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The interdependence of multiple traits allows plants to perform multiple functions.
Acquiring an accurate representation of the interdependence of plant traits could
advance our understanding of the adaptative strategies of plants. However, few studies
focus on complex relationships among multiple traits. Here, we proposed use of leaf
trait networks (LTNs) to capture the complex relationships among traits, allowing us to
visualize all relationships and quantify how they differ through network parameters. We
established LTNs using six leaf economic traits. It showed that significant differences
in LTNs of different life forms and growth forms. The trait relationships of broad-
leaved trees were tighter than conifers; thus, broad-leaved trees could be more efficient
than conifers. The trait relationships of shrubs were tighter than trees because shrubs
require multiple traits to co-operate efficiently to perform multiple functions for thriving in
limited resources. Furthermore, leaf nitrogen concentration and life span had the highest
centrality in LTNs; consequently, the environmental selection of these two traits might
impact the whole phenotype. In conclusion, LTNs are useful tools for identifying key
traits and quantifying the interdependence of multiple traits.

Keywords: functional trait, network analysis, leaf trait network, adaptation, leaf ecnomic traits

INTRODUCTION

Plant functional traits are defined as morpho-physio-phenological traits that indirectly impact
fitness via their effects on growth, reproduction, and survival (Violle et al., 2007; He et al., 2018;
Liu et al., 2021). Functional traits are not independent of each other, and their relationships are
often represented by positive and negative correlations and allometry, resulting from the different
biomechanical and physiological requirements of plants (Freschet et al., 2015). Bivariate trait
relationships mainly arise from three different reasons (Sack et al., 2013) (1) direct mechanistic
(i.e., physiological structure function relationships), where for instance the size or number
of a given structure determines the physiological output of a process; (2) optimal design, in
which each trait independently contributes structurally to an overarching function (Sack and
Holbrook, 2006); and (3) concerted convergence, in which each trait contributes independently to
advantage in a given environment (Givnish et al., 2005). In particular, bivariate trait relationships
have been tested from the species to the community level, and from the local to global scale
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(Bruelheide et al., 2018). However, many functional traits interact
with each other and jointly optimize functioning, allowing
plants to apply multiple strategies for environmental adaptation,
resource competition, and development (Figure 1A; Diaz et al.,
2016; La Riva et al., 2016; Bruelheide et al., 2018; Liu et al., 2019).
Thus, focusing on the interdependence of multiple traits, rather
than bivariate trait relationships, could provide more realistic
insights into how plants adapt to their environment.

There are many ways to show the interdependence of
multiple traits. Correlation matrices and heatmaps are often
used to describe trait–trait interrelationships (Reich et al., 1999);
however, both these approaches are limited to quantifying
bivariate trait relationships. Structural equation models can be
used to study the interrelationships of multiple traits (Vile
et al., 2006); however, such models are often used to analyze
directed relationships (e.g., cause and effect). Yet, most traits
are equal in status. Principal component analysis has been
used to analyze multiple traits and group them as independent
units by clustering. Within this framework, ecologists strive
to reduce the number of linkages among multiple traits to
a few axes of variation, also termed “spectra” or “leading
dimensions” (Westoby et al., 2002; Diaz et al., 2004; Laughlin,
2014). Furthermore, leaf economic traits and hydraulic traits
are decoupled in tropical-subtropical forests (Li et al., 2015).
However, dimensionality reduction and clustering methods only
qualitatively (not quantitatively) describe the interrelationships
of traits within groups and among groups. Network analysis
seems to be an effective solution to this problem.

A few studies have applied network visualization to show
how traits are correlated (Poorter et al., 2013, 2014; Mason and
Donovan, 2015; Schneider et al., 2017). In addition to providing
a tool for network visualization, trait networks also could capture
variation in the interdependency of traits, allowing the important
traits of plants to be distinguished using network parameters
(Messier et al., 2017; Kleyer et al., 2019; He et al., 2020). Recently,
Kleyer et al. (2019) used network parameters to explore the
relationships among plant traits. The authors showed that stem
mass and stem-specific length are “hub” traits, meaning that they
are correlated with most traits.

He et al. (2020) pointed out that plant trait network
is an effective method to explore the complex relationship
between multiple plant traits, and made some prospects for
the application of trait network. Network analysis has rigorous
network parameters (Table 1), with this approach potentially
providing a higher resolution of the complex relationships among
multiple leaf traits.

The worldwide leaf economics spectrum consists of leaf
chemical, structural, and physiological traits. This spectrum
was used to show that fast-growing species have higher
photosynthetic rates and nitrogen concentrations than slow-
growing species, which have higher leaf mass per area and higher
leaf longevity (Wright et al., 2004; Wright and Suttongrier, 2012).
Fives models were used to explain these patterns (two based
on structural allocation, two on venation networks, and one
on resource allocation to cell walls and cell contents). Each
model yielded different explanations for the correlation between
these functional traits (Benjamin et al., 2015). Using graph

theoretic methods and structural equation modeling, Shipley
et al. (2006) showed that the trade-off strategy of plants may lead
to a certain quantitative relationship among leaf mass per area
(LMA), photosynthetic assimilation rate (Amass), and leaf lifespan
(LL). The origins of the bivariate trait relationships between leaf
economic traits are controversial; however, their bivariate trait
relationships have been recorded at multiple scales (Wright et al.,
2005; Wright and Suttongrier, 2012). Because all leaf economic
traits are closely correlated with photosynthesis and productivity,
it is necessary to quantify variation in the interdependency of leaf
economic traits.

Mediating the trade-off between cost and benefit, leaf
economic traits interactively and jointly optimize photosynthesis;
consequently, their complex relationships are expected to form
a huge network (Figure 1B). This network is represented
as a set of nodes (traits) connected by edges (bivariate trait
relationships). The width and length of edges are important
for network analysis (Figure 1D), and given those bivariate
trait relationships between leaf economic traits are observed
from local to global scales, weighted trait networks must be
established (Figure 1C). This approach facilitates the accurate
expression and measurement of the interdependency of leaf
economic traits. Specifically, here we aimed: (1) construct leaf
trait networks (LTNs) using leaf economic traits and reveal
their complex relationships; (2) explore differences in the
interdependence of multiple traits among different growth forms
and life forms; and (3) identify the key traits among six leaf
economic traits.

MATERIALS AND METHODS

Global data on six key traits of leaves were obtained from
the GlopNet which was also available in the TRY Plant Trait
Database1. It includes 2548 species of 219 families in 175 sites
(Supplementary Table 1; Wright et al., 2004). Covering all
major biome types, it represents a wide range of vegetation
types from arctic tundra to tropical rain forest, from hot to
cold desert, and from boreal forest to grassland (Wright et al.,
2004). Plants are divided into different growth forms (trees,
shrubs, herbs, etc.) and different life forms (coniferous and
broad-leaved). These traits were leaf mass per area (LMA),
photosynthetic assimilation rate (Amass), leaf nitrogen (Nmass),
leaf phosphorus (Pmass), dark respiration rate (Rmass), and leaf
lifespan (LL). In practice, these traits could also be expressed
based on area except for LMA and LL (including Aarea,
Narea, Parea and Rarea), reflecting light capture, and energy
transaction for example, Narea = Nmas × LMA. Osnas et al.
(2013) pointed out that both mass standardized and area
standardized leaf economic spectra and LMA revealed the
internal links between the physiological and ecological functions
of plant traits, but these links were not consistent with the
relationship simulated by the global vegetation model to solve
the problem of climate change. Consequently, we conducted
a parallel analysis using mass-based and area-based traits as

1https://www.try-db.org
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FIGURE 1 | Theoretical basi s and method used to calculate leaf trait networks (LTNs). Multiple leaf traits jointly interact with each other to adapt to the environment
or to optimize leaf functions. Integrative LTNs could help capture highly complex relationships among different traits and explore the underlying strategies of plants
(A,B). Considering that plants can adjust their relationships through strength and distance, actual LTNs are shown in panel (C). LTNs can be represented as a set of
nodes (circles) connected by edges (lines) (D).

TABLE 1 | Key parameters of leaf trait networks (LTNs).

Parameters Definition Ecological significance

Overall parameters Edge density (ED) ED was the ratio of the sum of actual weighted edges
to the maximum possible weighted edges.

A network with higher ED may allow for the more
efficient acquisition and mobilization of resources (as all
traits are connected with all other traits)

Diameter (D) D refers to the maximum shortest path length between
any two connected traits in the network.

Higher D represent higher independence among any
plant traits

Average path length (AL) AL was the mean shortest path between all traits in the
network.

Higher AL represent stronger interdependence among
plant traits

Individual parameters Degree (k) k was defined as the sum of edges that connect the
focal node traits to other nodes, and the number of
connections and the strength of relationships influence
the degree of trait.

Traits with higher k favor the efficient use and
acquisition of resources within and across plant tissues

Closeness (C) C was defined as the reciprocal of the mean shortest
path between a focal node trait and all other nodes in
LTNs.

Traits with higher C refer to the traits closely related to
other traits in the network

Betweenness (B) B was defined by the number of shortest paths going
through a focal node trait.

Traits with higher B values could serve as a broker in
the network

conducted by Wright et al. (2004) (see Supplementary Tables
1, 2 for details of traits). The “area standardized” traits data
of different types of plants were less, which was not enough
for network analysis. Therefore, the LTNs of different growth
forms and life forms were only analyzed based on “mass
standardized” traits.

Establishment of Leaf Trait Networks
Leaf trait networks are multi-dimensional networks that
consist of nodes and edges. To create the correlations
for leaf traits in LTNs, all leaf traits were designated as
nodes, while trait–trait relationships were delineated as edges.
First, the correlation coefficient matrix of leaf traits was
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calculated (Supplementary Figure 1). The strength of trait–trait
relationships were described using absolute Pearson correlations
(| r|). A threshold of marked pairwise correlations was used, with
P < 0.05 considered a significant difference. Other relationships
were set to zero, yielding the adjacency matrix A = [ai,j] with ai,j
∈ [0,1]. Additional network connections between any pair of leaf
traits were weighted by the absolute correlation strength (Kleyer
et al., 2019). LTNs were visualized using the improved package
“igraph” in R software.

The distance between trait nodes was calculated following
set criteria. First, principal component analysis (Supplementary
Table 3) was conducted for all six leaf traits, removing the
influence of dimension and correlation between traits. The
Euclidean distance between two traits was calculated as the
distance between two traits in LTNs (Supplementary Figure 2).

dij =

√√√√ 6∑
m=1

(
jm − im

)2 (1)

where, dij is the distance between the focal node trait vi and
node trait vj. im, and jm are the score of traits i and j in the mth

principal component.

Overall Parameters of Leaf Trait
Networks
Three overall network parameters were considered here
(Table 1): edge density (ED), diameter (D), and average path
length (AL).

ED is the ratio of the sum of actual weighted edges to the
maximum possible weighted edges. A network with a high ED
might allow for the efficient acquisition and mobilization of
resources (because all traits are associated with all other traits);
however, this phenomenon might be costly for plants in terms
of the establishment and maintenance of connections among
traits (Flores-Moreno et al., 2019; He et al., 2020). A higher ED
indicates closer trait relationships in LTNs.

ED =
1

n · (n− 1)

∑
ki (2)

where, ki is the degree of focal node trait vi, and n is the
number of node traits.

The path between two nodes i and j consists of the edges to
pass from node i to node j. The path length is the sum of edges
passed. The shortest path length dij is the minimum of all path
lengths connecting node i to node j.

D is the maximum shortest path length between any
two connected node traits in the network. AL is the mean
shortest path length between all node traits in the network.
LTNs with higher D and AL indicate an overall higher
independence among any leaf traits, with lower resource use and
acquisition efficiency.

D = max {dij}
(
i 6= j

)
(3)

AL =
1

n · (n− 1)

∑
i 6= j dij (4)

where, dij is the shortest path length between focal node trait vi,
and node trait vj, n is the number of node traits.

Individual Parameters of Node Traits in
Leaf Trait Networks
Nodes represent traits in LTNs; Two parameters can be used
to quantify the connectedness of each trait, that is, the
degree (k) and closeness (C); and a parameter to quantify the
centrality of each trait, that is, the betweenness (B) (Table 1;
He et al., 2020).

Degree (k) is the sum of edges that connect focal node
traits to other nodes. Leaf traits that have a higher k
favor the efficient use and acquisition of resources (Reich
and Cornelissen, 2014), which were delineated as hub traits
in LTNs.

ki =
∑

j 6= i aij (5)

where, aij is the connection (Pearson correlations | r|) between
focal node trait vi and node trait vj.

Closeness (C) is the reciprocal of the shortest mean path
between a focal node trait and another node in LTNs.

Ci =
n− 1∑n−1
j=1 dij

(i 6= j) (6)

where, dij is the shortest distance between focal node trait
vi and node trait vj, and n is the number of node traits
in LTNs.

Betweenness (B) is the number of shortest paths passing
through a focal node trait. Traits with a higher betweenness serve
as brokers (i.e., traits with high betweenness likely coordinate
several subnetworks) (Kleyer et al., 2019).

Bi =
∑

jkσ(j, i,k) (7)

where, σ (j, i, k) is the number of shortest paths between focal
node trait vj and node trait vk, which crosses node vi.

Data Analyses
The parameters of node traits and overall LTNs were calculated
using the package “igraph” of R. To obtain uncertainty ranges
of these parameters, we randomly resampled plant species 9999
times, and an LTN was established for each bootstrapping. Then,
the “average” and “standard error” values for these parameters
were calculated. Mass-based LTNs and area-based LTNs were
also established. This process was applied to different growth
forms (because there are few trait data of herbs, network analysis
was only used for trees and shrubs) and life forms (conifer and
broadleaf). Given the limited trait data, the number of species
selected at random was more than three-quarters the number
of specific species pools to ensure that each bootstrapping could
establish an LTN.

An independent sample t-test was used to compare how
LTNs differed among different growth forms (trees and shrubs)
and plant life forms (conifer and broadleaf). One-way ANOVA
was used to compare how node parameters differed with
different leaf traits. Multiple paired comparisons were used
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to explore the paired mean difference for parameters of
different forms.

Data analyses and visualization were performed using R
software (version 3.3.1, R Core Team, 2016) and a web
application2 (Ho et al., 2019). Significance was set at P < 0.05.

RESULTS

Leaf Trait Networks for Six Leaf Traits
Based on Global Data
Based on the global dataset of six leaf traits, we constructed leaf
trait networks using mass (LTNs-mass) and calculated the overall
parameters and individual parameters of LTNs-mass (Figure 2).
ED, D, and AL of LTNs-mass were 0.42–0.65, 1.00–1.43, and
0.75–0.84, respectively, with average values of 0.55, 1.12, and 0.78
(Supplementary Figure 3 and Supplementary Table 4). k, C,
and B differed significantly for all six leaf traits (P < 0.05 for all;
Figure 3, Supplementary Tables 5–8). LL had a higher k, Nmass
had higher C, and B for all six leaf traits was close to 0, except
for Nmass.

Our parallel evaluation of leaf trait networks based on area
(LTNs-area) (Figure 2) demonstrated significant differences
between LTNs-mass and LTNs-area. The ED of LTNs-area was
significantly lower than LTNs-mass. The D and AL of LTNs-
area were significantly higher than LTNs-mass (Supplementary
Figure 3, Supplementary Table 4). Details on the LTNs-area
analysis were presented in Figure 3, Supplementary Figures 3,
4, and Supplementary Tables 4–9.

Differences to Leaf Trait Networks
Among Plant Growth Forms
For mass-based leaf traits, we classified plants into different
plant growth forms and explored the differences within the
framework of LTNs. LTNs facilitate the visualization of complex
relationships among traits, showing the interdependence of
traits from different growth forms (Figure 4A). The ED of
the leaf trait network of shrubs (LTNs-shrub) was significantly
higher than that of trees (LTNs-tree) (P < 0.05) (Figure 5A,
Supplementary Table 2). The D and AL of LTNs-tree were
significantly higher than those of LTNs-shrub (P < 0.05
for all) (Figures 5B,C, Supplementary Table 4). The paired
mean difference of k and B between LTNs-tree and LTNs-
shrub was 0.83 and −0.18, respectively (P < 0.05 for all)
(Supplementary Figures 5A,C, Supplementary Table 4). No
significant difference was detected for the paired comparison
of C and shortest path length between LTNs-shrub and LTNs-
tree (Supplementary Figures 5B,D, Supplementary Table 5).
Nmass had a higher k and B than the other five traits for
LTNs-tree (P < 0.05 for all). Furthermore, Amass had a
higher C for LTNs-tree. For LTNs-shrub, LL had the highest
k, while Nmass had the highest C and B (P < 0.05 for
all) (Supplementary Figure 6, Supplementary Tables 6–8).
Information on the shortest path lengths is presented in
Supplementary Table 10.

2www.estimationstats.com

Differences of Leaf Trait Networks
Among Plant Life Forms
The ED of the leaf trait network for broadleaved trees (LTNs-
broadleaf) was higher than that of conifers (LTNs-conifer)
(Figures 4B, 5D, Supplementary Table 4). The D and AL
of LTNs-conifer were higher than those of LTNs-broadleaf
(Figures 5E,F, Supplementary Table 4). The paired mean
difference of k, C, and B between these two tree groups was
0.28 (P > 0.05) (Supplementary Figure 7A, Supplementary
Table 5), 0.10 (P < 0.05) (Supplementary Figure 7A,
Supplementary Table 5), and−0.73 (P < 0.05) (Supplementary
Figure 7C, Supplementary Table 5), respectively. The paired
mean difference of shortest path length between these two
groups was –0.55 (P < 0.05) (Supplementary Figure 7D,
Supplementary Table 5).

The node parameters of different LTNs were significantly
different for both LTNs-conifer and LTNs-broadleaf. Pmass and
LL had the highest k for LTNs-conifer and LTNs-broadleaf
(P < 0.05 for all), respectively. Nmass had the highest C
and B for LTNs-conifer and LTNs-broadleaf (P < 0.05 for
all) (Supplementary Figure 8, Supplementary Tables 6–8).
Information on the shortest path length was presented in
Supplementary Table 11.

DISCUSSION

Leaf Trait Networks Provide an Effective
Approach for Exploring Complex
Relationships Among Leaf Economic
Traits
The interdependency of multiple traits is the basis of multiple
functions. Due to environmental pressure and plant trade-
off strategy, there will be a certain quantitative relationship
between traits with different functions. Many relationships were
integrated into leaf organs and plant level to form a complex
and orderly trade-off relationship network of economic spectrum
traits. Throughout the relevant studies of leaf economic spectrum
(Wright et al., 2004, 2005; Shipley et al., 2006; Osnas et al., 2013),
it is always inseparable from the exploration of the pattern of leaf
functional traits and the trade-off relationship between them, in
other words, the complex and stable “economic” strategies and
relationships between functional traits, It is the basis and starting
point of leaf economics spectrum research, and functional traits
are the nodes of these relationship networks. Therefore, the
network analysis was used to explore the complex relationships
among plant traits here.

There are some minor, but fundamental differences between
LTNs and traditional network analysis. For example, the
microbial network is used to explore how soil microorganisms
coexist, whereas leaf traits are permanent and cannot be removed
from plants (Wang et al., 2018). In transportation networks, the
distance between airports/railway stations is real and measurable,
whereas the distance between leaf traits is difficult to quantify
(Wang et al., 2011). Studies conducted within the last 10 years
established the basis of the plant trait network, completing the
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FIGURE 2 | Leaf traits networks (LTNs) for six leaf traits based on global data. Red and blue edges show negative and positive correlations, respectively. The
correlation strength among traits is shown by line thickness. The node size is shown as degree. Data on leaf traits were derived from the report by Wright et al. (2004).

FIGURE 3 | Variation in degree (A), closeness (B), betweenness (C) for different leaf trait networks (LTNs) on mass-based and area-based leaf traits. Different letters
indicated the significant difference (P < 0.05). Error bars were represented standard error (SE).

visualization of interdependent relationships among multiple
traits (Poorter et al., 2013, 2014; Sack et al., 2013; Mason and
Donovan, 2015; Messier et al., 2017; Kleyer et al., 2019; He
et al., 2020). However, the concept of using the parameters of a
network in an LTN to quantify variation in the interdependency

of multiple traits is novel and effective. Other fields of research
have already developed methods to construct networks and
evaluate associated parameters. For instance, a special website
for network structure and parameter analysis has been developed
in the field of molecular ecology (Deng et al., 2012). However,
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FIGURE 4 | Differences of leaf traits networks (LTNs) in different plant growth forms (A) and plant life forms (B) based on global data. Red and blue edges show
negative and positive correlations, respectively. The correlation strength among traits is shown by line thickness. The node size is shown as degree.

the edges of LTNs differ from those of the microbial network
and transportation network. Thus, we weighted the network with
the absolute value of the correlation coefficient. There is general
consensus that the more similar the traits, the closer the distance
between them (Kleyer et al., 2019). However, the calculation of
the distance between traits is a challenge. Some scholars used
unweighted approaches to construct an unweighted network that
connects traits (Flores-Moreno et al., 2019). Studies within the
last 5 years used the reciprocal of the correlation coefficient
as a proxy for the distance between multiple traits (Kleyer
et al., 2019); Here, we explored using the Euclidean distance
under the principal component of traits as the distance between
traits. Within this framework, we calculated the relevant network
parameters. We recommend that this approach may be widely
implemented in future studies investigating plant trait networks.

Many studies compared and analyzed the indication
intensity of two types of standardized traits on plant function,
the correlation between traits and the relationship with
environmental factors (Osnas et al., 2013; Westoby et al.,
2013). In this study, variation in network parameters and node
parameters was used to quantify differences between mass-based
LTNs and area-based LTNs. Mass-based LTNs had a higher edge
density, diameter, and shorter average path length than area-
based LTNs. Therefore, leaf traits appear to be more strongly
coordinated on a mass basis than on an area basis. This result
supported those of previous studies (Wright et al., 2004). It

might be attributed to the LMA-LL spectrum being related to
mass-based nutrient concentrations (Wright et al., 2004).

Leaf Lifespan and Leaf Nitrogen Are the
Key Traits in Leaf Trait Networks
The environmental selection of functional traits with high
centrality in LTNs may affect the whole phenotype. Consequently,
it is necessary to identify the “key traits” in complex relationships
among multiple traits. The “key traits” in LTNs might play
important roles in regulating critical functioning or might be
involved in regulating key functions, strongly influencing higher-
level properties (e. g., fitness) (Koschützki and Schreiber, 2008).
In this study, we showed that the degree of LL was the highest
in mass-based LTNs; thus, LL was the “hub trait.” The cost
of constructing carbon and carbon gain in leaves is directly
related to LL (Reich et al., 1992, 1999), with LL likely being
determined by LMA mechanistically. In other words, a higher
LMA facilitates a higher LL owing to the higher carbon mass per
area, or LL may also be associated with Amass. For instance, at the
whole-plant scale, non-optimal resource use might arise if high-
performance leaves lived long enough to experience self-shading
from canopy growth (Ackerly and Bazzaz, 1995). Thus, the
environmental selection of LL might strongly limit the variability
of other leaf economic traits. We also found that Nmass had the
highest closeness and betweenness; thus, Nmass acts like a bridge
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FIGURE 5 | Variation in the overall parameters of leaf trait networks (LTNs) among different plant growth forms (A–C) and plant life forms (D–F). Different letters show
a significant difference between two networks (P < 0.05). Error bars represent standard error (SE).

in LTNs, linking other leaf economic traits. This phenomenon
might be attributed to nitrogen being allocated to cell walls and
Rubisco (Onoda et al., 2017), mediating the trade-off between the
structure and physiology of leaves, to some extent.

Variation in Leaf Trait Networks Among
Growth Forms and Life Forms
Variation in the network parameters of LTNs could quantify
the interdependence of multiple traits. Compared with the
LTNs of trees, the LTNs of shrubs had higher edge density,
shorter diameter, and shorter average path length. All these
network parameters suggest that the interdependence of leaf
economic traits was higher in shrubs than in trees. A higher
interdependence among traits might allow for the efficient
acquisition and mobilization of resources (Flores-Moreno et al.,
2019). Many studies have pointed out that plants with low
resource availability likely face stronger selection and, thus, tend
to have tighter trait correlations and trade-offs (Liu et al., 2019).
For example, leaf economic traits and leaf hydraulic traits are
decoupled in humid regions (Li et al., 2015), but are coupled
in arid regions (Yin et al., 2018). Compared with trees, the
availability of light resources could be limited for understory
shrubs, and the availability of water resources could be limited
for shrubs of open habitats. Consequently, shrubs adopt a cost-
effective strategy that allows leaf economic traits to strongly

correlate with each other, facilitating efficient functioning. The
interdependence among leaf economic traits of broadleaved trees
was higher than that of conifer trees. Therefore, compared
with coniferous trees, the higher photosynthetic rate of broad-
leaved trees may be the result of stronger interdependence of
individual traits and multiple traits. Our results (except for leaf
vein traits (Brodribb and Feild, 2010)) might provide novel
evidence explaining why angiosperms, rather than gymnosperms,
dominate the plant world.

Future Directions and Challenges for
Leaf Trait Networks
The network analysis is used to explore complex relationships
among global leaf economic traits, and LTNs are established. The
network parameters could help us identify key traits and quantify
the interdependence of multiple traits. However, several hurdles
challenge network optimization. Theoretically, the construction
of plant trait network needs more matching trait data from
different organs and different plant species. First, measuring
and collecting many trait data from different organs is an
important premise. Plant trait database TRY3 is one of the largest
databases in the world, which can provide a strong database
for the construction of trait networks (Kattge et al., 2011, 2020;

3https://www.try-db.org
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Borgy et al., 2017). However, compared with the measured
data, many interpolation data may cause large errors. For the
construction of PTNs, it is best to use the same method for
the measurement of traits as much as possible, even on the
same plant (Westoby et al., 2002). Such networks could then
be used to obtain an accurate representation of the ability of
plants to adapt to various environments in the future. Second, this
study only presents a typical example; however, more parameters
must be studied and more quantitative methods with ecological
significance must be developed.

Ultimately, the concept of trait networks could be applied to
explore how trait networks of plants: (1) vary across climate zones
and different regions; (2) vary along successional gradients, and
(3) respond to disturbance and global climate change.

CONCLUSION

Leaf trait networks provide an effective approach to
explore how plants respond to the environment, with many
promising applications.
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