha costs about Rs. 12.60 crores, the First
Clonal Trial (4,800 clones/ha) costs around Rs. 5.04 crores,
Second Clonal Trial (1,200 clones/ha) costs around 1.26 crores,
Pre-Zonal Varietal Trial (150 entries with two replications per
ha) costs around Rs.15.75 lakh, and AICRP Trials (50 entries with
three replications per ha) costs around Rs. 5.25 lakhs. Therefore,
the genotyping cost in India is still higher and highly expensive
as compared with phenotypic selections and similar reports
of the higher genotyping cost of the SNP array ($95/sample)
was also reported in Australia (Voss-Fels et al., 2021). Yet,
the superiority of genetic gain through genomic selection as
compared with phenotypic selection is significantly high in terms
of net return and scientifically embracing to implementation of
the genomic selection at the progeny assessment stage (Beyene
et al., 2019; Voss-Fels et al., 2021). The genomic-wide selection
for the estimation of GEBVs for germplasm, lines derived from
pre-breeding, parental lines, progeny performance in progeny
assessment trials and multi-environment trials is essentially
required to enhance the genetic gain in sugarcane.

Optimization and efficient resource allocations in the genomic
selection are necessary for improving genetic gain and prediction
efficiency. Strategies for resource allocation depends on the role
of genomic selection in breeding population, such as (i) size,
composition and design of training and validation populations,
(ii) plot size for breeding experiments varies with stages of
breeding programmes, such as parental selection, early and
advanced testing, and (iii) the number of replications within
and across the environments (Lorenz and Nice, 2017). The
composition of the training population is determined based on
the objective of genomic selection schemes. The training and
validation populations could be diverse germplasm, elite parental
lines of diverse origin, segregating breeding lines from the same
cross or diverse biparental population, early testing of breeding
lines and multi-environment trials (Windhausen et al., 2012; Yu
et al., 2016; Roorkiwal et al., 2018; Ozimati et al., 2019).Moreover,
each study has its significance in plant breeding and demands
different strategies for resource allocation.

The genomic selection in the early stages of segregating the
population is a trade-off between the cost of genomic selection
and trait heritability and family size. The phenotypic selection
in a large segregating population with highly heritable traits is
highly efficient, whereas low heritable traits, such as yield in
a large segregating population, require the molecular markers
to assist in the selection of desirable plant types. Further, yield
measured on the single plant basis in segregating population
is inaccurate in most of the crops (Heslot et al., 2015). Even
after the selection of elite plant type based on GEBV, phenotypic
evaluation is needed to remove the inferior genotype if any
developed due to the large allelic mutation or rare alleles
becoming homozygous (Hayes et al., 2009). Considering the crop
duration, crop architecture, and other field related problems,
such as lodging and suckering propensity, variation in trait value
due to sampling errors in sound and non-sound canes, field
competitive effects (Jackson and McRae, 2001), the simulation
studies demonstrated the economic benefits of implementing
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the genomic selection in sugarcane (Voss-Fels et al., 2021), and
genomic prediction accuracies are also experimentally validated
(Yadav et al., 2021).

The recurrent selection procedure is effective in augmenting
the frequency of favorable alleles in the breeding population.
The marker- or genomic-assisted selection helps to reduce the
number of breeding cycles and the number of individuals
evaluated in each selection cycle. The marker-assisted recurrent
selection scheme aims at gene pyramiding after identifying
the QTL (Servin et al., 2004), whereas the genomic assisted
recurrent selection scheme aimed at gene pyramiding without
identification of QTL (Bernardo and Yu, 2007; Bernardo,
2009). The genomic-assisted recurrent selection could reduce
the prediction accuracies after several cycles (Muleta et al.,
2019) and requires genomic remodeling at each cycle of
selection, which may add to cost (Heslot et al., 2015). The
marker-assisted selection schemes operate with fewer markers
on the biparental population while the other operates with a
large number of markers, further adding to the cost (Heslot
et al., 2015). Even after the selection of elite plant type by
using GEBVs, phenotypic evaluation is needed to remove the
inferior genotype if any developed due to the large allelic
mutation or rare alleles becoming homozygous (Hayes et al.,
2009). The genomic assisted recurrent selection accelerates the
genetic gain over a shorter period in both small and larger
populations. The cost per unit gain is lower for oligogenic traits
in smaller populations and polygenic traits in large populations
as compared with phenotypic recurrent selection (Muleta et al.,
2019). The recurrent selection cycles in sugarcane operate in two
ways. First, the selection of ideal plant type from the ground
nursery, vigorous testing for the identification of promising
clones and further utilization in hybridization programme forms
a kind of random recurrent selection cycle. Second, the 2–3
recurrent selection cycles maximize the genetic gain or trait
values (Shanthi et al., 2008; Yadav et al., 2020), and the simulation
study has validated the cost-benefit ratio and resource allocation
to maximize the genetic gain (Voss-Fels et al., 2021).

The multi-environment trials are the final phase of cultivar
identification and need robust statistical analysis with optimum
resource allocation. The resource allocation depends on the
number of replications, locations, number of test entries, etc. An
adequate number of replications are required for each location
to control the microenvironment variations and experimental
design such as Alpha design, which is very efficient in accounting
for the micro-environment variation (González-Barrios et al.,
2019). The optimal number of replications and test locations
require optimization based on historical data and the number
of mega environments estimated from genotype + genotype
× environment (GGE) biplot analysis (Yan, 2015; Yan et al.,
2015). The four replications were found optimum based on
GGE biplot analysis of multi-environmental trials (Baxevanos
et al., 2017). The very high significant genotype × location
interactions and very low interactions for genotype × crop
and genotype × year components were observed. Based on
the ranking of genotypes from all replicates and two replicates
in multi-environment trials, inferred that two replications did
not affect the precision of selections and save 33–50% of the

experimental area (Yan, 2021). The extremely low variance
for genotype × replication interactions was observed and a
reduction in the number of replications from eight to four
did not reduce the precision of the experiments in sugarcane
(Brown and Glaz, 2001). The historic mega-environments are
useful in differentiating the genotypes and helps in resource
allocation. The moderate mega-environment are highly useful
to achieve the optimum genetic gain (González-Barrios et al.,
2019).

The unbalanced design or sparse testing refers to the multi-
environment trials where all the genotypes are not tested in all
environments and sparse testing saves the resources. Unbalanced
sparse testing with an appropriate genomic prediction model
enhances the prediction accuracies and saves the resources
(Endelman et al., 2014; González-Barrios et al., 2019; Jarquin
et al., 2020). The resource allocation depends on many factors
such as the genetic relationship of the training population,
genomic prediction model calibration, target environments,
number of replications, and many other factors (Lorenz and
Nice, 2017). Several factors such as complex polyploid and
its impact on genotyping, crop agronomy, crop architecture,
crop duration, biomass, sucrose accumulation pattern, and other
parameters necessitate consideration for genomic selection. The
empirical studies are required to develop a comprehensive
theoretical framework on resource allocations in genomic
selection in sugarcane.

CONCLUSIONS

Sugarcane is a C4 crop with a great potential for high biomass
production and a major source of raw material for sugar
production and bioenergy. Its crop improvement has many
bottlenecks such as the long cycle of breeding duration, complex
polyploidy, high degree of heterozygosity, narrow genetic base,
and fewer basic germplasm utilized in pre-breeding and linkage
drag during wide hybridization and limited financial and
manpower resources. The genomic selection schemes are highly
helpful in reducing the duration of breeding cycles, population
size, and selection of desirable parents and development of
varieties. The characterization of Saccharum germplasm with
genome-wide markers captures the total genomic diversity of
gene bank and assists in the formation of core germplasm and
genomic prediction to identify the genes associated with cane
yield, CCS, and tolerances to biotic and abiotic stresses. The
genomic selection in pre-breeding and genetic base-broadening
programmes helps in the precise introgression of genes into
the parental clones and genomic-assisted recurrent selection is
useful in augmenting the favorable alleles in the population.
The genomic prediction for characterization of parental clones
for their general and specific combining ability leverage the
breeders in selecting the elite parents and progenies combined
with favorable alleles for cane yield, CCS, and tolerances to biotic
and abiotic stresses. The integration of environmental covariates
into genomic models predicts the better performing varieties
for target environments and deployment of varieties. Genomic
selection is an evolving science; appropriate genomic models
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and breeding strategies strengthen the prediction accuracies and
enhance the genetic gain in sugarcane.
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