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Meiosis is a specialized cell division that contributes to halve the genome content and 
reshuffle allelic combinations between generations in sexually reproducing eukaryotes. 
During meiosis, a large number of programmed DNA double-strand breaks (DSBs) are 
formed throughout the genome. Repair of meiotic DSBs facilitates the pairing of homologs 
and forms crossovers which are the reciprocal exchange of genetic information between 
chromosomes. Meiotic recombination also influences centromere organization and is 
essential for proper chromosome segregation. Accordingly, meiotic recombination drives 
genome evolution and is a powerful tool for breeders to create new varieties important 
to food security. Modifying meiotic recombination has the potential to accelerate plant 
breeding but it can also have detrimental effects on plant performance by breaking 
beneficial genetic linkages. Therefore, it is essential to gain a better understanding of 
these processes in order to develop novel strategies to facilitate plant breeding. Recent 
progress in targeted recombination technologies, chromosome engineering, and an 
increasing knowledge in the control of meiotic chromosome segregation has significantly 
increased our ability to manipulate meiosis. In this review, we summarize the latest findings 
and technologies on meiosis in plants. We also highlight recent attempts and future 
directions to manipulate crossover events and control the meiotic division process in a 
breeding perspective.
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CHROMATIN AND RECOMBINATION IN MEIOSIS

Meiotic Recombination
Meiosis is a specialized cell division taking place in sexually reproducing organisms during 
which a cell undergoes two rounds of chromosome segregation to form four daughter cells 
of halved ploidy. Each daughter cell contains a set of chromosomes with varying genetic 
contents to the others due to genetic exchanges and random assortment of homologous 
chromosomes and sister chromatids. The first meiotic segregation faces a unique situation 
whereby chromosomes undergo recombination events leading to reciprocal exchanges between 
homologs, also called crossovers (COs; Mercier et  al., 2015). COs are important to create 
novel genetic diversity, and this natural process is utilized during breeding strategies to break 
the linkage between genes, facilitating the removal of unfavorable genetic elements or improving 
the mapping of quantitative trait locus (Mercier et  al., 2015).
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Meiotic recombination initiates with the formation of 
programmed DNA double-strand breaks (DSBs) induced by a 
topoisomerase-like complex related to the archaeal TopoVI 
DNA topoisomerase (Topo VI). Topo VI is an heterotetrameric 
enzymatic complex comprising two A and two B subunits and 
catalyzing DNA strand breakages (Bergerat et  al., 1997). In 
meiosis, SPO11 and MTOPVIB form a complex with 
topoisomerase-like activity to create a DSB onto which SPO11 
remains covalently bound to the DSB end via a phosphotyrosyl 
bond (Robert et al., 2016; Vrielynck et al., 2016). SPO11 forms 
meiotic DSBs as a homodimer in animals and fungi, and as 
a SPO11-1/SPO11-2 heterodimer in plants (Mercier et al., 2015). 
Studies of SPO11 proteins between plant species reveal that 
the number of orthologs varies greatly (Sprink and Hartung, 
2014; Da Ines et al., 2020). In Arabidopsis thaliana, three SPO11 
paralogs are identified but only SPO11-1 and SPO11-2 are 
involved in meiotic DSB formation (Hartung et  al., 2007). 
Rice has five SPO11 paralogs and only SPO11-1 and SPO11-2 
have a confirmed role in meiosis while loss of spo11-4 has 
no meiotic defects (Yu et  al., 2010; Fayos et  al., 2020). The 
high number of SPO11 paralogs in plants makes genetic 
engineering to control meiotic recombination more challenging. 
However, SPO11 orthologs are sufficiently conserved between 
plant species as to complement each other’s loss of function 
mutations. For instance, expression of bread wheat SPO11-2 
restores fertility in Arabidopsis spo11-2 (Benyahya et  al., 2020; 
Da Ines et  al., 2020) while expression of bread wheat SPO11-
1-5D restores fertility in both rice and Arabidopsis spo11-1 
(Da Ines et  al., 2020). Additional proteins are required for 
DSB formation and appear conserved between plants (Jing 
et  al., 2019). For example, Arabidopsis PRD1 (De Muyt et  al., 
2007), PRD2 and PRD3 (De Muyt et  al., 2009), and DFO 
(Zhang et  al., 2012) are all essential for the formations of 
meiotic DSB. Similarly, rice prd1 (Shi et  al., 2021), mtopVIb 
(Fu et  al., 2016; Xue et  al., 2016) and prd3/pair1 (Nonomura 
et al., 2004), and maize mtopVIb (Jing et al., 2020) are defective 
in DSB formation.

Cytological studies using DNA damage markers, such as 
γ-H2AX and RAD51, revealed the formation of a large number 
of DSBs in early meiosis. It is estimated that between 150 
and 200 meiotic DSBs are formed in Arabidopsis and between 
~200 and 2,000  in crops with larger genome (Ferdous et  al., 
2012; Higgins et  al., 2012; Sidhu et  al., 2015; Gardiner et  al., 
2019; Benyahya et al., 2020). DSBs are formed on the chromatin 
which is organized in arrays of loops anchored to a proteinaceous 
linear structure called the chromosome axis (Zickler and 
Kleckner, 1999; Kleckner, 2006). In plants, components of the 
chromosome axis include meiotic cohesin REC8 (Chelysheva 
et  al., 2005; Golubovskaya et  al., 2006), HORMA-domain-
containing proteins ASY1/PAIR2 (Armstrong et  al., 2002; 
Nonomura et  al., 2006), and coiled-coil proteins ASY3/PAIR3/
DSY2 (Wang et  al., 2011; Ferdous et  al., 2012; Lee et  al., 
2015) and ASY4 (Chambon et  al., 2018; Osman et  al., 2018). 
The axis proteins ASY3/DSY2/Red1 are essential for DSB 
formation (Panizza et  al., 2011; Ferdous et  al., 2012; Lee et  al., 
2015), and chromosome axis length covaries with the number 
of DSB markers on a per-nucleus basis in Arabidopsis and 

budding yeast, highlighting the important regulatory functions 
of the axis on recombination initiation (Wang et  al., 2019b; 
Lambing et  al., 2020b).

Following DSB formation, DSB ends are resected by the 
MRN/COM1 complex to form 3' overhang single-stranded DNA 
(ssDNA) onto which RPA, RAD51, and DMC1 are recruited 
to form nucleoprotein filaments (Mercier et  al., 2015). Multiple 
strand invasions of the chromosome filaments favor homologous 
chromosome alignment and are critical for chromosome pairing 
in most species (Cloud et al., 2012; Hong et al., 2013). Successful 
pairing leads to installation of a tripartite structure called the 
synaptonemal complex (SC) which consists of a transverse 
filament formed with ZYP1 and connecting the two homologous 
axes (Mercier et  al., 2015). The SC initiates at recombination 
sites (Zhang et  al., 2014a; Lambing et  al., 2015), and several 
lines of evidence suggest that SC components regulate CO 
formation (Higgins et  al., 2005; Barakate et  al., 2014; Chen 
et  al., 2015; Voelkel-Meiman et  al., 2015; Capilla-Perez et  al., 
2021; France et  al., 2021). Meiotic DSB repair results in a CO 
or a non-CO, with a possibility of gene conversion in either 
case (Berchowitz and Copenhaver, 2010). Gene conversions are 
short unidirectional exchanges (few hundreds base pairs) of 
genetic information between chromosomes. Gene conversion 
events are rare, and the control over gene conversion is not 
well understood. The frequency of gene conversion per meiosis 
on a given locus is estimated between ~10−4 and 10−6 (Sun 
et  al., 2012; Drouaud et  al., 2013; Wijnker et  al., 2013). Gene 
conversion frequency is associated with MSH4, a protein required 
for CO formation (Drouaud et  al., 2013), and can be  detected 
on the heterochromatin regions where COs are repressed 
(Shi  et  al., 2010).

How a DSB’s fate is determined is still not fully understood, 
but it is thought that pro- and anti-CO pathways influence 
the repair outcome at DSB sites (Mercier et  al., 2015). For 
example, a set of proteins collectively named “ZMM” (SHOC1, 
PTD, HEI10, ZIP4, MER3, MSH4, and MSH5  in Arabidopsis) 
stabilizes inter-homolog joint molecules and promotes CO 
formation (Mercier et  al., 2015). In contrast, anti-CO proteins, 
such as FANCM, BLM/RECQ4, TOP3α, FIGL1, disengage joint 
molecules via helicase or topoisomerase activities, and repress 
CO formation (Crismani et  al., 2012; Mercier et  al., 2015; 
Seguela-Arnaud et  al., 2015). During meiotic DSB repair, the 
ssDNA ends elongate via DNA synthesis using the homologous 
chromosome as a template. If heterozygosity is shared between 
the homologous template and the ssDNA end, disengagement 
of this ssDNA and repair by an anti-CO pathway could lead 
to a non-CO associated with a gene conversion (Berchowitz 
and Copenhaver, 2010). Recent studies in budding yeast indicate 
that complex partner switches may be common during meiosis, 
creating chromatids with mosaic allelic patterns (Mcmahill 
et  al., 2007; Marsolier-Kergoat et  al., 2018).

Each bivalent chromosome must form at least one CO, 
termed an obligate CO, to form the physical link between 
chromosomes which is essential to ensure proper chromosome 
segregation in meiosis. In most species, CO formation is limited 
to 1–3 per chromosome pair (Jones and Franklin, 2006; Mercier 
et  al., 2015). Several factors have been reported to contribute 
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to these phenomena: CO homeostasis (Henderson and Keeney, 
2004), CO interference (Kleckner et  al., 2004), limited amount 
of pro-CO factors (Ziolkowski et  al., 2017), and the presence 
of anti-CO factors (Crismani et  al., 2012; Girard et  al., 2015; 
Seguela-Arnaud et al., 2015). CO homeostasis is a phenomenon 
buffering changes in DSB number for the maintenance of total 
COs. In this context, an elevation or a decrease in DSBs does 
not impact CO number. While CO homeostasis is observed 
in budding yeast (Martini et  al., 2006), it may be  different in 
plants (Sidhu et  al., 2015; Xue et  al., 2018). In contrast, CO 
interference is a phenomenon resulting in the non-random 
distribution of COs whereby the formation of one CO inhibits 
the formation of additional COs in adjacent regions, thus 
preventing clustering of COs (Wang et  al., 2015). Although 
factors involved in this phenomenon are unclear, it has been 
suggested that a combination of physical stresses generated 
from the expansion and contraction of chromatin compressing 
the chromosome axis during prophase I, combined with the 
diffusion of proteins along the axis, contribute to the establishment 
of an interfering signal (Wang et  al., 2015; Zhang et  al., 2018). 
In accordance with this model, components of the chromosome 
axis have been implicated in CO interference in budding yeast 
(Zhang et  al., 2014b), Caenorhabditis elegans (Libuda et  al., 
2013; Zhang et  al., 2018), and Arabidopsis (Lambing et  al., 
2020a; Capilla-Perez et al., 2021; France et al., 2021). However, 
the chromosome axis in itself may not be  sufficient to impose 
CO interference since axis is formed in asy1 and zyp1 mutant 
lines in which interference is lost (Lambing et  al., 2020a; 
Capilla-Perez et  al., 2021; France et  al., 2021).

Chromatin and DSB Hotspots
DSBs are not randomly formed on the genome. Instead, they 
are enriched in nucleosome-depleted regions (Pan et  al., 2011; 
Lam and Keeney, 2015; Choi et  al., 2018). It appears that 
regions with high nucleosome occupancy prevent SPO11 
accessibility and thus restrict DSB formation. DSB formation 
also takes place in the context of chromatin loops anchored 
to a chromosome axis. Counterintuitively, certain components 
of the DSB machinery are found associated with the chromosome 
axis while DSBs are located in the chromatin loops, away 
from the axial sites in budding yeast (Panizza et  al., 2011; 
Stanzione et  al., 2016). To reconcile the two observations, it 
was proposed that chromatin loops are tethered to the axis 
prior to DSB formation. In support of this model, Spp1, a 
PHD finger-domain protein, was found to interact with H3K4me3 
modifications located on the chromatin loop, and with Mer2 
protein, a component of the DSB machinery located on the 
axis in budding yeast (Acquaviva et  al., 2013; Sommermeyer 
et  al., 2013). This observation indicates a complex interaction 
between chromatin loop organization, epigenetics marks, and 
recombination. Interestingly, DSB hotspots are enriched at the 
5' end of genes, and axis components are enriched at the 3' 
end of genes and are influenced by transcriptional activity in 
budding yeast (Pan et  al., 2011; Lam and Keeney, 2015; Medhi 
et  al., 2016). Arabidopsis DSB maps show enrichment of DSBs 
at the 5' and 3' end of genes, in regions of low nucleosome 
occupancy and with markers of open chromatin (e.g., H3K4me3). 

DSBs are correspondingly depleted in heterochromatic regions 
that are enriched in transposons, GC content, and DNA 
methylation (Choi et al., 2018). Consistent with budding yeast, 
ChIP-seq of Arabidopsis axis protein revealed that REC8 and 
DSBs occupy distinct sites. REC8 also shows a preferential 
polarization toward the end of genes that is influenced by 
transcriptional activity (Lambing et  al., 2020b). Comparing 
genome-wide Arabidopsis axis and DSB profiles revealed no 
correlation between the enrichment of SPO11-1-oligos and 
REC8 or ASY1 over genes, indicating that although the 
chromosome axis is important for DSB formation, the amount 
of axis protein does not specify the frequency of DSBs locally 
(Lambing et  al., 2020a,b). Additional factors likely influence 
the local frequency of DSB formation.

Influence of Heterochromatin and 
Centromeres on Meiosis
Although COs are suppressed over the heterochromatin, a 
substantial number of DSBs has been detected over the 
pericentromeric heterochromatic regions, including at 
transposons, in Arabidopsis (Choi et  al., 2018; Underwood 
et  al., 2018) and maize (He et  al., 2017). The maize genome 
is ~85% transposons, and comparative analysis shows that DSBs 
are distributed along the entire chromosomes without specific 
polarization, while COs are skewed toward the end of the 
chromosomes (He et  al., 2017). Few COs were reported in 
the heterochromatic knob regions in maize but at much lower 
frequency than its DSB frequency (Stack et  al., 2017). Thus, 
an interesting possibility is that recombination may not be fully 
suppressed on the heterochromatin and centromeres but rather 
channeled to favor non-CO outcomes, such as inter-sister repair. 
Indeed, gene conversions were detected in maize centromeric 
regions (Shi et  al., 2010).

CO suppression over the centromeric heterochromatin is 
widely conserved (Ellermeier et  al., 2010; Li et  al., 2015; 
Phillips et  al., 2015). The molecular mechanisms allowing this 
suppression are not clear, but appear instrumental since 
centromeric COs have been associated with increased rates 
of mis-segregation and aneuploidy in multiple species (Fernandes 
et  al., 2019). On the other hand, understanding suppression 
of CO at or close to the centromeres is of particular importance 
for breeding, given that lack of meiotic CO in pericentromeric 
regions is a major bottleneck in varietal development of 
crop plants.

Centromeres are the sites of kinetochore assembly which 
enable microtubule fiber attachment and thus faithful segregation 
of chromosomes during mitotic and meiotic division. The 
structure and organization of the centromeres vary considerably 
between species with centromeres occupying a short sequence, 
a region or even the entire chromosome (Steiner and Henikoff, 
2015; Talbert and Henikoff, 2020). Point centromeres are typical 
in budding yeast (Prosee et  al., 2020) while C. elegans and 
some plants display holocentric chromosomes where the whole 
chromosome acts as a centromere (Melters et  al., 2012). 
Holocentric chromosomes impose a specific problem to meiosis 
and how meiosis is remodeled in holocentric plants is being 
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extensively investigated (Marques and Pedrosa-Harand, 2016). 
Most plants and mammals, however, exhibit regional centromeres. 
In plants, regional centromeres are largely composed of 
centromeric satellite repeats and centromeric retrotransposon 
arrays that can be  several megabases long (Lamb et  al., 2007; 
Ma et  al., 2007; Fernandes et  al., 2019). Yet, a centromere is 
generally not defined by a specific DNA sequence but rather 
by the presence of the specific histone H3 variant CenH3 
(mammalian CENP-A), which acts as a particular epigenetic 
mark that establishes functional centromeres. CenH3 is present 
at all functional centromeres independently of their DNA 
sequence, and this epigenetic specification of centromere identity 
is broadly conserved in eukaryotes (Steiner and Henikoff, 2015; 
Fernandes et  al., 2019; Talbert and Henikoff, 2020).

How centromeres function during meiosis in plants is still 
poorly understood but a number of studies have described the 
essential role of early centromere associations in homologous 
chromosome recognition, pairing, and subsequent synapsis during 
meiosis (reviewed in Da Ines and White, 2015; Sepsi and 
Schwarzacher, 2020). Remarkably, early centromere associations 
seem not directly mediated by DSB formation and recombination 
but rather by local chromatin homology, although stabilization 
of centromere pairing appears to be  partially dependent on 
recombination initiation (Da Ines et  al., 2012; Da Ines and 
White, 2015; Sepsi and Schwarzacher, 2020). Centromere 
association requires active centromeres and the presence of 
functional CENH3 variants (Zhang et  al., 2013). Thus, despite 
high-DNA sequence homology, initial centromere interactions 
are driven by specific chromatin structure and centromeric 
proteins. In particular, early centromere associations are strongly 
dependent on the REC8 cohesin enrichment as well as DNA 
repeats organization at centromeres. In wheat, recent work has 
revealed that centromere satellite organization has diverged in 
the different wheat sub-genomes and these rearrangements of 
CENH3 nucleosomes likely influence centromere interaction and 
further homologous chromosome pairing (Su et  al., 2019).

It is possible that early centromere association may impede 
access of the recombination machinery and thereby may play a 
key role in suppressing CO at centromeres. This is supported 
by the recent demonstration that REC8 enrichment is strongly 
correlated with suppression of meiotic DSBs and crossovers in 
Arabidopsis (Lambing et  al., 2020b). Given that REC8 cohesin 
protein is highly enriched at centromeric sites from early meiosis 
I  up to meiosis II and that centromere coupling and pairing 
also require the presence of REC8 (Cai et  al., 2003; Zhang et  al., 
2013), it is conceivable that early centromere associations are 
intricately linked to suppression of recombination at centromeres.

ENGINEERING MEIOTIC 
RECOMBINATION

Increasing Meiotic Recombination 
Genome Wide
In most plants, only few COs are formed on each chromosome 
per meiosis and this phenomenon limits the potential to create 
novel genetic diversity (Mercier et  al., 2015). This is caused 

in part by a limited amount of pro-CO factors, the repressive 
activity of anti-CO factors and the action of CO interference. 
The majority of COs is formed by the ZMM pathway. Among 
actors of this pathway, the E3 ligase HEI10 is dosage-dependent 
for recombination, with an increase in HEI10 expression being 
sufficient to increase the total genetic map length by 2-fold 
in hybrid Arabidopsis, but with limited effect on the CO rate 
over the heterochromatic regions (Ziolkowski et  al., 2017). 
Overexpression of HEI10 in Arabidopsis is also found to 
decrease CO interference although it is unclear how HEI10 
impacts this process (Serra et  al., 2018). The regulation of 
HEI10 dosage is a promising avenue to increase CO number 
in crops by stabilizing the recombination events maturing into 
class I  COs and reducing the strength of CO interference. 
Recent studies identified protein phosphatase X1 and ZYP1/
ZEP1 as additional factors limiting class I  CO formation 
suggesting that other strategies may be  possible to increase 
class I  CO rate (Wang et  al., 2010, 2015; Capilla-Perez et  al., 
2021; France et  al., 2021; Nageswaran et  al., 2021).

Several anti-CO factors affecting class II COs have been 
identified with non-functional redundancy (Mercier et  al., 2015; 
Wang and Copenhaver, 2018). For instance, mutations in fancm 
helicase and recq4 helicase or recq4 and figl1/flip AAA-ATPase 
complex cause a 10-fold elevation in the CO rate across several 
genetic intervals in inbred Arabidopsis (Fernandes et  al., 2018). 
This strategy was successfully transferred into crops with recq4 
mutant showing a significant increase in crossover frequency in 
rice, tomato, and pea (Mieulet et  al., 2018; De Maagd et  al., 
2020). Surprisingly, the extra COs formed in anti-class II CO 
mutants are present in regions with low degree of polymorphism 
(Fernandes et al., 2018; Blackwell et al., 2020). In particular, fancm 
recombination phenotype seems to be  sensitive to the hybrid 
context as it can be  detected in brassica, pea, and rice but not 
in Arabidopsis, tomato and wheat hybrid lines. It was postulated 
that a high degree of polymorphism in the hybrid lines could 
interfere with fancm-dependent CO formation (Blary et al., 2018; 
Mieulet et  al., 2018; De Maagd et  al., 2020; Raz et  al., 2020).

The effect of combining HEI10 over-expressor with the 
repression of recq4 was tested, and the study showed a cumulative 
effect on CO frequency in hybrid Arabidopsis transgenic lines. 
However, heterochromatin recombination was not substantially 
increased in these lines and this strategy may have a more 
limited effect on crop genomes with large heterochromatin 
composition (Serra et  al., 2018).

Modulation of the Recombination 
Landscape
Meiotic recombination is not uniformly distributed along plant 
genomes which restricts the potential for crop improvement 
during breeding. In maize and barley, about 20% of all genes 
are located in heterochromatin, where recombination cold spot 
regions reside (Taagen et  al., 2020), and a remodeling of the 
recombination landscape toward these regions could facilitate 
the introduction of genetic diversity. A striking negative 
correlation exists between CO rate, transposon content, and 
DNA methylation in plants (Lambing et al., 2017). In non-CG 
DNA methylation and H3K9me2 Arabidopsis mutant lines, 
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the recombination landscape is altered with increased COs 
in centromere-proximal regions. Although DSBs are also 
increased, a significant deficit in DSB yield remains visible 
on the heterochromatin in H3K9me2-deficient mutant line, 
and this may be an important limiting factor for CO formation 
in Arabidopsis heterochromatin (Underwood et  al., 2018). A 
direct translation of these findings to economically important 
crops is challenging. Epigenetic mutants in plants with larger 
genomes show alterations in vegetative development and fertility 
defects (Li et  al., 2014; Tan et  al., 2016; Corem et  al., 2018). 
Alternative strategies could overcome these limitations. For 
example, transient silencing of epigenetic genes in reproductive 
tissues using virus-induced gene silencing (VIGS) could have 
an effect on the recombination landscape while preserving 
plant development.

Meiotic-specific factors closely associated with recombination 
molecules are likely more promising targets for the control 
of CO landscape. For example, components of the chromosome 
axis are involved in the decision between inter-sister and 
inter-homolog recombination and Arabidopsis ASY1 and ASY3 
promote CO formation (Lambing et  al., 2020a). Arabidopsis 
ASY1 ChIP sequencing revealed that ASY1 is enriched over 
the centromere-proximal regions, and a gradual reduction of 
ASY1 is associated with a remodeling of the COs from the 
centromere-proximal to the distal regions (Lambing et  al., 
2020a). It is speculated that the distal regions are crossover 
prone regions due to the early homologous pairing of the 
telomeres while the proximal regions are crossover prone 
due to the enrichment of ASY1 (Armstrong et al., 2001; 
Lambing et  al., 2020a; Figure  1C).

The CO landscape in cereals is distinct from Arabidopsis 
and COs are exclusively formed in distal ends of the chromosomes 
(Figure  1; Phillips et  al., 2015; Osman et  al., 2021). Moreover, 
the spatio-temporal formation of the chromosome axis which 
is observed from immunostaining of ASY1, the deposition of 
ZYP1 which marks synapsis between homologous chromosomes, 
and the formation of DSBs differ significantly between cereals 
and Arabidopsis (Figures  1A,C). For example, axis, synapsis, 
and DSB formation are initiated on the distal regions before 
being detected on the interstitial and centromere-proximal regions 
in barley and wheat (Higgins et  al., 2012; Lambing et  al., 2017; 
Desjardins et  al., 2020; Osman et  al., 2021). In contrast, no 
polarization of axis formation or DSB formation is detected 
in Arabidopsis (Lambing et al., 2017; Figure 1A). It is conceivable 
that COs are exclusively distal in cereals because the distal 
regions experience first the formation of DSBs and the pro-CO 
activity of ASY1 (Figures 1B,C). In this context, it is important 
to remodel ASY1 ons the chromosomes to achieve a remodeling 
of the CO landscape in cereals. Indeed, this can be  achieved 
by increasing the temperature in barley (Higgins et  al., 2012). 
The change of temperature reduces the polarization of axis 
formation, and ASY1 is detected more evenly on the chromosomes 
which is associated with an elevation of interstitial and centromere-
proximal chiasmata (Higgins et al., 2012). However, this strategy 
may not be applicable to every crops, as seen in the observation 
that wheat recombination is only slightly and locally altered 
at high temperature (Coulton et  al., 2020).

Targeted Recombination
Targeting recombination is potentially a preferred strategy 
compared to a genome-wide change in CO frequency, because 
it allows precise positioning of recombination events on the 
genome. This could be  achieved by targeting recombination 
proteins to a specific locus or to locally alter the epigenome. 
DSBs are generally enriched in promoters, introns, and 
terminators of genes (Choi et  al., 2018) and are depleted in 
exonic regions that are enriched in nucleosome and axis REC8 
cohesin (Figure  2B; Choi et  al., 2018; Lambing et  al., 2020b). 
Electron microscopy studies show that the chromosome axis 
forms an electron dense structure (Kleckner, 2006) and the 
compact structure of the axis could inherently prevent DSB 
formation even if SPO11 is targeted to this region. Therefore, 
a fine analysis of the chromatin landscape appears important 
for the design of targeted recombination to maximize the 
efficiency of DSB formation.

CO cold spots have generally low DSB frequency and are 
enriched in nucleosome density, DNA methylation, and epigenetic 
silencing marks (Yelina et al., 2015; Choi et al., 2018; Underwood 
et  al., 2018). Loss of DNA methylation is associated with a 
gain of DSBs in Arabidopsis (Choi et  al., 2018; Underwood 
et  al., 2018) and represents an interesting strategy for targeted 
recombination. In Arabidopsis, DNA is actively demethylated 
by ROS1 and related glycosylase enzymes through a base 
excision-repair process (Gong et  al., 2002; Penterman et  al., 
2007; Zhu et  al., 2007; Zhang and Zhu, 2012). An alternative 
pathway dependent on Ten-eleven translocation methylcytosine 
dioxygenase 1 (TET1) exists in human that biochemically removes 
DNA methylation. TET1 catalyzes the oxidation of 
5-methylcytosine (5mC) to 5-hydroxymethylcytosine which is 
the initial step for DNA demethylation (Wu and Zhang, 2017). 
Fusion of human TET1 to an artificial zing finger or to CRISPR/
dCas9 effectively demethylates DNA at targeted loci in Arabidopsis 
(Figure 2A; Gallego-Bartolome et al., 2018). This method could 
in theory be  used in conjunction with CRISPR/dCAS9 fused 
with SPO11 or a component of the DSB machinery to promote 
DSB formation in an otherwise cold region (Figure  2A).

The recruitment of SPO11 protein to a specific locus does 
not necessary ensure the formation of a DSB (even less so a 
CO-prone DSB). To form a DSB, SPO11 requires not only to 
be  part of a protein complex but also to be  functionally active 
(Robine et  al., 2007; Sarno et  al., 2017). Studies from budding 
yeast revealed that not every locus bound by SPO11-GAL4 is 
proficient to form DSBs, and the establishment of a DSB is 
determined by local factors (Robine et  al., 2007; Sarno et  al., 
2017). In plants, a recent study suggests that expression of a 
MTOPVIB-dCas9 fusion protein to induce targeted meiotic DSB 
within a CO hotspot located in a subtelomeric region of 
chromosome 3 is not sufficient to affect CO frequency (Yelina 
et  al., 2021). In budding yeast, it is estimated that around 40% 
of the DSBs are converted to COs (Mancera et  al., 2008). In 
contrasts, in Arabidopsis (Ferdous et  al., 2012), maize (Sidhu 
et  al., 2015), and barley (Higgins et  al., 2012) only about 2–5% 
of the DSB rate accounts for the total CO number and it is 
likely that the targeted DSBs will convert to COs at low frequency. 
In addition, a budding yeast study showed that expression of 
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SPO11-GAL4  in a spo11 null mutant forms DSBs at GAL4 sites 
but also at natural sites (Pecina et  al., 2002). If conserved in 
plants, this propensity of SPO11 may further reduce the targeted 
effect. Moreover, barley and wheat chromosome axes initiate 

first in distal regions in early prophase (Higgins et  al., 2012; 
Osman et al., 2021). It is unknown whether SPO11 is functionally 
active to form a DSB without a chromosome axis when recruited 
in centromere-proximal regions at an early stage of meiosis.

A

B

C

FIGURE 1 | Crossover patterning in Arabidopsis and cereals. (A) Co-immunostaining of ASY1 (green) and RAD51 (red) at leptotene or ASY1 (green) and ZYP1 (red) 
at zygotene in Arabidopsis (left panel) and hexaploid bread wheat Triticum aestivum cv. Cadenza (right panel; provided by Kim Osman, University of Birmingham, 
United Kingdom). Scale bar = 10 μm. (B) Crossover frequency along an axis from telomere to centromere in Arabidopsis (blue, left panel; replotted using the CO 
data of all chromosomes from Serra et al., 2018) and barley (red, right panel; CO data of all chromosomes provided by Mikel Arrieta, The James Hutton Institute, 
United Kingdom). (C) Two forces influence the crossover landscape: telomere-led recombination (red arrows) and ASY1 (cyan arrows). In leptotene, axis and DSBs 
are formed along the chromosomes at a similar time but in distinct levels in Arabidopsis (left panel). In contrast, axis and DSBs are formed first toward the distal end 
of the chromosomes in barley and wheat at leptotene (right panel). This difference in the spatio-temporal formation of axis and DSBs is associated with a different 
landscape of crossovers between Arabidopsis and barley/wheat. Pink filled circles represent centromeres, dark blue lines represent homologous chromosomes, and 
purple crosses represent crossovers. The landscape of ASY1 enrichment (cyan) and DSB frequency (green) in early prophase I are represented with solid lines.
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The induction of targeted recombination can have undesirable 
effects on recombination elsewhere in the genome. For example, 
the formation of DSBs at targeted sites inhibits the formation 
of DSBs in adjacent natural sites in budding yeast (Robine 
et  al., 2007). Moreover, if the targeted DSB is converted to a 
CO this will inhibit the formation of a second CO in the 
adjacent regions via a phenomenon called CO interference 
(Berchowitz and Copenhaver, 2010). In Arabidopsis, the effect 
of CO interference is detected over 8–10  Mb of DNA and 
the formation of a targeted CO will likely remodel the 
recombination landscape on that chromosome (Serra et  al., 
2018). Unlike COs, gene conversions have relatively short length 
(<2 kb) and are detected in most parts of the genome including 
across centromeric regions in plants (Shi et  al., 2010). This 
type of recombination events is interesting because it only 

modifies the DNA sequence locally and does not seem to 
be under the same controls as COs (Shi et al., 2010). Moreover, 
targeted gene conversion events are unlikely to modify the 
broad CO landscape (Berchowitz and Copenhaver, 2010). This 
outcome is particularly interesting for plant breeding where 
targeted recombination is required to increase allelic diversity 
locally, such as in heterochromatic regions.

CHROMOSOME ENGINEERING TO 
INFLUENCE MEIOTIC RECOMBINATION

Chromosome Structure and Crossovers
Chromosome structure is also a strong determinant of CO formation 
and localization (Rowan et al., 2019). Chromosomal rearrangements, 

A

B

FIGURE 2 | Strategies to remodel the crossover rate locally. (A) Representation of a cold spot region enriched in nucleosome and silencing epigenetic marks, such as 
DNA methylation in all three contexts (CG, CHG, and CHH). Chromatin is methylated on 5mCs. Targeted recruitment of TET1 catalyzes the removal of silencing 
epigenetic marks and decompaction of chromatin while the targeted recruitment of SPO11 catalyzes formation of DSBs. Meiotic DSBs are repaired by the homologous 
recombination pathway leading to the formation of NCO, NCO with gene conversion, or CO. (B) Genome browser view of the crossover hotspot 3a on chromosome 3 
of Arabidopsis. SPO11-1-oligo (orange), REC8 ChIP-seq (green), and nucleosome (MNase, dark blue) profiles are shown alongside the gene organization (purple). 
Regions with high crossover rate are indicated with red arrowheads. Coordinates on the chromosome 3 are shown above the genome browser view.
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such as inversions or translocations, usually suppress recombination, 
and this is particularly challenging for breeding since they may 
inhibit the transfer of important traits between different plant 
cultivars. Indeed, a number of inversions and translocations can 
be detected by comparing the genomic sequences between accessions 
(Zapata et  al., 2016). Recently, somatic chromosomal engineering 
using CRISPR/Cas9 has proven useful for restoring recombination 
in naturally rearranged chromosomal regions in Arabidopsis 
(Schmidt et al., 2020). A particularly well-known case of inversion 
in Arabidopsis is the heterochromatic knob on chromosome 4 
(Fransz et  al., 2000). When an Arabidopsis accession carrying 
this inversion is crossed with an accession without inverted knob, 
CO formation within the entire rearranged region is suppressed 
(Schmidt et  al., 2020). The authors developed an egg cell-specific 
expression system of the Cas9 nuclease that allows rearranging 
the structure of plant chromosomes in a targeted and heritable 
manner (Beying et  al., 2020; Schmidt et  al., 2020). Remarkably, 
reversion of the 1.1  Mb heterochromatic knob on chromosome 
4 fully restored CO formation in this region (Schmidt et  al., 
2020). This is a particularly promising achievement for breeding 
given that many crop plants have experienced substantial 
chromosomal rearrangements that strongly affect CO formation.

Effect of Ploidy Manipulation on 
Crossovers
Interestingly, a link between increased ploidy level and crossover 
formation has been demonstrated in a number of plants (reviewed 
in Pele et  al., 2017). For instance, in Arabidopsis, analyses of CO 
formation in one genetic interval show that both male and female 
CO frequencies are significantly higher in newly formed auto- and 
allopolyploids compared to their diploid progenitors (Pecinka et al., 
2011). Additionally, studies in Brassica demonstrated that Brassica 
allotriploid hybrids exhibit a significant crossover increase compare 
to their progenitors (Leflon et  al., 2010; Suay et  al., 2014; Pele 
et  al., 2017). This increase occurs genome wide and affects both 
male and female meiosis, although stronger increase is observed 
in female and is associated with a significant remodeling of the 
CO landscape with the presence of COs in the vicinity of centromeres. 
Remarkably, this increase is also accompanied by a strong decrease 
in CO interference (Suay et  al., 2014; Pele et  al., 2017). Although 
the underlying mechanism remains to be demonstrated, it appears 
that the link between ploidy level and CO increase is associated 
with genetic content. Indeed, further work in Brassica has shown 
that the addition of one specific chromosome (C genome 
chromosome 9) is sufficient to increase CO in polyploid hybrids 
while addition of other chromosomes had no effect (Suay et  al., 
2014). Altogether, these results suggest that manipulating ploidy 
level and/or chromosome composition may be a promising alternative 
for plant breeders to modulate CO formation and ultimately 
increase genetic diversity of crop plants.

HOW CAN WE  REMODEL MEIOSIS FOR 
CROP IMPROVEMENT?

The manipulation of meiotic recombination gives the breeders 
a tool to create a new and desirable allele of gene that could 

be  incorporated to a germ line and, unlike the product of 
mitotic recombination, this trait will be  carried to the whole 
plant as it develops. However, such trait can be  removed/
modified as meiotic recombination continuously occurs in the 
following generations. Moreover, the process of meiosis maintains 
the ploidy of the progeny and limits cross-breeding between 
accessions or related species containing different ploidy. To 
overcome these constraints for crop breeding, the meiotic 
division processes could be  engineered to adapt the need of 
a breeding program.

Diploid Gametes
An important application for remodeling the meiotic division 
process is to allow formation of unreduced gametes (Figure 3). 
Indeed, a major function of meiosis is to reduce the chromosome 
complement by half with two successive divisions following a 
single round of DNA replication. Consequently, circumvention 
of one division allows formation of unreduced gametes which 
have proved useful for breeding. Specifically, unreduced gametes 
are used by breeders to engineer sexual polyploidization 
(Brownfield and Kohler, 2011; Crismani and Mercier, 2012; 
De Storme and Geelen, 2013; Ronceret and Vielle-Calzada, 
2015). They can facilitate crosses between plants with different 
ploidy levels or to be  utilized to create new polyploid species 
exhibiting increased genetic diversity and hybrid vigor. It has 
long been considered that formation of diploid gametes is, at 
least in part, genetically controlled. Accordingly, a number of 
mutants producing diploid gametes have been identified in 
various plants (for reviews see Brownfield and Kohler, 2011; 
Crismani and Mercier, 2012; De Storme and Geelen, 2013; 
Ronceret and Vielle-Calzada, 2015). These mutants are usually 
classified as first division restitution (FDR) or second division 
restitution (SDR) depending on whether the mutations affect 
the first or second division, respectively (Figures  3A–C). In 
Arabidopsis, notable examples of these are mutations in parallel-
spindle 1 or Jason that both lead to FDR through disturbance 
of spindle orientation and positioning (D’Erfurth et  al., 2008; 
De Storme and Geelen, 2011). On the contrary, SDR has been 
obtained by mutating genes controlling entry into second 
division, such as OMISSION OF DIVISION 1 (OSD1) a key 
regulator of the anaphase promoting complex, or the cyclin 
CYCA1;2/TARDY ASYNCHRONOUS MEIOSIS (TAM1; 
D’Erfurth et  al., 2009, 2010). A key difference between FDR 
and SDR is that they lead to different genetic outcomes. 
FDR-influenced chromosomes are non-sister chromatids, and 
therefore, FDR is often considered to produce unreduced gametes 
with enriched heterozygous marker genotypes (from centromeres 
to first crossover sites). On the contrary, in SDR, affected 
chromosomes are sister chromatids (second division not 
occurring) and the unreduced gametes exhibit homozygous 
marker genotypes from the centromeres to the first crossover 
site. Hence, it is important to take into account the desired 
level of heterozygosity when considering FDR or SDR for a 
breeding strategy. Interestingly, diploid gametes may also 
be  obtained by applying external stimuli. For example, a high 
number of diploid gametes are produced when haploid 
Arabidopsis plants are treated with a 4°C cold shock for several 
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hours during flowering stage and this process primarily undergoes 
SDR (De Storme and Geelen, 2011). Whether this strategy is 
effective in crops and if other stimuli may trigger similar effects 
are not yet known. Nevertheless, such approach may be highly 
relevant for breeding since it would be classified as non-transgenic.

Apomeiosis
Both FDR and SDR result in unreduced gametes which contains 
chromosomes that were recombined via meiotic recombination. 
However, regarding to breeding strategies, unreduced gametes 
that have retained parental genome are more useful. Apomixis, 
in particular, is a form of asexual reproduction allowing clonal 
reproduction through seeds (Spillane et  al., 2004). Apomixis 
produces progenies that are genetically identical to the maternal 
genome. This is especially beneficial on the breeding of hybrid 
varieties since it allows fixation of an elite hybrid genome and 
its clonal propagation through seeds. Although apomixis naturally 

occurs in a number of angiosperms, it is absent in most 
important crops (Spillane et  al., 2004). Its success relies on 
the circumvention of both meiosis and fertilization. A cornerstone 
of apomixis is thus apomeiosis, a deregulated form of meiosis 
resulting in a mitotic-like division that prevents recombination 
and ploidy reduction. Several single mutants disrupting the 
meiotic process and leading to apomeiosis have been identified 
in Arabidopsis, rice, and maize (Ronceret and Vielle-Calzada, 
2015; Figure  3D). However, these mutants are usually sterile 
and form apomeiotic gametes at an extremely low frequency. 
The best example of these is the Arabidopsis DYAD/SWITCH1 
gene, a regulator of meiotic chromosome organizations essential 
for meiotic entry (Ravi et  al., 2008). Artificial apomeiosis has 
been successfully achieved through mutation of this single gene 
(Ravi et  al., 2008). In the dyad allele, alteration of the meiotic 
process into a mitotic-like division leads to the formation of 
unreduced female gametes that retain parental heterozygosity, 
representative of apomeiosis. However, although this appeared 

A
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FIGURE 3 | Schematic representation of different strategies to remodel the meiotic division. (A) Normal meiotic division resulting in haploid (n) gametes. (B,C) Non-
reductional meiotic divisions resulting in unreduced (2n) meiotic products. First division restitution (FDR; B) and second division restitution (SDR; C) lead to different 
levels of heterozygosity (see text for details). (D) Schematic diagram of apomeiosis obtained through MiMe strategy. (E) Reverse breeding strategy. For simplification, 
in each case, a diploid cell with only two chromosome pairs is shown with maternal and paternal chromosomes in red and blue, respectively.
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promising at first sight, it is hardly amenable to crops since 
dyad plants are nearly sterile and less than 1% of the dyad 
ovules generate viable gametes (Ravi et  al., 2008).

Rather than mutating a single gene, a major success in 
engineering apomeiosis was later obtained by combining 
several mutations that disrupt the key steps of the meiotic 
division (D’Erfurth et  al., 2009; Figure  3D). This was 
accomplished by simultaneously disrupting three key steps 
of meiosis: (1) bypassing of the second meiotic division to 
allow production of functional diploid gametes; this can 
be  achieved through mutating and removing the function of 
the key regulator OSD1, (2) suppression of meiotic 
recombination to prevent formation of recombined gametes. 
This can be  achieved through mutation of genes involved in 
meiotic DSB formation. For example, using a null allele of 
SPO11-1 to eliminate the initiation of meiotic DSB formation, 
and (3) allowing segregation of sister chromatids at the first 
division through loss-of-function of the meiotic-specific cohesin 
REC8. In Arabidopsis, plants with this genotype undergo 
meiosis that is replaced by mitosis and they are called MiMe 
(for Mitosis instead of Meiosis). This remodeling of meiosis 
gives rise to functional diploid gametes with genetically 
identical genomes (D’Erfurth et  al., 2009; Figure  3D). The 
practicability of this technology was further demonstrated 
by alternatively targeting other genes disrupting the key steps 
of meiosis. For instance, the use of osd1 mutation to bypass 
the second meiotic segregation has been successfully replaced 
by mutation of the cyclin CYCA1; 2/TAM1 or use of a tdm1 
dominant mutation (D’Erfurth et  al., 2010; Cifuentes et  al., 
2016). Similarly, suppression of meiotic recombination can 
be  obtained by mutating various components of the meiotic 
DSB complex (e.g., PRD1, PRD2, or PRD3; Mieulet et  al., 
2016). This artificial engineering of apomeiosis is a particularly 
ground-breaking achievement since MiMe plants are fertile 
and produce near wild-type levels of viable apomeiotic gametes. 
Remarkably, this technology has also recently been translated 
to rice (Mieulet et al., 2016). Through mutation of rice OSD1, 
PAIR1 (rice homolog of PRD3), and REC8, the authors could 
reproduce the MiMe genotype and, importantly, showed that 
rice MiMe plants remained fertile. Altogether these data 
demonstrate the potential of the MiMe technology for 
engineering apomeiosis in plants. Yet, it remains unclear 
whether this technology is applicable to other crops and, in 
particular, polyploid species, such as bread wheat. Another 
obstacle of this technology is that since gametes are diploid 
and normal fertilization continues to occur, ploidy is expected 
to double at each generation. To overcome this problem, 
MiMe technology has been combined with genome elimination 
strategies that allow removal of a complete set of chromosome 
from one parent after fertilization (Ishii et  al., 2016; Jacquier 
et al., 2020). Such genome elimination is usually accomplished 
by using haploid inducer lines which can be obtained through 
manipulation of the centromeric histone 3 variant (CENH3; 
Ravi et  al., 2008; Marimuthu et  al., 2011), or the 
MATRILINEAL/NOT-LIKE DAD/PHOSPHOLIPASE A1 gene 
(Wang et  al., 2019a). Haploid inducer lines do not directly 
affect meiosis and will thus not be described here. For detailed 

description of haploid inducer lines and genome elimination, 
readers are directed to several excellent recent reviews (Ishii 
et  al., 2016; Jacquier et  al., 2020). Alternatively, creation of 
haploid plants can also be  obtained by misexpression in egg 
cell of the BABY BOOM 1 (BBM1) gene (Khanday et  al., 
2019). BBM1 is a male-expressed gene essential to initiate 
embryogenesis after fertilization and misexpression of BBM1 
in egg cell is sufficient to trigger parthenogenesis and the 
production of haploid plants (Khanday et al., 2019). Remarkably, 
combining one of these strategies with MiMe technology has 
allowed engineering clonal reproduction in both Arabidopsis 
and rice (Marimuthu et  al., 2011; Khanday et  al., 2019; Wang 
et al., 2019a; Khanday and Sundaresan, 2021). Yet, frequencies 
of clonal embryo remain low (haploid inducer lines are not 
fully penetrant) and overall seed production is also strongly 
decreased. This means that broad implementation of apomixis 
in a sustainable way in crops will require further research 
to unravel new factors and mechanisms controlling apomeiosis 
and haploid induction. However, to achieve this will also 
require a better understanding of the interplay between these 
two components of apomixis.

Reverse Breeding
Heterozygous hybrids have the tendency to outperform their 
homozygous parents in fitness (Chen, 2010; Labroo et  al., 
2021). This phenomenon, known as hybrid vigor or heterosis, 
is widely used by breeders to produce elite varieties with 
improved field quality. Creation of these elite heterozygous 
hybrids is achieved by crossing two selected homozygous parents. 
However, such favorable hybrids cannot be  stably maintained 
because allele combinations are reshuffled by genetic 
recombination during meiosis before being transmitted to the 
progeny. This means that offspring lose the heterosis effect 
and breeders must continuously recreate favorable hybrids. 
Different strategies have been proposed to preserve transmission 
of heterozygous genotypes. Reverse breeding, which is an 
alternative to apomixis, has emerged as a promising strategy 
to fix hybrid genomes (Dirks et  al., 2009; Figure  3E). Reverse 
breeding generates homozygous parental lines from a 
heterozygous hybrid. When applied to hybrids with known 
parents, the approach can also be used to generate chromosome 
substitution lines, in which the chromosome of one line is 
replaced by the chromosome of another line (Dirks et  al., 
2009). The method relies on suppression of meiotic crossovers 
in the hybrid followed by the production of doubled haploids 
from non-recombinant gametes (Dirks et al., 2009; Figure 3E). 
The practicability of the method was originally demonstrated 
in Arabidopsis by silencing the meiotic-specific recombinase 
DMC1 using RNA interference (Wijnker et  al., 2012, 2014). 
Non-recombinant gametes were converted into haploid adult 
plants using centromere-mediated genome elimination and 
fertile diploids (double haploids) and were eventually obtained 
by self-pollination of those haploids (Wijnker et  al., 2012). 
The main limitation of the method lies in the fact that suppression 
of meiotic recombination leads to achiasmatic chromosomes 
which segregate randomly. Production of balanced 
non-recombinant gametes thus relies on fortuitous balanced 
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segregation, whose frequency strongly depends on chromosome 
number. The method is thus limited to species with low 
chromosome number (less than 12; Dirks et  al., 2009). An 
alternative to the solution would be to reduce, but not completely 
suppress, CO formation. Having one or a few CO would still 
lead to low production of CO-free gametes but will also increase 
the production of gametes with low CO numbers, which would 
prove useful for reverse breeding. This strategy was recently 
validated by downregulating Arabidopsis MSH5 gene expression 
through VIGS (Calvo-Baltanas et al., 2020). Furthermore, VIGS 
has the additional advantage of allowing transient downregulation 
and thus avoids integration of a stable transgene in the genome, 
which is a strong concern for breeders. Altogether, these data 
suggest that reverse breeding could be  effectively applied to 
many crops. However, unlike apomixis, this strategy has not 
yet been demonstrated in crops.

CONCLUDING REMARKS

Several novel insights on meiosis have emerged in recent years 
and form a framework to develop innovative technologies to 
accelerate pre-breeding strategies. However, most of our 
understanding of meiosis is based on Arabidopsis research 
and it is of particular importance to pivot toward the translational 

potential of these discoveries and the study of other plant 
species. It is likely that future studies will identify significant 
differences in the regulation of meiosis between Arabidopsis 
and crops which may occlude a direct transfer of certain 
strategies between plants. Comparative studies of meiosis across 
a broad range of species will address this gap in our knowledge 
and have the potential to identify new functional pathways 
and to provide a deeper understanding of the evolution of 
meiotic gene function.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual 
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

We would like to thank Dr. Kim Osman for providing the 
images of wheat chromosome staining and Dr. Mikel Arrieta 
and the James Hutton Institute for providing the crossover 
frequency data in Barley. We would also like to thank Dr. 
Charles White and Dr. Alexander Blackwell for their comments 
on the manuscript.

 

REFERENCES

Acquaviva, L., Szekvolgyi, L., Dichtl, B., Dichtl, B. S., De La Roche Saint 
Andre, C., Nicolas, A., et al. (2013). The COMPASS subunit Spp1 links 
histone methylation to initiation of meiotic recombination. Science 339, 
215–218. doi: 10.1126/science.1225739

Armstrong, S. J., Caryl, A. P., Jones, G. H., and Franklin, F. C. (2002). Asy1, 
a protein required for meiotic chromosome synapsis, localizes to axis-associated 
chromatin in Arabidopsis and brassica. J. Cell Sci. 115, 3645–3655. doi: 
10.1242/jcs.00048

Armstrong, S. J., Franklin, F. C., and Jones, G. H. (2001). Nucleolus-associated 
telomere clustering and pairing precede meiotic chromosome synapsis in 
Arabidopsis thaliana. J. Cell Sci. 114, 4207–4217. doi: 10.1242/jcs.114.23.4207

Barakate, A., Higgins, J. D., Vivera, S., Stephens, J., Perry, R. M., Ramsay, L., 
et al. (2014). The synaptonemal complex protein ZYP1 is required for 
imposition of meiotic crossovers in barley. Plant Cell 26, 729–740. doi: 
10.1105/tpc.113.121269

Benyahya, F., Nadaud, I., Da Ines, O., Rimbert, H., White, C., and Sourdille, P. 
(2020). SPO11.2 is essential for programmed double-strand break formation 
during meiosis in bread wheat (Triticum aestivum L.). Plant J. 104, 30–43. 
doi: 10.1111/tpj.14903

Berchowitz, L. E., and Copenhaver, G. P. (2010). Genetic interference: don’t stand 
so close to me. Curr. Genomics 11, 91–102. doi: 10.2174/138920210790886835

Bergerat, A., De Massy, B., Gadelle, D., Varoutas, P. C., Nicolas, A., and 
Forterre, P. (1997). An atypical topoisomerase II from archaea with implications 
for meiotic recombination. Nature 386, 414–417. doi: 10.1038/386414a0

Beying, N., Schmidt, C., Pacher, M., Houben, A., and Puchta, H. (2020). 
CRISPR-Cas9-mediated induction of heritable chromosomal translocations 
in Arabidopsis. Nat. Plants 6, 638–645. doi: 10.1038/s41477-020-0663-x

Blackwell, A. R., Dluzewska, J., Szymanska-Lejman, M., Desjardins, S., Tock, A. J., 
Kbiri, N., et al. (2020). MSH2 shapes the meiotic crossover landscape in 
relation to interhomolog polymorphism in Arabidopsis. EMBO J. 39:e104858. 
doi: 10.15252/embj.2020104858

Blary, A., Gonzalo, A., Eber, F., Berard, A., Berges, H., Bessoltane, N., et al. 
(2018). FANCM limits meiotic crossovers in brassica crops. Front. Plant 
Sci. 9:368. doi: 10.3389/fpls.2018.00368

Brownfield, L., and Kohler, C. (2011). Unreduced gamete formation in plants: 
mechanisms and prospects. J. Exp. Bot. 62, 1659–1668. doi: 10.1093/jxb/
erq371

Cai, X., Dong, F., Edelmann, R. E., and Makaroff, C. A. (2003). The Arabidopsis 
SYN1 cohesin protein is required for sister chromatid arm cohesion and 
homologous chromosome pairing. J. Cell Sci. 116, 2999–3007. doi: 10.1242/
jcs.00601

Calvo-Baltanas, V., Wijnen, C. L., Yang, C., Lukhovitskaya, N., De Snoo, C. B., 
Hohenwarter, L., et al. (2020). Meiotic crossover reduction by virus-induced 
gene silencing enables the efficient generation of chromosome substitution 
lines and reverse breeding in Arabidopsis thaliana. Plant J. 104, 1437–1452. 
doi: 10.1111/tpj.14990

Capilla-Perez, L., Durand, S., Hurel, A., Lian, Q., Chambon, A., Taochy, C., 
et al. (2021). The synaptonemal complex imposes crossover interference 
and heterochiasmy in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 
118:e2023613118. doi: 10.1073/pnas.2023613118

Chambon, A., West, A., Vezon, D., Horlow, C., De Muyt, A., Chelysheva, L., 
et al. (2018). Identification of ASYNAPTIC4, a component of the meiotic 
chromosome axis. Plant Physiol. 178, 233–246. doi: 10.1104/pp.17.01725

Chelysheva, L., Diallo, S., Vezon, D., Gendrot, G., Vrielynck, N., Belcram, K., 
et al. (2005). AtREC8 and AtSCC3 are essential to the monopolar orientation 
of the kinetochores during meiosis. J. Cell Sci. 118, 4621–4632. doi: 10.1242/
jcs.02583

Chen, Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. 
Trends Plant Sci. 15, 57–71. doi: 10.1016/j.tplants.2009.12.003

Chen, X., Suhandynata, R. T., Sandhu, R., Rockmill, B., Mohibullah, N., Niu, H., 
et al. (2015). Phosphorylation of the synaptonemal complex protein zip1 
regulates the crossover/noncrossover decision during yeast meiosis. PLoS 
Biol. 13:e1002329. doi: 10.1371/journal.pbio.1002329

Choi, K., Zhao, X., Tock, A. J., Lambing, C., Underwood, C. J., Hardcastle, T. J., 
et al. (2018). Nucleosomes and DNA methylation shape meiotic DSB frequency 
in Arabidopsis thaliana transposons and gene regulatory regions. Genome 
Res. 28, 532–546. doi: 10.1101/gr.225599.117

Cifuentes, M., Jolivet, S., Cromer, L., Harashima, H., Bulankova, P., Renne, C., 
et al. (2016). TDM1 regulation determines the number of meiotic divisions. 
PLoS Genet. 12:e1005856. doi: 10.1371/journal.pgen.1005856

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1126/science.1225739
https://doi.org/10.1242/jcs.00048
https://doi.org/10.1242/jcs.114.23.4207
https://doi.org/10.1105/tpc.113.121269
https://doi.org/10.1111/tpj.14903
https://doi.org/10.2174/138920210790886835
https://doi.org/10.1038/386414a0
https://doi.org/10.1038/s41477-020-0663-x
https://doi.org/10.15252/embj.2020104858
https://doi.org/10.3389/fpls.2018.00368
https://doi.org/10.1093/jxb/erq371
https://doi.org/10.1093/jxb/erq371
https://doi.org/10.1242/jcs.00601
https://doi.org/10.1242/jcs.00601
https://doi.org/10.1111/tpj.14990
https://doi.org/10.1073/pnas.2023613118
https://doi.org/10.1104/pp.17.01725
https://doi.org/10.1242/jcs.02583
https://doi.org/10.1242/jcs.02583
https://doi.org/10.1016/j.tplants.2009.12.003
https://doi.org/10.1371/journal.pbio.1002329
https://doi.org/10.1101/gr.225599.117
https://doi.org/10.1371/journal.pgen.1005856


Kuo et al. Rewiring Meiosis for Crop Improvement

Frontiers in Plant Science | www.frontiersin.org 12 July 2021 | Volume 12 | Article 708948

Cloud, V., Chan, Y. L., Grubb, J., Budke, B., and Bishop, D. K. (2012). Rad51 
is an accessory factor for Dmc1-mediated joint molecule formation during 
meiosis. Science 337, 1222–1225. doi: 10.1126/science.1219379

Corem, S., Doron-Faigenboim, A., Jouffroy, O., Maumus, F., Arazi, T., and 
Bouche, N. (2018). Redistribution of CHH methylation and small interfering 
RNAs across the genome of tomato ddm1 mutants. Plant Cell 30, 1628–1644. 
doi: 10.1105/tpc.18.00167

Coulton, A., Burridge, A. J., and Edwards, K. J. (2020). Examining the effects 
of temperature on recombination in wheat. Front. Plant Sci. 11:230. doi: 
10.3389/fpls.2020.00230

Crismani, W., Girard, C., Froger, N., Pradillo, M., Santos, J. L., Chelysheva, L., 
et al. (2012). FANCM limits meiotic crossovers. Science 336, 1588–1590. 
doi: 10.1126/science.1220381

Crismani, W., and Mercier, R. (2012). What limits meiotic crossovers? Cell 
Cycle 11, 3527–3528. doi: 10.4161/cc.21963

Da Ines, O., Abe, K., Goubely, C., Gallego, M. E., and White, C. I. (2012). 
Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres 
and chromosome arms in Arabidopsis thaliana. PLoS Genet. 8:e1002636. 
doi: 10.1371/journal.pgen.1002636

Da Ines, O., Michard, R., Fayos, I., Bastianelli, G., Nicolas, A., Guiderdoni, E., 
et al. (2020). Bread wheat TaSPO11-1 exhibits evolutionarily conserved 
function in meiotic recombination across distant plant species. Plant J. 103, 
2052–2068. doi: 10.1111/tpj.14882

Da Ines, O., and White, C. I. (2015). Centromere associations in meiotic 
chromosome pairing. Annu. Rev. Genet. 49, 95–114. doi: 10.1146/annurev-
genet-112414-055107

De Maagd, R. A., Loonen, A., Chouaref, J., Pele, A., Meijer-Dekens, F., Fransz, P., 
et al. (2020). CRISPR/Cas inactivation of RECQ4 increases homeologous 
crossovers in an interspecific tomato hybrid. Plant Biotechnol. J. 18, 805–813. 
doi: 10.1111/pbi.13248

De Muyt, A., Pereira, L., Vezon, D., Chelysheva, L., Gendrot, G., Chambon, A., 
et al. (2009). A high throughput genetic screen identifies new early meiotic 
recombination functions in Arabidopsis thaliana. PLoS Gent. 5:e1000654. 
doi: 10.1371/journal.pgen.1000654

De Muyt, A., Vezon, D., Gendrot, G., Gallois, J.-L., Stevens, R., and Grelon, M. 
(2007). AtPRD1 is required for meiotic double strand break formation in 
Arabidopsis thaliana. EMBO J. 26, 4126–4137. doi: 10.1038/sj.emboj.7601815

De Storme, N., and Geelen, D. (2011). The Arabidopsis mutant jason produces 
unreduced first division restitution male gametes through a parallel/fused 
spindle mechanism in meiosis II. Plant Physiol. 155, 1403–1415. doi: 10.1104/
pp.110.170415

De Storme, N., and Geelen, D. (2013). Sexual polyploidization in plants––
cytological mechanisms and molecular regulation. New Phytol. 198, 670–684. 
doi: 10.1111/nph.12184

D’Erfurth, I., Cromer, L., Jolivet, S., Girard, C., Horlow, C., Sun, Y., et al. 
(2010). The cyclin-A CYCA1;2/TAM is required for the meiosis I  to meiosis 
II transition and cooperates with OSD1 for the prophase to first meiotic 
division transition. PLoS Genet. 6:e1000989. doi: 10.1371/journal.pgen.1000989

D’Erfurth, I., Jolivet, S., Froger, N., Catrice, O., Novatchkova, M., and Mercier, R. 
(2009). Turning meiosis into mitosis. PLoS Biol. 7:e1000124. doi: 10.1371/
journal.pbio.1000124

D’Erfurth, I., Jolivet, S., Froger, N., Catrice, O., Novatchkova, M., Simon, M., 
et al. (2008). Mutations in AtPS1 (Arabidopsis thaliana parallel spindle 1) 
lead to the production of diploid pollen grains. PLoS Genet. 4:e1000274. 
doi: 10.1371/journal.pgen.1000274

Desjardins, S. D., Ogle, D. E., Ayoub, M. A., Heckmann, S., Henderson, I. R., 
Edwards, K. J., et al. (2020). MutS homologue 4 and MutS homologue 5 
maintain the obligate crossover in wheat despite stepwise gene loss following 
polyploidization. Plant Physiol. 183, 1545–1558. doi: 10.1104/pp.20.00534

Dirks, R., Van Dun, K., De Snoo, C. B., Van Den Berg, M., Lelivelt, C. L., 
Voermans, W., et al. (2009). Reverse breeding: a novel breeding approach 
based on engineered meiosis. Plant Biotechnol. J. 7, 837–845. doi: 10.1111/j.
1467-7652.2009.00450.x

Drouaud, J., Khademian, H., Giraut, L., Zanni, V., Bellalou, S., Henderson, I. R., 
et al. (2013). Contrasted patterns of crossover and non-crossover at Arabidopsis 
thaliana meiotic recombination hotspots. PLoS Genet. 9:e1003922. doi: 10.1371/
journal.pgen.1003922

Ellermeier, C., Higuchi, E. C., Phadnis, N., Holm, L., Geelhood, J. L., Thon, G., 
et al. (2010). RNAi and heterochromatin repress centromeric meiotic 

recombination. Proc. Natl. Acad. Sci. U. S. A. 107, 8701–8705. doi: 10.1073/
pnas.0914160107

Fayos, I., Meunier, A. C., Vernet, A., Navarro-Sanz, S., Portefaix, M., Lartaud, M., 
et al. (2020). Assessment of the roles of SPO11-2 and SPO11-4  in meiosis 
in rice using CRISPR/Cas9 mutagenesis. J. Exp. Bot. 71, 7046–7058. doi: 
10.1093/jxb/eraa391

Ferdous, M., Higgins, J. D., Osman, K., Lambing, C., Roitinger, E., Mechtler, K., 
et al. (2012). Inter-homolog crossing-over and synapsis in Arabidopsis meiosis 
are dependent on the chromosome axis protein AtASY3. PLoS Genet. 
8:e1002507. doi: 10.1371/journal.pgen.1002507

Fernandes, J. B., Seguela-Arnaud, M., Larcheveque, C., Lloyd, A. H., and 
Mercier, R. (2018). Unleashing meiotic crossovers in hybrid plants. Proc. 
Natl. Acad. Sci. U. S. A. 115, 2431–2436. doi: 10.1073/pnas.1713078114

Fernandes, J. B., Wlodzimierz, P., and Henderson, I. R. (2019). Meiotic 
recombination within plant centromeres. Curr. Opin. Plant Biol. 48, 26–35. 
doi: 10.1016/j.pbi.2019.02.008

France, M. G., Enderle, J., Rohrig, S., Puchta, H., Franklin, F. C. H., and 
Higgins, J. D. (2021). ZYP1 is required for obligate cross-over formation 
and cross-over interference in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 
118:2021671118. doi: 10.1073/pnas.2021671118

Fransz, P. F., Armstrong, S., De Jong, J. H., Parnell, L. D., Van Drunen, C., 
Dean, C., et al. (2000). Integrated cytogenetic map of chromosome arm 4S 
of A. thaliana: structural organization of heterochromatic knob and centromere 
region. Cell 100, 367–376. doi: 10.1016/S0092-8674(00)80672-8

Fu, M., Wang, C., Xue, F., Higgins, J., Chen, M., Zhang, D., et al. (2016). The 
DNA topoisomerase VI-B subunit OsMTOPVIB is essential for meiotic 
recombination initiation in rice. Mol. Plant 9, 1539–1541. doi: 10.1016/j.
molp.2016.07.006

Gallego-Bartolome, J., Gardiner, J., Liu, W., Papikian, A., Ghoshal, B., Kuo, H. Y., 
et al. (2018). Targeted DNA demethylation of the Arabidopsis genome using 
the human TET1 catalytic domain. Proc. Natl. Acad. Sci. U. S. A. 115, 
E2125–E2134. doi: 10.1073/pnas.1716945115

Gardiner, L. J., Wingen, L. U., Bailey, P., Joynson, R., Brabbs, T., Wright, J., 
et al. (2019). Analysis of the recombination landscape of hexaploid bread 
wheat reveals genes controlling recombination and gene conversion frequency. 
Genome Biol. 20:69. doi: 10.1186/s13059-019-1675-6

Girard, C., Chelysheva, L., Choinard, S., Froger, N., Macaisne, N., Lemhemdi, A., 
et al. (2015). AAA-ATPase FIDGETIN-LIKE 1 and helicase FANCM antagonize 
meiotic crossovers by distinct mechanisms. PLoS Genet. 11:e1005369. doi: 
10.1371/journal.pgen.1005448

Golubovskaya, I. N., Hamant, O., Timofejeva, L., Wang, C. J., Braun, D., 
Meeley, R., et al. (2006). Alleles of afd1 dissect REC8 functions during 
meiotic prophase I. J. Cell Sci. 119, 3306–3315. doi: 10.1242/jcs.03054

Gong, Z., Morales-Ruiz, T., Ariza, R. R., Roldan-Arjona, T., David, L., and 
Zhu, J. K. (2002). ROS1, a repressor of transcriptional gene silencing in 
Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814. doi: 10.1016/
S0092-8674(02)01133-9

Hartung, F., Wurz-Wildersinn, R., Fuchs, J., Schubert, I., Suer, S., and Puchta, H. 
(2007). The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 
are required for meiotic double-strand break induction in Arabidopsis. Plant 
Cell 19, 3090–3099. doi: 10.1105/tpc.107.054817

He, Y., Wang, M., Dukowic-Schulze, S., Zhou, A., Tiang, C. L., Shilo, S., et al. 
(2017). Genomic features shaping the landscape of meiotic double-strand-
break hotspots in maize. Proc. Natl. Acad. Sci. U. S. A. 114, 12231–12236. 
doi: 10.1073/pnas.1713225114

Henderson, K. A., and Keeney, S. (2004). Tying synaptonemal complex initiation 
to the formation and programmed repair of DNA double-strand breaks. 
Proc. Natl. Acad. Sci. U. S. A. 101, 4519–4524. doi: 10.1073/pnas.0400843101

Higgins, J. D., Perry, R. M., Barakate, A., Ramsay, L., Waugh, R., Halpin, C., 
et al. (2012). Spatiotemporal asymmetry of the meiotic program underlies 
the predominantly distal distribution of meiotic crossovers in barley. Plant 
Cell 24, 4096–4109. doi: 10.1105/tpc.112.102483

Higgins, J. D., Sanchez-Moran, E., Armstrong, S. J., Jones, G. H., and Franklin, F. C. 
(2005). The Arabidopsis synaptonemal complex protein ZYP1 is required 
for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 
19, 2488–2500. doi: 10.1101/gad.354705

Hong, S., Sung, Y., Yu, M., Lee, M., Kleckner, N., and Kim, K. P. (2013). The 
logic and mechanism of homologous recombination partner choice. Mol. 
Cell 51, 440–453. doi: 10.1016/j.molcel.2013.08.008

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1126/science.1219379
https://doi.org/10.1105/tpc.18.00167
https://doi.org/10.3389/fpls.2020.00230
https://doi.org/10.1126/science.1220381
https://doi.org/10.4161/cc.21963
https://doi.org/10.1371/journal.pgen.1002636
https://doi.org/10.1111/tpj.14882
https://doi.org/10.1146/annurev-genet-112414-055107
https://doi.org/10.1146/annurev-genet-112414-055107
https://doi.org/10.1111/pbi.13248
https://doi.org/10.1371/journal.pgen.1000654
https://doi.org/10.1038/sj.emboj.7601815
https://doi.org/10.1104/pp.110.170415
https://doi.org/10.1104/pp.110.170415
https://doi.org/10.1111/nph.12184
https://doi.org/10.1371/journal.pgen.1000989
https://doi.org/10.1371/journal.pbio.1000124
https://doi.org/10.1371/journal.pbio.1000124
https://doi.org/10.1371/journal.pgen.1000274
https://doi.org/10.1104/pp.20.00534
https://doi.org/10.1111/j.1467-7652.2009.00450.x
https://doi.org/10.1111/j.1467-7652.2009.00450.x
https://doi.org/10.1371/journal.pgen.1003922
https://doi.org/10.1371/journal.pgen.1003922
https://doi.org/10.1073/pnas.0914160107
https://doi.org/10.1073/pnas.0914160107
https://doi.org/10.1093/jxb/eraa391
https://doi.org/10.1371/journal.pgen.1002507
https://doi.org/10.1073/pnas.1713078114
https://doi.org/10.1016/j.pbi.2019.02.008
https://doi.org/10.1073/pnas.2021671118
https://doi.org/10.1016/S0092-8674(00)80672-8
https://doi.org/10.1016/j.molp.2016.07.006
https://doi.org/10.1016/j.molp.2016.07.006
https://doi.org/10.1073/pnas.1716945115
https://doi.org/10.1186/s13059-019-1675-6
https://doi.org/10.1371/journal.pgen.1005448
https://doi.org/10.1242/jcs.03054
https://doi.org/10.1016/S0092-8674(02)01133-9
https://doi.org/10.1016/S0092-8674(02)01133-9
https://doi.org/10.1105/tpc.107.054817
https://doi.org/10.1073/pnas.1713225114
https://doi.org/10.1073/pnas.0400843101
https://doi.org/10.1105/tpc.112.102483
https://doi.org/10.1101/gad.354705
https://doi.org/10.1016/j.molcel.2013.08.008


Kuo et al. Rewiring Meiosis for Crop Improvement

Frontiers in Plant Science | www.frontiersin.org 13 July 2021 | Volume 12 | Article 708948

Ishii, T., Karimi-Ashtiyani, R., and Houben, A. (2016). Haploidization via 
chromosome elimination: means and mechanisms. Annu. Rev. Plant Biol. 
67, 421–438. doi: 10.1146/annurev-arplant-043014-114714

Jacquier, N. M. A., Gilles, L. M., Pyott, D. E., Martinant, J. P., Rogowsky, P. M., 
and Widiez, T. (2020). Puzzling out plant reproduction by haploid induction 
for innovations in plant breeding. Nat. Plants 6, 610–619. doi: 10.1038/
s41477-020-0664-9

Jing, J.-L., Zhang, T., Kao, Y.-H., Huang, T.-H., Wang, C. J. R., and He, Y. 
(2020). ZmMTOPVIB enables DNA double-strand break formation and 
bipolar spindle assembly during maize meiosis. Plant Physiol. 184, 1811–1822. 
doi: 10.1104/pp.20.00933

Jing, J.-L., Zhang, T., Wang, Y. Z., and He, Y. (2019). Advances towards 
how meiotic recombination is initiated: a coparative view and perspectives 
for plant meiosis research. Int. J. Mol. Sci. 20:4718. doi: 10.3390/
ijms20194718

Jones, G. H., and Franklin, F. C. (2006). Meiotic crossing-over: obligation and 
interference. Cell 126, 246–248. doi: 10.1016/j.cell.2006.07.010

Khanday, I., Skinner, D., Yang, B., Mercier, R., and Sundaresan, V. (2019). A 
male-expressed rice embryogenic trigger redirected for asexual propagation 
through seeds. Nature 565, 91–95. doi: 10.1038/s41586-018-0785-8

Khanday, I., and Sundaresan, V. (2021). Plant zygote development: recent insights 
and applications to clonal seeds. Curr. Opin. Plant Biol. 59:101993. doi: 
10.1016/j.pbi.2020.101993

Kleckner, N. (2006). Chiasma formation: chromatin/axis interplay and the role(s) 
of the synaptonemal complex. Chromosoma 115, 175–194. doi: 10.1007/
s00412-006-0055-7

Kleckner, N., Zickler, D., Jones, G. H., Dekker, J., Padmore, R., Henle, J., et al. 
(2004). A mechanical basis for chromosome function. Proc. Natl. Acad. Sci. 
U. S. A. 101, 12592–12597. doi: 10.10732/Fpnas.0402724101

Labroo, M. R., Studer, A. J., and Rutkoski, J. E. (2021). Heterosis and hybrid 
crop breeding: a multidisciplinary review. Front. Genet. 24:643761. doi: 
10.3389/fgene.2021.643761

Lam, I., and Keeney, S. (2015). Nonparadoxical evolutionary stability of the 
recombination initiation landscape in yeast. Science 350, 932–937. doi: 10.1126/
science.aad0814

Lamb, J. C., Yu, W., Han, F., and Birchler, J. A. (2007). Plant chromosomes 
from end to end: telomeres, heterochromatin and centromeres. Curr. Opin. 
Plant Biol. 10, 116–122. doi: 10.1016/j.pbi.2007.01.008

Lambing, C., Franklin, F. C., and Wang, C. R. (2017). Understanding and 
manipulating meiotic recombination in plants. Plant Physiol. 173, 1530–1542. 
doi: 10.1104/pp.16.01530

Lambing, C., Kuo, P. C., Tock, A. J., Topp, S. D., and Henderson, I. R. (2020a). 
ASY1 acts as a dosage-dependent antagonist of telomere-led recombination 
and mediates crossover interference in Arabidopsis. Proc. Natl. Acad. Sci. 
U. S. A. 117, 13647–13658. doi: 10.1073/pnas.1921055117

Lambing, C., Osman, K., Nuntasoontorn, K., West, A., Higgins, J. D., 
Copenhaver, G. P., et al. (2015). Arabidopsis PCH2 mediates meiotic 
chromosome remodeling and maturation of crossovers. PLoS Genet. 
11:e1005372. doi: 10.1371/journal.pgen.1005372

Lambing, C., Tock, A. J., Topp, S. D., Choi, K., Kuo, P. C., Zhao, X., et al. 
(2020b). Interacting genomic landscapes of rec8-cohesin, chromatin, and 
meiotic recombination in Arabidopsis. Plant Cell 32, 1218–1239. doi: 10.1105/
tpc.19.00866

Lee, D. H., Kao, Y. H., Ku, J. C., Lin, C. Y., Meeley, R., Jan, Y. S., et al. 
(2015). The axial element protein desynaptic2 mediates meiotic double-strand 
break formation and synaptonemal complex assembly in maize. Plant Cell 
27, 2516–2529. doi: 10.1105/tpc.15.00434

Leflon, M., Grandont, L., Eber, F., Huteau, V., Coriton, O., Chelysheva, L., 
et al. (2010). Crossovers get a boost in brassica allotriploid and allotetraploid 
hybrids. Plant Cell 22, 2253–2264. doi: 10.1105/tpc.110.075986

Li, Q., Eichten, S. R., Hermanson, P. J., Zaunbrecher, V. M., Song, J., Wendt, J., 
et al. (2014). Genetic perturbation of the maize methylome. Plant Cell 26, 
4602–4616. doi: 10.1105/tpc.114.133140

Li, X., Li, L., and Yan, J. (2015). Dissecting meiotic recombination based on 
tetrad analysis by single-microspore sequencing in maize. Nat. Commun. 
6:6648. doi: 10.1038/ncomms7648

Libuda, D. E., Uzawa, S., Meyer, B. J., and Villeneuve, A. M. (2013). Meiotic 
chromosome structures constrain and respond to designation of crossover 
sites. Nature 502, 703–706. doi: 10.1038/nature12577

Ma, J., Wing, R. A., Bennetzen, J. L., and Jackson, S. A. (2007). Plant centromere 
organization: a dynamic structure with conserved functions. Trends Genet. 
23, 134–139. doi: 10.1016/j.tig.2007.01.004

Mancera, E., Bourgon, R., Brozzi, A., Huber, W., and Steinmetz, L. M. (2008). 
High-resolution mapping of meiotic crossovers and non-crossovers in yeast. 
Nature 454, 479–485. doi: 10.1038/nature07135

Marimuthu, M. P., Jolivet, S., Ravi, M., Pereira, L., Davda, J. N., Cromer, L., 
et al. (2011). Synthetic clonal reproduction through seeds. Science 331:876. 
doi: 10.1126/science.1199682

Marques, A., and Pedrosa-Harand, A. (2016). Holocentromere identity: from 
the typical mitotic linear structure to the great plasticity of meiotic 
holocentromeres. Chromosoma 125, 669–681. doi: 10.1007/s00412-016-0612-7

Marsolier-Kergoat, M. C., Khan, M. M., Schott, J., Zhu, X., and Llorente, B. 
(2018). Mechanistic view and genetic control of dna recombination during 
meiosis. Mol. Cell 70, 9–20. doi: 10.1016/j.molcel.2018.02.032

Martini, E., Diaz, R. L., Hunter, N., and Keeney, S. (2006). Crossover homeostasis 
in yeast meiosis. Cell 126, 285–295. doi: 10.1016/j.cell.2006.05.044

Mcmahill, M. S., Sham, C. W., and Bishop, D. K. (2007). Synthesis-dependent 
strand annealing in meiosis. PLoS Biol. 5:e299. doi: 10.1371/journal.
pbio.0050299

Medhi, D., Goldman, A. S., and Lichten, M. (2016). Local chromosome context 
is a major determinant of crossover pathway biochemistry during budding 
yeast meiosis. eLife 5:e19669. doi: 10.7554/eLife.19669

Melters, D. P., Paliulis, L. V., Korf, I. F., and Chan, S. W. (2012). Holocentric 
chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. 
Chromosom. Res. 20, 579–593. doi: 10.1007/s10577-012-9292-1

Mercier, R., Mezard, C., Jenczewski, E., Macaisne, N., and Grelon, M. (2015). 
The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66, 
297–327. doi: 10.1146/annurev-arplant-050213-035923

Mieulet, D., Aubert, G., Bres, C., Klein, A., Droc, G., Vieille, E., et al. (2018). 
Unleashing meiotic crossovers in crops. Nat. Plants 4, 1010–1016. doi: 
10.1038/s41477-018-0311-x

Mieulet, D., Jolivet, S., Rivard, M., Cromer, L., Vernet, A., Mayonove, P., et al. 
(2016). Turning rice meiosis into mitosis. Cell Res. 26, 1242–1254. doi: 
10.1038/cr.2016.117

Nageswaran, D. C., Kim, J., Lambing, C., Kim, J., Park, J., Kim, E.-J., et al. 
(2021). HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE 
X1 and restricts meiotic crossovers in Arabidopsis. Nat. Plants 7, 452–467. 
doi: 10.1038/s41477-021-00889-y

Nonomura, K., Nakano, F. T., Eiguchi, M., Miyao, A., Hirochika, H., and 
Kurata, N. (2004). The novel gene HOMOLOGOUS PAIRING ABERRATION 
IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required 
for homologous chromosome pairing in MEIOSIS. Plant Cell 16, 1008–1020. 
doi: 10.1105/tpc.020701

Nonomura, K., Nakano, M., Eiguchi, M., Suzuki, T., and Kurata, N. (2006). 
PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. 
J. Cell Sci. 119, 217–225. doi: 10.1242/jcs.02736

Osman, K., Algopishi, U., Higgins, J. D., Henderson, I. R., Edwards, K. J., 
Franklin, F. C. H., et al. (2021). Distal bias of meiotic crossovers in hexaploid 
bread wheat reflects spatio-temporal asymmetry of the meiotic program. 
Front. Plant Sci. 12:631323. doi: 10.33892/Ffpls.2021.631323

Osman, K., Yang, J., Roitinger, E., Lambing, C., Heckmann, S., Howell, E., 
et al. (2018). Affinity proteomics reveals extensive phosphorylation of the 
brassica chromosome axis protein ASY1 and a network of associated proteins 
at prophase I  of meiosis. Plant J. 93, 17–33. doi: 10.1111/tpj.13752

Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H. G., Tischfield, S. E., 
et al. (2011). A hierarchical combination of factors shapes the genome-wide 
topography of yeast meiotic recombination initiation. Cell 144, 719–731. 
doi: 10.1016/j.cell.2011.02.009

Panizza, S., Mendoza, M. A., Berlinger, M., Huang, L., Nicolas, A., Shirahige, K., 
et al. (2011). Spo11-accessory proteins link double-strand break sites to the 
chromosome axis in early meiotic recombination. Cell 146, 372–383. doi: 
10.1016/j.cell.2011.07.003

Pecina, A., Smith, K. N., Mezard, C., Murakami, H., Ohta, K., and Nicolas, A. 
(2002). Targeted stimulation of meiotic recombination. Cell 111, 173–184. 
doi: 10.1016/S0092-8674(02)01002-4

Pecinka, A., Fang, W., Rehmsmeier, M., Levy, A. A., and Mittelsten Scheid, O. 
(2011). Polyploidization increases meiotic recombination frequency in 
Arabidopsis. BMC Biol. 9:24. doi: 10.11862/F1741-7007-9-24

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1146/annurev-arplant-043014-114714
https://doi.org/10.1038/s41477-020-0664-9
https://doi.org/10.1038/s41477-020-0664-9
https://doi.org/10.1104/pp.20.00933
https://doi.org/10.3390/ijms20194718
https://doi.org/10.3390/ijms20194718
https://doi.org/10.1016/j.cell.2006.07.010
https://doi.org/10.1038/s41586-018-0785-8
https://doi.org/10.1016/j.pbi.2020.101993
https://doi.org/10.1007/s00412-006-0055-7
https://doi.org/10.1007/s00412-006-0055-7
https://doi.org/10.10732/Fpnas.0402724101
https://doi.org/10.3389/fgene.2021.643761
https://doi.org/10.1126/science.aad0814
https://doi.org/10.1126/science.aad0814
https://doi.org/10.1016/j.pbi.2007.01.008
https://doi.org/10.1104/pp.16.01530
https://doi.org/10.1073/pnas.1921055117
https://doi.org/10.1371/journal.pgen.1005372
https://doi.org/10.1105/tpc.19.00866
https://doi.org/10.1105/tpc.19.00866
https://doi.org/10.1105/tpc.15.00434
https://doi.org/10.1105/tpc.110.075986
https://doi.org/10.1105/tpc.114.133140
https://doi.org/10.1038/ncomms7648
https://doi.org/10.1038/nature12577
https://doi.org/10.1016/j.tig.2007.01.004
https://doi.org/10.1038/nature07135
https://doi.org/10.1126/science.1199682
https://doi.org/10.1007/s00412-016-0612-7
https://doi.org/10.1016/j.molcel.2018.02.032
https://doi.org/10.1016/j.cell.2006.05.044
https://doi.org/10.1371/journal.pbio.0050299
https://doi.org/10.1371/journal.pbio.0050299
https://doi.org/10.7554/eLife.19669
https://doi.org/10.1007/s10577-012-9292-1
https://doi.org/10.1146/annurev-arplant-050213-035923
https://doi.org/10.1038/s41477-018-0311-x
https://doi.org/10.1038/cr.2016.117
https://doi.org/10.1038/s41477-021-00889-y
https://doi.org/10.1105/tpc.020701
https://doi.org/10.1242/jcs.02736
https://doi.org/10.33892/Ffpls.2021.631323
https://doi.org/10.1111/tpj.13752
https://doi.org/10.1016/j.cell.2011.02.009
https://doi.org/10.1016/j.cell.2011.07.003
https://doi.org/10.1016/S0092-8674(02)01002-4
https://doi.org/10.11862/F1741-7007-9-24


Kuo et al. Rewiring Meiosis for Crop Improvement

Frontiers in Plant Science | www.frontiersin.org 14 July 2021 | Volume 12 | Article 708948

Pele, A., Falque, M., Trotoux, G., Eber, F., Negre, S., Gilet, M., et al. (2017). 
Amplifying recombination genome-wide and reshaping crossover landscapes 
in brassicas. PLoS Genet. 13:e1006794. doi: 10.1371/journal.pgen.1006794

Penterman, J., Zilberman, D., Huh, J. H., Ballinger, T., Henikoff, S., and 
Fischer, R. L. (2007). DNA demethylation in the Arabidopsis genome. Proc. 
Natl. Acad. Sci. U. S. A. 104, 6752–6757. doi: 10.1073/pnas.0701861104

Phillips, D., Jenkins, G., Macaulay, M., Nibau, C., Wnetrzak, J., Fallding, D., 
et al. (2015). The effect of temperature on the male and female recombination 
landscape of barley. New Phytol. 208, 421–429. doi: 10.1111/nph.13548

Prosee, R. F., Wenda, J. M., and Steiner, F. A. (2020). Adaptations for centromere 
function in meiosis. Essays Biochem. 64, 193–203. doi: 10.1042/EBC20190076

Ravi, M., Marimuthu, M. P., and Siddiqi, I. (2008). Gamete formation without 
meiosis in Arabidopsis. Nature 451, 1121–1124. doi: 10.1038/nature06557

Raz, A., Dahan-Meir, T., Melamed-Bessudo, C., Leshkowitz, D., and Levy, A. A. 
(2020). Redistribution of meiotic crossovers along wheat chromosomes by 
virus-induced gene silencing. Front. Plant Sci. 11:635139. doi: 10.3389/
fpls.2020.635139

Robert, T., Nore, A., Brun, C., Maffre, C., Crimi, B., Bourbon, H. M., et al. 
(2016). The TopoVIB-like protein family is required for meiotic DNA double-
strand break formation. Science 351, 943–949. doi: 10.1126/science.aad5309

Robine, N., Uematsu, N., Amiot, F., Gidrol, X., Barillot, E., Nicolas, A., et al. 
(2007). Genome-wide redistribution of meiotic double-strand breaks in 
Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 1868–1880. doi: 10.1128/
MCB.02063-06

Ronceret, A., and Vielle-Calzada, J. P. (2015). Meiosis, unreduced gametes, and 
parthenogenesis: implications for engineering clonal seed formation in crops. 
Plant Reprod. 28, 91–102. doi: 10.1007/s00497-015-0262-6

Rowan, B. A., Heavens, D., Feuerborn, T. R., Tock, A. J., Henderson, I. R., 
and Weigel, D. (2019). An ultra high-density Arabidopsis thaliana crossover 
map that refines the influences of structural variation and epigenetic features. 
Genetics 213, 771–787. doi: 10.1534/genetics.119.302406

Sarno, R., Vicq, Y., Uematsu, N., Luka, M., Lapierre, C., Carroll, D., et al. 
(2017). Programming sites of meiotic crossovers using Spo11 fusion proteins. 
Nucleic Acids Res. 45:e164. doi: 10.1093/nar/gkx739

Schmidt, C., Fransz, P., Ronspies, M., Dreissig, S., Fuchs, J., Heckmann, S., 
et al. (2020). Changing local recombination patterns in Arabidopsis by 
CRISPR/Cas mediated chromosome engineering. Nat. Commun. 11:4418. 
doi: 10.10382/Fs41467-020-18277-z

Seguela-Arnaud, M., Crismani, W., Larcheveque, C., Mazel, J., Froger, N., 
Choinard, S., et al. (2015). Multiple mechanisms limit meiotic crossovers: 
top3alpha and two BLM homologs antagonize crossovers in parallel to 
FANCM. Proc. Natl. Acad. Sci. U. S. A. 112, 4713–4718. doi: 10.1073/
pnas.1423107112

Sepsi, A., and Schwarzacher, T. (2020). Chromosome-nuclear envelope tethering - 
a process that orchestrates homologue pairing during plant meiosis? J. Cell 
Sci. 133:jcs243667. doi: 10.1242/jcs.243667

Serra, H., Lambing, C., Griffin, C. H., Topp, S. D., Nageswaran, D. C., 
Underwood, C. J., et al. (2018). Massive crossover elevation via combination 
of HEI10 and recq4a recq4b during Arabidopsis meiosis. Proc. Natl. Acad. 
Sci. U. S. A. 115, 2437–2442. doi: 10.1073/pnas.1713071115

Shi, W., Ji, J., Xue, Z., Zhang, F., Miao, Y., Yang, H., et al. (2021). PRD1, a 
homologous recombination initiation factor, is involved in spindle assembly 
in rice meiosis. New Phytol. 230, 585–600. doi: 10.1111/nph.17178

Shi, J., Wolf, S. E., Burke, J. M., Presting, G. G., Ross-Ibarra, J., and Dawe, R. K. 
(2010). Widespread gene conversion in centromere cores. PLoS Biol. 8:e1000327. 
doi: 10.1371/journal.pbio.1000327

Sidhu, G. K., Fang, C., Olson, M. A., Falque, M., Martin, O. C., and 
Pawlowski, W. P. (2015). Recombination patterns in maize reveal limits 
to crossover homeostasis. Proc. Natl. Acad. Sci. U. S. A. 112, 15982–15987. 
doi: 10.1073/pnas.1514265112

Sommermeyer, V., Beneut, C., Chaplais, E., Serrentino, M. E., and Borde, V. 
(2013). Spp1, a member of the Set1 complex, promotes meiotic DSB formation 
in promoters by tethering histone H3K4 methylation sites to chromosome 
axes. Mol. Cell 49, 43–54. doi: 10.1016/j.molcel.2012.11.008

Spillane, C., Curtis, M. D., and Grossniklaus, U. (2004). Apomixis technology 
development-virgin births in farmers’ fields? Nat. Biotechnol. 22, 687–691. 
doi: 10.1038/nbt976

Sprink, T., and Hartung, F. (2014). The splicing fate of plant SPO11 genes. 
Front. Plant Sci. 5:214. doi: 10.3389/fpls.2014.00214

Stack, S. M., Shearer, L. A., Lohmiller, L., and Anderson, L. K. (2017). Meiotic 
crossing over in maize knob heterochromatin. Genetics 205, 1101–1112. 
doi: 10.1534/genetics.116.196089

Stanzione, M., Baumann, M., Papanikos, F., Dereli, I., Lange, J., Ramlal, A., 
et al. (2016). Meiotic DNA break formation requires the unsynapsed 
chromosome axis-binding protein IHO1 (CCDC36) in mice. Nat. Cell Biol. 
18, 1208–1220. doi: 10.1038/ncb3417

Steiner, F. A., and Henikoff, S. (2015). Diversity in the organization of centromeric 
chromatin. Curr. Opin. Genet. Dev. 31, 28–35. doi: 10.1016/j.gde.2015.03.010

Su, H., Liu, Y., Liu, C., Shi, Q., Huang, Y., and Han, F. (2019). Centromere 
satellite repeats have undergone rapid changes in polyploid wheat subgenomes. 
Plant Cell 31, 2035–2051. doi: 10.1105/tpc.19.00133

Suay, L., Zhang, D., Eber, F., Jouy, H., Lode, M., Huteau, V., et al. (2014). 
Crossover rate between homologous chromosomes and interference are 
regulated by the addition of specific unpaired chromosomes in brassica. 
New Phytol. 201, 645–656. doi: 10.1111/nph.12534

Sun, Y., Ambrose, J. H., Haughey, B. S., Webster, T. D., Pierrie, S. N., Munoz, D. F., 
et al. (2012). Deep genome-wide measurement of meiotic gene conversion 
using tetrad analysis in Arabidopsis thaliana. PLoS Genet. 8:e1002968. doi: 
10.1371/journal.pgen.1002968

Taagen, E., Bogdanove, A. J., and Sorrells, M. E. (2020). Counting on crossovers: 
controlled recombination for plant breeding. Trends Plant Sci. 25, 455–465. 
doi: 10.1016/j.tplants.2019.12.017

Talbert, P. B., and Henikoff, S. (2020). What makes a centromere? Exp. Cell 
Res. 389:111895. doi: 10.1016/j.yexcr.2020.111895

Tan, F., Zhou, C., Zhou, Q., Zhou, S., Yang, W., Zhao, Y., et al. (2016). Analysis 
of chromatin regulators reveals specific features of rice DNA methylation 
pathways. Plant Physiol. 171, 2041–2054. doi: 10.1104/pp.16.00393

Underwood, C. J., Choi, K., Lambing, C., Zhao, X., Serra, H., Borges, F., et al. 
(2018). Epigenetic activation of meiotic recombination near Arabidopsis 
thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. 
Genome Res. 28, 519–531. doi: 10.1101/gr.227116.117

Voelkel-Meiman, K., Johnston, C., Thappeta, Y., Subramanian, V. V., Hochwagen, A., 
and Macqueen, A. J. (2015). Separable crossover-promoting and crossover-
constraining aspects of zip1 activity during budding yeast meiosis. PLoS 
Genet. 11:e1005335. doi: 10.1371/journal.pgen.1005335

Vrielynck, N., Chambon, A., Vezon, D., Pereira, L., Chelysheva, L., De Muyt, A., 
et al. (2016). A DNA topoisomerase VI-like complex initiates meiotic 
recombination. Science 351, 939–943. doi: 10.1126/science.aad5196

Wang, Y., and Copenhaver, G. P. (2018). Meiotic recombination: mixing it up 
in plants. Annu. Rev. Plant Biol. 29, 577–609. doi: 10.1146/annurev-
arplant-042817-040431

Wang, C., Liu, Q., Shen, Y., Hua, Y., Wang, J., Lin, J., et al. (2019a). Clonal 
seeds from hybrid rice by simultaneous genome engineering of meiosis 
and fertilization genes. Nat. Biotechnol. 37, 283–286. doi: 10.1038/
s41587-018-0003-0

Wang, S., Veller, C., Sun, F., Ruiz-Herrera, A., Shang, Y., Liu, H., et al. (2019b). 
Per-nucleus crossover covariation and implications for evolution. Cell 177, 
326–338. doi: 10.1016/j.cell.2019.02.021

Wang, K., Wang, C., Liu, Q., Liu, W., and Fu, Y. (2015). Increasing the genetic 
recombination frequency by partial loss of function of the synaptonemal 
complex in rice. Mol. Plant 8, 1295–1298. doi: 10.1016/j.molp.2015.04.011

Wang, K., Wang, M., Tang, D., Shen, Y., Qin, B., Li, M., et al. (2011). PAIR3, 
an axis-associated protein, is essential for the recruitment of recombination 
elements onto meiotic chromosomes in rice. Mol. Biol. Cell 22, 12–19. doi: 
10.1091/mbc.e10-08-0667

Wang, M., Wang, K., Tang, D., Wei, C., Li, M., Shen, Y., et al. (2010). The 
central element protein ZEP1 of the synaptonemal complex regulates the 
number of crossovers during meiosis in rice. Plant Cell 22, 417–430. doi: 
10.1105/tpc.109.070789

Wang, S., Zickler, D., Kleckner, N., and Zhang, L. (2015). Meiotic crossover 
patterns: obligatory crossover, interference and homeostasis in a single process. 
Cell Cycle 14, 305–314. doi: 10.4161/15384101.2014.991185

Wijnker, E., Deurhof, L., Van De Belt, J., De Snoo, C. B., Blankestijn, H., 
Becker, F., et al. (2014). Hybrid recreation by reverse breeding in Arabidopsis 
thaliana. Nat. Protoc. 9, 761–772. doi: 10.1038/nprot.2014.049

Wijnker, E., James, G. V., Ding, J., Becker, F., Klasen, J. R., Rawat, V., et al. 
(2013). The genomic landscape of meiotic crossovers and gene conversions 
in Arabidopsis thaliana. eLife 2:e01426. doi: 10.7554/eLife.01426

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1371/journal.pgen.1006794
https://doi.org/10.1073/pnas.0701861104
https://doi.org/10.1111/nph.13548
https://doi.org/10.1042/EBC20190076
https://doi.org/10.1038/nature06557
https://doi.org/10.3389/fpls.2020.635139
https://doi.org/10.3389/fpls.2020.635139
https://doi.org/10.1126/science.aad5309
https://doi.org/10.1128/MCB.02063-06
https://doi.org/10.1128/MCB.02063-06
https://doi.org/10.1007/s00497-015-0262-6
https://doi.org/10.1534/genetics.119.302406
https://doi.org/10.1093/nar/gkx739
https://doi.org/10.10382/Fs41467-020-18277-z
https://doi.org/10.1073/pnas.1423107112
https://doi.org/10.1073/pnas.1423107112
https://doi.org/10.1242/jcs.243667
https://doi.org/10.1073/pnas.1713071115
https://doi.org/10.1111/nph.17178
https://doi.org/10.1371/journal.pbio.1000327
https://doi.org/10.1073/pnas.1514265112
https://doi.org/10.1016/j.molcel.2012.11.008
https://doi.org/10.1038/nbt976
https://doi.org/10.3389/fpls.2014.00214
https://doi.org/10.1534/genetics.116.196089
https://doi.org/10.1038/ncb3417
https://doi.org/10.1016/j.gde.2015.03.010
https://doi.org/10.1105/tpc.19.00133
https://doi.org/10.1111/nph.12534
https://doi.org/10.1371/journal.pgen.1002968
https://doi.org/10.1016/j.tplants.2019.12.017
https://doi.org/10.1016/j.yexcr.2020.111895
https://doi.org/10.1104/pp.16.00393
https://doi.org/10.1101/gr.227116.117
https://doi.org/10.1371/journal.pgen.1005335
https://doi.org/10.1126/science.aad5196
https://doi.org/10.1146/annurev-arplant-042817-040431
https://doi.org/10.1146/annurev-arplant-042817-040431
https://doi.org/10.1038/s41587-018-0003-0
https://doi.org/10.1038/s41587-018-0003-0
https://doi.org/10.1016/j.cell.2019.02.021
https://doi.org/10.1016/j.molp.2015.04.011
https://doi.org/10.1091/mbc.e10-08-0667
https://doi.org/10.1105/tpc.109.070789
https://doi.org/10.4161/15384101.2014.991185
https://doi.org/10.1038/nprot.2014.049
https://doi.org/10.7554/eLife.01426


Kuo et al. Rewiring Meiosis for Crop Improvement

Frontiers in Plant Science | www.frontiersin.org 15 July 2021 | Volume 12 | Article 708948

Wijnker, E., Van Dun, K., De Snoo, C. B., Lelivelt, C. L., Keurentjes, J. J., 
Naharudin, N. S., et al. (2012). Reverse breeding in Arabidopsis thaliana 
generates homozygous parental lines from a heterozygous plant. Nat. Genet. 
44, 467–470. doi: 10.1038/ng.2203

Wu, X., and Zhang, Y. (2017). TET-mediated active DNA demethylation: 
mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534. doi: 10.1038/
nrg.2017.33

Xue, Z., Li, Y., Zhang, L., Shi, W., Zhang, C., Feng, M., et al. (2016). OsMTOPVIB 
promotes meiotic DNA double-strand break formation in rice. Mol. Plant 
9, 1535–1538. doi: 10.1016/j.molp.2016.07.005

Xue, M., Wang, J., Jiang, L., Wang, M., Wolfe, S., Pawlowski, W. P., et al. 
(2018). The number of meiotic double-strand breaks influences crossover 
distribution in Arabidopsis. Plant Cell 30, 2628–2638. doi: 10.1105/tpc.18.00531

Yelina, N. E., Gonzalez-Jorge, S., Hirsz, D., Yang, Z., and Henderson, I. R. 
(2021). CRISPR targeting of MEIOTIC-TOPOISOMERASE VIB-dCas9 to 
a recombination hotspot is insufficient to increase crossover frequency in 
Arabidopsis. bioRxiv [Preprint]. doi: 10.1101/2021.02.01.429210

Yelina, N. E., Lambing, C., Hardcastle, T. J., Zhao, X., Santos, B., and 
Henderson, I. R. (2015). DNA methylation epigenetically silences crossover 
hot spots and controls chromosomal domains of meiotic recombination in 
Arabidopsis. Genes Dev. 29, 2183–2202. doi: 10.1101/gad.270876.115

Yu, H., Wang, M., Tang, D., Wang, K., Chen, F., Gong, Z., et al. (2010). OsSPO11-1 
is essential for both homologous chromosome pairing and crossover formation 
in rice. Chromosoma 119, 625–636. doi: 10.1007/s00412-010-0284-7

Zapata, L., Ding, J., Willing, E. M., Hartwig, B., Bezdan, D., Jiao, W. B., et al. 
(2016). Chromosome-level assembly of Arabidopsis thaliana Ler reveals the 
extent of translocation and inversion polymorphisms. Proc. Natl. Acad. Sci. 
U. S. A. 113, E4052–E4060. doi: 10.1073/pnas.1607532113

Zhang, L., Espagne, E., De Muyt, A., Zickler, D., and Kleckner, N. E. (2014a). 
Interference-mediated synaptonemal complex formation with embedded 
crossover designation. Proc. Natl. Acad. Sci. U. S. A. 111, E5059–E5068. 
doi: 10.1073/pnas.1416411111

Zhang, L., Kohler, S., Rillo-Bohn, R., and Dernburg, A. F. (2018). A 
compartmentalized signaling network mediates crossover control in meiosis. 
elife 7:e30789. doi: 10.7554/eLife.30789.001

Zhang, J., Pawlowski, W. P., and Han, F. (2013). Centromere pairing in early 
meiotic prophase requires active centromeres and precedes installation of 

the synaptonemal complex in maize. Plant Cell 25, 3900–3909. doi: 10.1105/
tpc.113.117846

Zhang, C., Song, Y., Cheng, Z. H., Wang, Y.-X., Zhu, J., Ma, H., et al. (2012). 
The Arabidopsis thaliana DSB formation (AtDFO) gene is required for meiotic 
double-strand break formation. Plant J. 72, 271–281. doi: 10.1111/j.1365-313X. 
2012.05075.x

Zhang, L., Wang, S., Yin, S., Hong, S., Kim, K. P., and Kleckner, N. (2014b). 
Topoisomerase II mediates meiotic crossover interference. Nature 511, 
551–556. doi: 10.1038/nature13442

Zhang, H., and Zhu, J. K. (2012). Active DNA demethylation in plants and 
animals. Cold Spring Harb. Symp. Quant. Biol. 77, 161–173. doi: 10.1101/
sqb.2012.77.014936

Zhu, J., Kapoor, A., Sridhar, V. V., Agius, F., and Zhu, J. K. (2007). The DNA 
glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in 
Arabidopsis. Curr. Biol. 17, 54–59. doi: 10.1016/j.cub.2006.10.059

Zickler, D., and Kleckner, N. (1999). Meiotic chromosomes: integrating structure 
and function. Annu. Rev. Genet. 33, 603–754. doi: 10.1146/annurev.
genet.33.1.603

Ziolkowski, P. A., Underwood, C. J., Lambing, C., Martinez-Garcia, M., 
Lawrence, E. J., Ziolkowska, L., et al. (2017). Natural variation and dosage 
of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. 
Genes Dev. 31, 306–317. doi: 10.1101/gad.295501.116

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be construed 
as a potential conflict of interest.

The reviewer SH declared a past co-authorship with one of the authors CL to 
the handling editor.

Copyright © 2021 Kuo, Da Ines and Lambing. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with 
these terms.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1038/ng.2203
https://doi.org/10.1038/nrg.2017.33
https://doi.org/10.1038/nrg.2017.33
https://doi.org/10.1016/j.molp.2016.07.005
https://doi.org/10.1105/tpc.18.00531
https://doi.org/10.1101/2021.02.01.429210
https://doi.org/10.1101/gad.270876.115
https://doi.org/10.1007/s00412-010-0284-7
https://doi.org/10.1073/pnas.1607532113
https://doi.org/10.1073/pnas.1416411111
https://doi.org/10.7554/eLife.30789.001
https://doi.org/10.1105/tpc.113.117846
https://doi.org/10.1105/tpc.113.117846
https://doi.org/10.1111/j.1365-313X.2012.05075.x
https://doi.org/10.1111/j.1365-313X.2012.05075.x
https://doi.org/10.1038/nature13442
https://doi.org/10.1101/sqb.2012.77.014936
https://doi.org/10.1101/sqb.2012.77.014936
https://doi.org/10.1016/j.cub.2006.10.059
https://doi.org/10.1146/annurev.genet.33.1.603
https://doi.org/10.1146/annurev.genet.33.1.603
https://doi.org/10.1101/gad.295501.116
http://creativecommons.org/licenses/by/4.0/

	Rewiring Meiosis for Crop Improvement
	Chromatin and Recombination in Meiosis
	Meiotic Recombination
	Chromatin and DSB Hotspots
	Influence of Heterochromatin and Centromeres on Meiosis

	Engineering Meiotic Recombination
	Increasing Meiotic Recombination Genome Wide
	Modulation of the Recombination Landscape
	Targeted Recombination

	Chromosome Engineering to Influence Meiotic Recombination
	Chromosome Structure and Crossovers
	Effect of Ploidy Manipulation on Crossovers

	How Can We Remodel Meiosis for Crop Improvement?
	Diploid Gametes
	Apomeiosis
	Reverse Breeding

	Concluding Remarks
	Author Contribu tions

	References

