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Trait covariation during multiphasic growth is of crucial significance to optimal survival

and reproduction during the entire life cycle. However, current analyses are mainly

focused on the study of individual traits, but exploring how genes determine trait

interdependence spanning multiphasic growth processes remains challenging. In this

study, we constructed a nonlinear mixed mapping framework to explore the genetic

mechanisms that regulate multiphasic growth changes between two complex traits

and used this framework to study stem diameter and stem height in forest trees. The

multiphasic nonlinear mixed mapping framework was implemented in system mapping,

by which several key quantitative trait loci were found to interpret the process and pattern

of stem wood growth by regulating the ecological interactions of stem apical and lateral

growth. We quantified the timing and pattern of the vegetative phase transition between

independently regulated, temporally coordinated processes. Furthermore, we visualized

the genetic machinery of significant loci, including genetic effects, genetic contribution

analysis, and the regulatory relationship between these markers in the network structure.

We validated the utility of the new mapping framework experimentally via computer

simulations. The results may improve our understanding of the evolution of development

in changing environments.

Keywords: trees growth, genetic architecture, quantitative trait loci (QTLs), nonlinear mixed mapping, multiphasic

growth models

INTRODUCTION

Mapping the genetic architecture of complex traits is a subject of long-standing interest
and a formidable challenge in modern biology (Falconer et al., 1990; Mackay, 2001; Heslot
et al., 2014). Quantitative trait locus (QTL) mapping is often performed to identify QTLs
or causal genes associated with phenotypes of interest (Mackay et al., 2009), and has
been successfully applied in many plant breeding programs (Collard and Mackill, 2008).
Classic quantitative genetic mapping based on univariate analysis results serves as a simple
method for comparing the genetic control of growth at different ages in a variety of
organisms (Dieters et al., 1995; Suzanne, 2001). More powerful mapping strategies have been
developed for the genetic mapping of complex traits by integrating infinite-dimensional models,
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random regression theory (Meyer, 1998), stochastic process
theory (Pletcher and Geyer, 1999), and functional mapping and
systems mapping (Wu and Lin, 2006; Gai et al., 2011; Sun and
Wu, 2015).

Trait formation exhibits many distinct transitions from
juvenile to adulthood and from the vegetative phase to the
reproductive phase. Many attempts have been made to unveil the
genetic mechanisms that control the growth and developmental
transitions of organisms at different phases (Bond, 2000; Tang
et al., 2018; Ahsan et al., 2019; Xing et al., 2020). Xu et al.
(2016) integrated amultiphase growth equation into a framework
of functional mapping to reveal how QTLs mediate the early
and late stages of tree stem wood in different fashions.
Fu et al. (2017) expanded the theory of systems mapping
to characterize specific QTLs that mediate cooperation and
competition between different traits. However, genetic control
mechanisms underlying trait covariation across multiphase
growth have rarely been explored.

In this study, we consider the fact that different phases
of trait growth and development exhibit different growth
characteristics. It is highly important to divide the phases
of growth for the efficient utilization of resources. Phase
changes are usually identified by modeling temporal patterns of
growth and using mathematical equations from biological and
statistical perspectives. As an example, we study two different but
developmentally interdependent traits, primary height growth,
and secondary radial growth, of forest trees. We take advantages
of the classic Lotka–Volterra (LV) model (May, 1975), which was
originally proposed to describe the ecological interaction of two
species and explain the complexity problem of ecosystems. We
defined a nonlinear governing equation (NGE) combining the
two traits to describe not only the growth patterns of diameter
and height but also their potential interaction pattern. We
analyzed the genetic control of single-nucleotide polymorphisms
(SNPs) with significant effects on the growth of complex phases,
which were identified by the NGE model. On the basis of genetic
effects, we established a regulatory network among significant
markers to realize the comprehensive analysis of stem wood
growth in multiple phases. This study could be beneficial for
the management of forest plantations and the improvement of
fast-growing forest varieties.

MATERIALS AND METHODS

Mapping Materials
Xu et al. (2016) reported a genetic linkage mapping study on
growth traits in a full-sib family of Populus. This family was
generated by crossing an eastern cottonwood (Populus deltoides)
clone I-69, introduced to China in the 1970s (Wu et al., 1992), as
the female parent, and a Euramerican poplar (P.× euramericana)
clone I-45 as the male parent. This cross is equivalent to a
backcross at the species level. This family was planted in 1984
for 24 years in a uniform site at Zhangji Forest Farm, Xuzhou,
Jiangsu, China. Supplementary Table S1 shows the average of
annual temperature and annual precipitation at the experimental
site from 1987 to 2010. Stem heights (defined as the length of
the main stem from the stem–root connection to the tip) and

stem diameters at breast height were measured for each tree at
the end of each growing season. A part of this family (64 full-
sib members) was genotyped, producing 156,362 good-quality
SNPs distributed on 19 chromosomes. Of these SNPs, 94,591
were backcross-like testcross markers and 61,771 were F2-like
intercross markers. For a testcross marker, one of the parents is
heterozygous and the other is homozygous, and the intercross
marker is derived from two heterozygous parents.

Stem growth in Populus trees experiences multiple phases of
development including juvenile, mature, and senescence (Bond,
2000). In the study of Xu et al. (2016), only data from the first
14 years were considered, which include two possible phases.
Because it is likely that tree growth experiences a distrain phase
from year 14, a joint analysis of stem growth that spans24 years
is essential to reveal the genetic architecture of phase change in
stem wood growth trajectories. To do so, a more sophisticated
model, as we will develop in this study, is needed.

Multiphasic Growth Equation
Several classical nonlinear growth equations, such as those
of Gompertz (Gompertz, 1825), Richards (Richards, 1959),
Logistic (Verhulst, 1838), and Von Bertalanffy (Bertalanffy,
1957), describe the “S” shape of growth approximation. However,
the growth of most organisms can actually be described as
a composite form of multiple “S”-shaped phases because of
seasonal fluctuations and differences in the growth rates of the
components of organisms (Piantadosi, 1987). Koops proposed
a multiphasic growth model, which is superior to single-
phase growth in many studies and has been shown to more
accurately estimate growth parameters (Koops, 1987; Grossman
and Koops, 1988; Kwakkel et al., 1993). For example, Van der
Klein et al. (2020) compared the monophasic, diphasic, and
triphasic Gompertz and logistic models to describe the weight-
age and gain-age functions of hens, and the results showed
that the diphasic and triphasic Gompertz and logistic models
yielded better fitting effects than the monophasic models. In
addition, Treves et al. (2017) studied the multiphase growth
pattern of the green alga Chlorella ohadii and metabolic changes
during the growth phases. Multiphase analysis has proven to
be a more accurate method for fitting biological data analysis
and prediction.

According to the multiphasic growth view proposed by Koops
(1987), the overall growth of height and diameter of poplar in the
first 24 years is expressed as the sum of the growth function of
two phases, juvenile and early adult (Xu et al., 2016), leading to a
coupled nonlinear governing equation (NGE):

{

H (t) = H1 (t)+H2 (t)
D (t) = D1 (t)+ D2 (t)

, (1)

where H (t) and D (t) represent the growth of quantitative traits
of height and diameter of trees at age t;H1 (t) andD1 (t) represent
growth during the juvenile phase; andH2 (t) and D2 (t) represent
the growth in adulthood.

In nature, the interactive relationship between diameter and
height can promote or hinder the growth of another trait. The
synergistic effect of stem height and radial growth is conducive to
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the survival and reproduction of trees. However, when resources
are in short supply, height growth and diameter growth achieve
a trade-off of resource competition (Hulshof et al., 2015). In
particular, it is significant and obvious during the juvenile stage
of vegetative growth and nutrient accumulation (Fu et al., 2017).
The governing relationship between diameter and height during
the juvenile stage can be expressed as:







dH1
dt
= αH

(

1− H1
KH1

)

H1 + αHβH←DH1D1

dD1
dt
= αD

(

1− D1
KD1

)

D1 + αDβD←HD1H1

, (2)

where H1 and D1 represent the stem height and diameter
of poplar in the first phase, which corresponds to juveniles.
According to the form of the equation, the first phase can be
divided into independent growth and interaction growth. αH

and αD represent the independent growth rate of the first phase;
KH1 and KD1 represent the asymptotic value of independent
growth of two characters in the first phase; and βH←D and βD←H

are dimensionless parameters used to describe the competitive or
cooperative interaction between stem height and diameter.

However, when poplar reaches the maturity period of
development, the growth patterns of diameter and height
change, which can be described by growth equations without
interacting parts (Xu et al., 2016). By evaluating the information
criterion and fitting optimumof the equations through numerical
experiments in Supplementary Table S2, we introduce the
nonlinear governing equation (NGE), with H2 (t) and D2 (t)
satisfying the following two equations:

{

H2 (t) = KH2 exp
(

− exp
(

pH − qHt
))

D2 (t) = KD2 exp
(

− exp
(

pD − qDt
)) (3)

where KH2 and KD2 are the growth asymptotic values of
adulthood height and diameter; pH and pD are related to the
initial values of adulthood; and qH and qD represent the growth
rate of adulthood.

The NGE can not only clarify the dynamic change rule of the
growth of each character at different phases but also represent the
governing rule between two interaction traits in the first phase.

Modeling Framework of Multiphasic QTL
Mapping
We consider the multiphasic growth of height and diameter as
a whole according to the NGE and detect how QTLs controlled
the overall growth curve from the perspective of systemmapping,
as well as the regulation of phase transition by QTLs (Gai
et al., 2011; Sun and Wu, 2015). We design a model framework
that takes n samples as the mapping population. The trait
growth of each sample i was measured in a series of time
points1, · · · ,T, and y1i = (y1i (1) , · · · , y1i (T)) and y2i =
(y2i (1) , · · · , y2i (T)) (i = 1, · · · , n) represent phenotypic data of
time-related traits 1 (height) and 2 (diameter), respectively.
The composite growth characteristics composed of two traits
approximately obey the bivariate normal distribution, where

the time-dependent mean value and the symmetric covariance
matrix (2T × 2T) are, respectively, expressed as

µ = (µ1;µ2) = (µ1 (1) , · · · ,µ1 (T) ;µ2 (1) , · · · ,µ2 (T))

6 =

(

61 612

621 62

)

The elements on the diagonal in6 are the variance matrix for
each trait, and the nondiagonal elements are the covariance
matrix between a pair of traits. The joint density function of the
two-dimensional normal vectors is of the formf

(

y1, y2; θ
)

, where
θ represents the growth parameters. The joint probability density
function of n sample trees constitutes the likelihood function
as follows:

L0 = f
(

y11, y21; θ
)

· · · f
(

y1n, y2n; θ
)

=
∏n

i=1
f
(

y1i, y2i; θ
)

. (4)

It is assumed that the multiphasic growth of the two traits is
controlled by a set of QTLs located on the linkage map. J kinds
of genotypes are on the assumed QTL, and the time-dependent
mean values of the samples differ among genotypes:

µj =
(

µj1;µj2

)

=
(

µj1 (1) , · · · ,µj1 (T) ;µj2 (1) , · · · ,µj2 (T)
)

.

The joint density function of the genotype is denoted by
fj

(

y1, y2; θj
) (

j = 1, · · · , J
)

. On the assumed specific QTL, the

number of samples with genotype j is nj, satisfying
∑j

j=1 nj = n.

The mixed likelihood function is expressed as

L1 =
∏n1

i=1
f1

(

y1i, y2i; θ1
)

· · ·
∏nJ

i=1
fJ

(

y1i, y2i; θJ
)

=
∏J

j=1

∏nj

i=1
fj

(

y1i, y2i; θj
)

. (5)

According to the multiphasic growth function of the
NGE, we can estimate the mean vector through a set of
parameters (αjH ,KjH1 ,βjH←D,αjD,KjD1 ,βjD←H ,KjH2 , pjH , qjH ,
KjD2 , pjD, qjD)

(

j = 1, · · · , J
)

instead of directly estimating 2T
mean values. By comparing the genotype-dependent differences
in this parameter set, we can determine whether the QTL affects
multiphasic growth.

In addition, we use a highly efficient structured
antedependence (SAD) (1) statistical model, which was proposed
by Zhao et al. (2005), to represent the longitudinal covariance
matrix 6. This method uses a few parameters to calculate the
matrix with a complex structure, which offers the advantages of
simplicity and flexibility and greatly improves the computational
efficiency and statistical ability of the QTL detection model. The
innovation variance and the first-order pre-dependent parameter
are defined as γ 2

1 , γ 2
2 and φ1, φ2, respectively, to structure the

residual variance of trait k (k= 1,2) at time t:

Var (ek (t)) =
1− φ2t

k

1− φ2
k

γ 2
k . (6a)

The covariance between t1and t2 is expressed as

Cov (ek (t1) , ek (t2)) = φ
t2−t1
k

1− φ
2t1
k

1− φ2
k

γ 2
k , t2 > t1. (6b)
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The fixed innovation variance between different time points is
represented by parameter ρ, and the covariance between the two
traits at different time points is expressed as

Cov (e1 (t1) , e2 (t2)) =
φ
t2−t1
2 − φ

t1
1 φ

t2
2

1− φ1φ2
ργ1γ2, t2 > t1. (6c)

In the calculation, we maintain that the parameters of the
covariance matrix under different genotypes of L0 and L1 are
consistent, which can improve the operation efficiency of the
model with little loss of precision. The maximum likelihood
estimation of parameters in the mean and covariance structure
of the QTL detection model is performed by applying the
expectation maximization (EM) algorithm (Dempster, 1977).
The fourth-order Runge–Kutta algorithm is used to calculate the
parametric solution of the NGE, and the Nelder–Mead simplex
algorithm (Zhao et al., 2004) is used as the optimization method
to estimate the parameters of the nonlinear equation and matrix
structure, making the model more efficient.

Hypothesis Testing
On the basis of the likelihood values L0 and L1, we detected the
existence of QTLs that influence the multiphasic growth of traits
by calculating the likelihood ratio statistic. By comparing the
genotypic correlation differences within the parameter set, the
existence of QTLs affecting themultiphasic growth of stem height
and diameter was determined:

H0 :
(

αjH ,KjH1 ,βjH←D,αjD,KjD1 ,βjD←H ,KjH2 , pjH , qjH ,KjD2 , pjD, qjD
)

=
(

αH ,KH1 ,βH←D,αD,KD1 ,βD←H ,KH2 , pH , qH ,KD2 , pD, qD
)

forj = 1, · · · , J (7)

H1: At least one of the above equalities does not hold true.
The null hypothesis means that growth is consistent across

different genotypes, which could be described by a set of NGE
parameters. The alternative hypothesis is that there are genotype
differences in the NGE parameters. The form of the likelihood
ratio statistic is as follows:

LR = 2 log

(

L1

L0

)

. (8)

LR approximately obeys theχ2distribution and its degree of
freedom is the difference in the number of model parameters
between H0 and H1.

The rejection domain of the likelihood ratio statistic LR is
taken asW = {LR ≥ c}, where the critical value c satisfies:

Pθ (LR ≥ c) ≤ α.

At the set test level α, if LR belongs to the rejection domain,
we reject the null hypothesis H0 and accept the alternative
hypothesis H1, which indicates that at this significance level,
differences exist in the multiphasic growth of different genotypes
of this marker. The p-values for hypothesis tests are converted by
LRs and compared with the critical thresholds. We implemented

stringent multiple testing procedures to control the false positive
rate. On the one hand, we performed Bonferroni correction to
adjust the critical value to ensure more rigorous results. On the
other hand, a false discovery rate (FDR) correction based on the
Benjamini and Hochberg method was performed on each p-value
to control the proportion of false positives within a certain range.

We can further examine how QTLs control the multiphasic
growth of the two traits and the characteristics in different
phases. Based on the following hypotheses, we can detect whether
the QTL regulates the interaction growth of stem height and
diameter in the first phase:

H0 :
(

αjH ,KjH1 ,βjH←D,αjD,KjD1 ,βjD←H

)

=
(

αH ,KH1 ,βH←D,αD,KD1 ,βD←H

)

H1 :
(

αjH ,KjH1 ,βjH←D,αjD,KjD1 ,βjD←H

)

6=
(

αH ,KH1 ,βH←D,αD,KD1 ,βD←H

)

forj = 1, · · · , J,

and whether the QTL controls the growth of the two traits in the
second phase by formulating the following hypotheses:

H0 :
(

Kjk2 , pjk, qjk
)

=
(

Kk2 , pk, qk
)

H1 :
(

Kjk2 , pjk, qjk
)

6=
(

Kk2 , pk, qk
)

forj = 1, · · · , J; k = H or D.

According to the biological significance of the parameter, we can
also test whether QTLs control the asymptotic growths KH1 and
KD1 of the independent growth of the two traits in the first phase,
the total asymptotic growth with respect to the interaction, and
the asymptotic growths KH2 and KD2 in the second phase. In
addition, the independent growth rate of the first phases αH and
αD, and the interaction relationships βH←D and βD←H of the
first phase can also be tested. The initial growth values pH and
pD and growth rates qH and qD of the second phase can also be
tested. The phase transition time was determined by examining
the differences in parameters with respect to genotypes.

RESULTS

Fitting Multiphasic Growth Trajectories
We used the NGE (Equation 1) to fit the diameter and
height growth data compared with monophasic, diphasic, and
triphasic logistic models. In Figure 1, the fitting effects of the
logistic models are good during the early stage of tree growth
(approximately 7 years), but the NGE model has a better fitting
effect during the later growth stage. This indicates that the
whole growth trajectory of trees in different periods is changing.
We compared the performances of these models by calculating
the Akaike information criterion (AIC), Bayesian information
criterion (BIC), Schwarz criterion, and adjusted R2 (Table 1).
As shown, the NGE performs better than the other growth
equations, suggesting that it is crucial to consider the impact of
interactive traits at different stages of growth. We also fitted the
growth of 66 samples with the NGE, and the growth of both
height and diameter for each hybrid showed excellent goodness
of fit to the NGE (R2 > 0.976; Supplementary Figures S1, S2).
The residual errors of the growth data are distributed randomly
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FIGURE 1 | Average growth trajectories of Populus growth. Observed phenotypic ranges of (A) stem height and (B) stem diameter of all the samples are indicated by

light orange shading. Average curves of the two traits are fitted with the monophasic equation (green lines), diphasic equation (black lines with triangles), triphasic

equation (blue lines with circles), and NGE (red lines). NGE growth curves are divided into the first phase of orange curves and the second phase of light purple curves.

In the first phase, the curves are divided into broken lines to represent independent growth, and dotted lines to represent the interaction growth of the two characters.

TABLE 1 | Estimated parameters of fitting and evaluation information.

Monophasic Diphasic Triphasic Diphasic (NGE)

Height Diameter Height Diameter Height Diameter Height Diameter

p = 0.7198 p = 0.8207 p1 = 2.5808 p1 = 5.0151 p1 = 0.5617 p1 = -8.2512 αH = 0.5647 αD = 0.5399

q = 0.1497 q = 0.1853 q1 = 0.1925 q1 = 0.2677 q1 = 0.1321 q1 = -0.8430 kH1
= 14.9231 kH1

= 19.9831

K = 25.5181 K = 30.8222 K1 = 9.8744 K1 = 9.5220 K1 = 7.6007 K1 = 1.6566 βH←D = -0.0092 βD←H = 0.0059

p2 = 0.8054 p2 = 1.1539 p2 = 2.5714 p2 = 4.8608 pH =1.7521 pD = 2.5552

q2 = 0.3326 q2 = 0.3321 q2 = 0.1960 q2 = 0.2574 qH = 0.1755 qD = 0.1293

K2 = 15.7204 K2 = 24.7699 K2 = 7.7947 K2 = 9.5961 KH2
= 16.1135 KD2

= 18.6017

p3 = 1.0558 p3 = 1.3770

q3 = 0.4139 q3 = 0.3320

K3 = 10.4079 K3 = 24.9187

adj.R2 = 0.9727 adj.R2 = 0.9887 adj.R2 = 0.9887 adj.R2 = 0.9982

RSD = 11.8756 RSD = 7.2444 RSD = 6.8235 RSD = 3.0006

AIC = 13.7405 AIC = 12.1907 AIC = 12.0881 AIC = 5.2173

BIC = 13.9395 BIC = 12.5888 BIC = 12.6853 BIC = 5.7972

Monophasic, diphasic, triphasic, and nonlinear governing equation (NGE) models were used to fit the average growth of stem height and stem diameter of Populus.

over the predicted values (Supplementary Figure S3), suggesting
that the NGE model is quite robust.

Obviously, the fitting results of the NGE can be divided into
two parts; the first stage of which includes potential independent
growth and interaction growth. Figure 1 shows the fitting results
of the average growth curve. The first growth phase of stem height
reached its asymptotic value at 7 years of age, and the age at
which the asymptotic value of independent growth was reached
was slightly later than that of the total growth of the first phase.
Moreover, we found that in the first phase, the growth of stem
height competed with diameter, leading to independent growth
surpassing the total growth. In addition, the stem height growth
of the second phase begins early, so the two phases overlap by
a considerable period of time (Figure 1A). On the other hand,

the stem diameter growth reached the asymptotic value of the
first phase on the 10th year. The overall growth of stem diameter
during this phase was higher than the independent growth curve,
indicating that the growth of stem diameter was promoted by
stem height. In addition, the second phase of diameter growth
started later than that of the stem height and was far from
asymptotic over the 24 years of the observed data (Figure 1B).

QTL Detection Based on the NGE
The joint process of multiphasic growth is regarded as a whole
system, containing interactions between traits in the first
phase and growth characteristics. By regressing the genotype-
related growth trajectory of stem diameter and stem height,
the differences in genotypes are expressed in the NGE parameters
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(

αjH ,KjH1 ,βjH←D,αjD,KjD1 ,βjD←H ,KjH2 , pjH , qjH ,KjD2 , pjD, qjD
)

.
The description of how a QTL affects the multiphasic growth
and intrinsic interaction of traits can be characterized from
genome-wide information based on a series of hypothetical tests.

We performed FDR correction on the p-value results of all the
SNPs and determined the critical thresholds as 10−40 and 10−50

after Bonferroni correction for testcross SNPs and intercross
SNPs, which are strict detection levels. The Manhattan plots

FIGURE 2 | Manhattan plots of p-values across 19 chromosomes of the Populus genome. Test statistic values of single-nucleotide polymorphisms (SNPs) were

calculated by the system mapping of 24-yr growth curves of stem height and diameter. The p-values are obtained after false discovery rate (FDR) correction. Red

horizontal lines are the critical thresholds at the 10−40and 10−50 significance levels for (A) test cross SNPs and (B) intercross SNPs obtained by Bonferroni correction.

FIGURE 3 | Heat maps of heritability are explained by 65 significant SNPs of Populus. The temporal patterns of heritability for (A) stem height and (B) stem diameter

at 24 years were clustered into two phases, with blue representing the first phase and pink representing the second phase.
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of the corrected p-values derived from test statistic values are
shown in Figure 2. Our NGE-based mapping model identified
26 significant testcross SNPs and 39 intercross SNPs sporadically
distributed over the genome, and 74% of significant SNPs were
within candidate genes with known growth-related functions.
For example, SNP 48,502 is within the GATA12 gene, which is
a member of the GATA family of transcription factors. A set of
significant SNPs are closely distributed in the same region of
chromosomes, such as chromosomes 5, 8, and 9, residing within
the same gene. For instance, SNPs 79,620, 79,624, and 79,625
are highly linked on chromosome 8, located within the region
of the OASA1 gene, which encodes the synthesis of anthranilate
synthase. Supplementary Table S3 presents basic information
about all the significant SNPs, such as their chromosomal and
physical locations, segregation types, allele types, p-values,
and annotated candidate genes. Supplementary Table S4

displays specific genotype parameters of the significant SNPs.
Supplementary Figure S4 depicts the genetic effect curves of
the significant SNPs, showing the contribution to stem height
and diameter growth. The heritability of stem height growth and
stem diameter growth at different ages explained by each of the
65 significant SNPs is shown in Supplementary Figure S5.

Genetic Architecture Analysis of
Multiphasic Growth QTLs
Based on the 65 identified SNPs with significant effects
on multiphasic growth, we estimated genotype-dependent

growth parameters for two different phases and calculated the
phenotypic variation explained (PVE) for 24 years by quantifying
the dynamic genetic contribution of markers to growth. The
PVE of these loci for stem height growth was significantly
smaller than the PVE for diameter. A basic hierarchical cluster
analysis was performed for the PVE of all significant SNPs
over time, which was divided into two stages and represented
by tags with different colors. Of the observed 24 years of
growth, the first phase of stem height growth was the first
6 years, and the remaining 18 years belonged to the second
phase. The first phase of diameter growth was the first 12
years, and years 12–24 represented the second phase (Figure 3).
Compared with the diameter, the first phase of stem height
growth was shorter, which is approximately consistent with
the phase estimation results of the NGE growth curve shown
in Figure 1 and which further suggests the validity of the
NGE analysis.

Among the significant loci, the PVE of the same SNP

for the two traits was different. For example, the genetic

contribution of SNPs 17,787, 86,065, 73,524, 87,023, 28,821,

and 102,765 to the growth of stem height was relatively
substantial, while the genetic contribution of SNPs P28821 and
73,524 to the growth of stem diameter was the lowest among
all the SNPs. In addition, SNP 77,477, with a low genetic
contribution to stem height, had a PVE of 10% in diameter.
The genetic contribution of some SNPs, such as 28,821 and
73,524, is mainly expressed in the growth of one trait. However,

FIGURE 4 | Genetic regulatory networks are generated through genetic effects. (A) Genetic network of 65 significant SNPs with respect to the growth trajectory of

stem height. (B) Genetic network of 65 significant SNPs with respect to the growth trajectory of stem diameter. The arrow indicates the direction in which one SNP

activates or inhibits another SNP. Highlight circles represent the key QTLs.
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some SNPs, such as 17,787 and 102,765, make strong genetic
contributions to both stem diameter and stem height, indicating
that the same significant SNP affects the growth of tree height
and diameter in different ways, thus revealing the pleiotropy
of genes.

The growth of stem height and diameter is determined
jointly by genetic effects of 26 testcross SNPs and 39 intercross
SNPs as well as epistatic effects among them. According to
the potential differential relationship of significant SNPs, we
established a genetic network to characterize how these SNPs
interact with each other to regulate the growth in diameter and
height. In both the height and diameter network structures,
most SNPs receive directional epistasis from other SNPs; they
are activated or inhibited by other SNPs and play passive roles.
Only a few significant SNPs called key QTLs were found to be
in the pivotal dominant position of regulation in the genetic
network, which had a strong potential to influence other QTLs
with major outward links. Three SNPs, intercross SNP 48,833,

intercross SNP 48,971, and testcross SNP 86,976, were the key
QTLs in the stem height genetic network, and the directed
links from them accounted for 27.17, 28.26, and 17.39% of
all pairwise links, respectively (Figure 4A). The key QTLs in
the stem diameter genetic network was testcross SNP 117,854
and intercross SNP 154,950, and links from the two directions
accounted for 64.77 and 25% of the pairwise links, respectively
(Figure 4B). Although these 65 significant SNPs jointly regulate
the overall growth of diameter and height, they serve different
roles in the structural networks for the growth of the two

traits. The regulation relationship among SNPs is not singular
in the network structure. For example, in the stem height

network, there is reciprocal activation between SNP 86,139 and
SNP 111,175. We discern a regulatory loop: SNP 48,833→SNP

86,065→SNP 48,726→SNP 48,502→SNP 48,833 in which one
SNP regulates other SNPs but is influenced by another SNP.
Details of the SNPs corresponding to each number are given in
Supplementary Table S2.

FIGURE 5 | Genotypic growth curves and rate curves of stem (A,B) height and (C,D) diameter. The growth is explained by SNP 137076 with two genotypes, AG and

AA. For each image, the upper panel is the growth curve, and the lower panel is the rate curve. The blue area represents the first phase of growth, where green

represents the independent growth and yellow represents the interacting growth. The pink areas indicate the second phase of growth.
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Genetic Control of Multiphasic Growth and
Transition
The advantage of our NGE mapping approach lies in its capacity
to analyze the genetic control of SNPs with significant effects on
multiphasic growth, which can be tested by hypotheses based
on related growth parameters. Here, we chose the representative

testcross SNP 137,076 to interpret its genetic influence on growth

in different phases of diameter and height. Both genotypes

AG and AA in SNP 137,076 show that the growth of stem
diameter benefits from stem height, and that stem height

growth is deleteriously affected by diameter growth. This can be

found from a similar form of overall growth and independent

FIGURE 6 | Temporal pattern of the pleiotropic effect on stem height and diameter. The multiphasic genetic effects of stem (A) height and (B) diameter, and the

dynamic relationship of each effect on the two growth traits (C) at SNP 137076. The blue solid line represents the total effect of multiphasic growth, the red solid line

displays the effect of the first phase, and the purple solid line denotes the effect of the second phase. The first phase effect curve was divided into independent (red

broken line) and interaction (red dotted line) curves.

TABLE 2 | Mapping accuracy (power) and false positive probability (FPR) of quantitative trait loci (QTLs) based on the NGE.

H2 = 0.05 H2 = 0.10

n = 66 n = 100 n = 200 n = 66 n = 100 n = 200

Power 0.49 0.82 1.00 0.98 0.99 1.00

FPR 0.10 0.09 0.02 0.11 0.11 0.06

The experiments simulated 66 (the same as the real example), 100, and 200 samples under heritability levels of 0, 0.05, and 0.1. The accuracy of positioning and FPR were evaluated

by computer simulation.

FIGURE 7 | Receiver operating characteristic (ROC) curves of the heritability levels. Let the accuracy of QTL mapping be the ordinate, and the probability of false

positives be the abscissa at heritability levels of (A) 0.05 and (B) 0.1 under the three cases of genetic sample sizes of 66, 100, and 200, respectively. Then, AUC1

represents the area under the ROC curve with a sample size of 66, AUC2 represents the area under the ROC curve with a sample size of 100, and AUC3 represents

the area under the ROC curve with a sample size of 200.
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growth for stem height but greater overall growth relative to
independent growth for stem diameter. The phase transition
time of stem height occurs earlier than that of stem diameter.
The two genotypes at this locus have similar control over the
multiphasic growth of the two traits but different patterns in the
growth details.

As shown in Figures 5A,B, during the juvenile phase,
genotype AG had an extended period of duration of height
growth compared with genotype AA (6.3 vs.5.3), and the
difference was more pronounced for independent growth (8.3
vs. 6.8). Genotype AA has a larger asymptotic value (11.2 vs.
10.9) but a smaller asymptotic value for independent growth
than genotype AG (16.3 vs. 16.6); thus, the latter suffers stronger
inhibition (−6 vs. −5.4). The duration for the early adult phase
of genotype AG was shorter (26.4 vs. 27.2), and the overlapping
transition time between the two phases was also slightly shorter
(5 vs. 5.1). According to the growth rate curve, the juvenile phase
maximum growth rate of genotype AAwas much larger than that
of genotype AG (2.4 vs. 2), and there was a similar difference
in the independent growth rate in this phase (3.6 vs. 2.7). The
value of the early adult phasemaximum growth rate was the same
for both genotypes. As expected, the maximum growth rate and
duration are determinants of overall growth. Different patterns in
the onset, offset, duration, andmaximum growth rate were found

between the two genotypes for diameter growth (Figures 5C,D),
suggesting that this SNP significantly affects not only the timing
of growth but also the development between traits.

The influence of SNP 137,076 on the growth of the two traits is
reflected in the temporal variation of the genetic effect, which also
shows the characteristics of periodic change consistent with the
growth curves. For stem height, the net genetic effect increases
during the first 6 years and then decreases. During the juvenile
phase, the overall genetic effect and the independent growth
genetic effect show similar change patterns to the net effect, and
then they level off at 12 years of age. The effect value of the
independent growth is greater than that of the overall growth
effect. The change in the interaction genetic effect shows a lag,
beginning to rise at 5 years of age, and slowly declines until it
stabilizes 12 years later. The genetic effect curve of the early adult
phase gradually increased during years 1–12 and then decreased,
which was related to the early growth of the second phase of stem
height (Figure 6A). We analyzed a similar trend of genetic curves

for diameter growth (Figure 6B). The pleiotropic effect between
stem height and the diameter of SNP 137,076 is obvious with

respect to the net genetic effect and juvenile phase genetic effect,
but in the second phase, the curve shows two approximately flat
trends, indicating that there is no obvious correlation between the

growth of diameter and height in this phase. Thus, it is reasonable

TABLE 3 | Parameter estimation of NGE.

True H2 = 0.05 H2 = 0.10

n = 66 n = 100 n = 200 n = 66 n = 100 n = 200

AA Aa AA Aa AA Aa AA Aa AA Aa AA Aa AA Aa

αH 0.4816 0.5880 0.6689

(0.6401)

0.5827

(0.2164)

0.5506

(0.1955)

0.5553

(0.1053)

0.5366

(0.2111)

0.5424

(0.0659)

0.4663

(0.1314)

0.5086

(0.0546)

0.4640

(0.1171)

0.5296

(0.0643)

0.4629

(0.0635)

0.5268

(0.0389)

KH1 16.6452 16.3061 23.6395

(10.1328)

22.7284

(6.8697)

22.7374

(7.8829)

22.2026

(4.5249)

21.8139

(5.8606)

21.7824

(5.2260)

23.4571

(8.4108)

23.3385

(6.8279)

21.7667

(6.0535)

21.1651

(5.0928)

20.5583

(4.0174)

20.6019

(3.7874)

βH←D -0.0085 -0.0082 -0.0215

(0.0230)

-0.0126

(0.0123)

-0.0182

(0.0141)

-0.0131

(0.0072)

-0.0182

(0.0102)

-0.0119

(0.0054)

-0.0179

(0.0099)

-0.0133

(0.0059)

-0.0177

(0.0079)

-0.0126

(0.0062)

-0.0189

(0.0057)

-0.0121

(0.0040)

αD 0.5057 0.5387 0.2934

(0.2643)

0.3443

(0.1301)

0.3164

(0.1974)

0.3489

(0.1023)

0.2961

(0.1268)

0.3474

(0.0862)

0.2762

(0.1528)

0.3762

(0.0976)

0.3114

(0.1146)

0.3779

(0.0788)

0.2940

(0.0950)

0.3815

(0.0563)

KD1
18.8163 18.9900 13.6369

(7.9672)

16.5536

(6.1950)

14.8980

(5.2775)

16.5682

(3.7728)

15.1897

(3.8673)

16.1873

(3.2860)

13.4869

(5.2724)

15.1540

(4.0220)

14.4949

(4.0839)

15.5332

(3.4592)

14.8102

(3.5746)

15.7639

(2.6413)

βD←H 0.0034 0.0120 0.0140

(0.0245)

0.0166

(0.0130)

0.0113

(0.0120)

0.0154

(0.0078)

0.0127

(0.0085)

0.0165

(3.2860)

0.0171

(0.0145)

0.0216

(0.0109)

0.0157

(0.0116)

0.0204

(0.0091)

0.0161

(0.0096)

0.0200

(0.0073)

PH 1.9779 0.0034 2.6715

(3.0861)

2.1703

(0.9123)

2.2885

(1.4237)

2.0182

(0.5487)

1.9735

(0.6200)

1.9672

(0.5710)

2.4342

(1.5301)

1.9927

(0.6607)

1.9493

(0.4489)

1.8784

(0.2874)

1.8651

(0.2489)

1.8159

(0.1681)

qH 0.1751 0.1699 0.2435

(0.2401)

0.2065

(0.0631)

0.2122

(0.1110)

0.1981

(0.0404)

0.1925

(0.0461)

0.1915

(0.0379)

0.2251

(0.1100)

0.1987

(0.0416)

0.1876

(0.0384)

0.1879

(0.0244)

0.1927

(0.0230)

0.1864

(0.0154)

KH2
14.7208 15.0220 17.7895

(4.6844)

15.8602

(3.6790)

17.1807

(3.9218)

15.6285

(3.3153)

17.5520

(3.9027)

15.3650

(2.8692)

18.2597

(4.5231)

15.9178

(3.1224)

18.6338

(3.6628)

16.1130

(2.4214)

19.7661

(2.6491)

16.1545

(1.8235)

PD 3.1031 2.7916 7.3984

(8.1976)

4.1125

(2.3937)

4.1717

(3.2476)

3.6407

(1.7065)

4.5149

(4.3739)

3.4942

(1.1570)

4.3387

(2.7992)

3.2320

(1.1822)

4.3321

(4.9189)

3.2029

(0.9710)

3.5734

(1.2141)

3.1049

(0.7075)

qD 0.1639 0.1538 0.4269

(0.4866)

0.2346

(0.1461)

0.2336

(0.1899)

0.2054

(0.1022)

0.2424

(0.2365)

0.1995

(0.0708)

0.2373

(0.1616)

0.1876

(0.0706)

0.2360

(0.2723)

0.1840

(0.0597)

0.1998

(0.0746)

0.1780

(0.0432)

KD2
14.1880 14.9758 15.5237

(8.7675)

15.2730

(6.4920)

17.7401

(8.0927)

15.3567

(5.8122)

15.7440

(5.9795)

13.9565

(3.6078)

16.7791

(6.1539)

15.3119

(3.1224)

16.4399

(6.0989)

14.9523

(4.0578)

14.9613

(3.9636)

14.6580

(2.9999)

A significant locus is used to simulate 100 iterations with the NGE model at heritability levels of 0.05 and 0.1, and sample sizes of 66, 100, and 200, which have two genotypes: AA and

Aa. The SE is the value in brackets.
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to describe the growth of the two traits without interaction in the
second phase in the NGE (Figure 6C).

Computer Simulation
To verify further the statistical characteristics and mapping
accuracy of the NGE, we conducted a simulation analysis based
on the real growth data of tree diameter and height over 24 years
under different sample size and heritability conditions. Among
them, the sample size is the number of simulated samples;
namely, n = 66 (the same as the real example), 100, and 200.
Heritability is the proportion of genetic variance in the simulated
phenotypic variance, and two levels of H2are utilized: 0.05 and
0.1. It is assumed that the growth of the two traits of trees is
regulated by a set of QTLs in the genome. The simulation scale
is 1,000 testcross genetic markers, and the phenotypic data are
determined by one of the QTLs. In each simulation case, the
proportion of simulation iterations of meaningful QTLs screened
out of 100 repeated simulation experiments is the mapping
accuracy (power), which is calculated and shown in Table 2. In
the analysis of the multiphasic growth of tree traits, the mapping
accuracy of QTL detection based on the NGE exceeded 0.49, and

the accuracy of simulation increased with heritability and sample
size. With a heritability of H2 = 0.05, although the accuracy was
only 0.49 when the sample size was 66, it significantly improved
to 0.82 when the size was increased to 100. When the sample size
was 200, the accuracy of the two heritability levels reached 1. The
results show that the NGE achieves good accuracy in selecting
QTLs for multiphasic growth and is suitable for large sample size
data analysis.

On the other hand, in the absence of QTL expression,

the same genetic sample sizes of n = 66 (the same as the

real example), 100, and 200 and heritability levels of H2 =

0.05 and 0.1 are simulated with 1,000 genetic markers and

phenotypic data. At this point, the proportion of the simulation
times of QTLs screened out to the number of 100 simulations
is the false positive probability. The false positive rate (FPR)
of QTL detection based on the NGE is small (< 0.11),
indicating that the NGE has reasonably high specificity even
under the conditions of large sample size and heritability
(Table 2).

According to the QTL mapping accuracy and false positive
probability in a series of different thresholds, we express ROC

FIGURE 8 | Growth curves of stem (A, B) height and (C, D) diameter of two genotypes with a heritability of 0.05. The overall growth (solid line) for each trait is

decomposed into its first phase (broken line) and second phase growth components (dotted line). The sample sizes are 66, 100, and 200. Black represents the real

curve, red represents the estimation curve with the sample size of 66, blue represents the estimation curve with the sample size of 100, and the green represents the

estimation curve with the sample size of 200.
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FIGURE 9 | Growth curves of stem (A, B) height and (C, D) diameter of two genotypes with a heritability of 0.1. The overall growth (solid line) for each trait is

decomposed into its first phase (broken line) and second phase growth components (dotted line). The sample sizes are 66, 100, and 200. Black represents the real

curve, red represents the estimation curve with the sample size of 66, blue represents the estimation curve with the sample size of 100, and the green represents the

estimation curve with the sample size of 200.

curves for different simulated sample sizes. The area under the
ROC curve (AUC) was calculated to assess the accuracy of
QTL mapping of the NGE (Figure 7). Under several different
simulation conditions, the AUC value was less than 0.5 only
when H2 = 0.05 and n = 66, and other simulation results had
high QTL detection significance. At the heritability level of 0.1,
the AUCs of the simulated quantities of the three scales were
all relatively high (>0.9659). At a certain heritability level, the
accuracy of QTL mapping based on the NGE is affected by the
number of genetic samples, indicating that the model is more
suitable for QTL detection with large sample size.

We perform 100 simulation calculations based on the NGE
parameters of the two genotypes of a significant QTL at the
heritability levels of H2 = 0.05 and 0.1, with sample sizes of n
= 66, 100, and 200. The two genotypes are expressed as AA and
Aa. The maximum likelihood estimation of NGE parameters
(

αjH ,KjH1 ,βjH←D,αjD,KjD1 ,βjD←H ,KjH2 , pjH , qjH ,KjD2 , pjD, qjD
)

of simulated data is obtained by the fourth-order Runge–Kutta,
EM, and Nelder–Mead algorithms. The parameter estimation
results are shown in Table 3. Numerically , there are some

differences between the estimated parameters and the real
parameters. However, with the increase in genetic heritability
and sample size, the precision of parameter estimation improves,
the standard deviation of various parameters declines, and the
simulation effec t becomes more stable.

Among the estimated parameters of 100 groups of simulation
data obtained under the six kinds of simulation conditions, we
select several groups of parameters with better effects to produce
the overall growth curves and growth curves of two phases
of two interaction traits. The trends of the estimated curves
of different simulation scales are consistent with those of the
real curves (Figures 8, 9), which suggests that the genotype-
specific curves estimated from the above example are reasonably
convincing. By comparing the estimated curves of the two
heritability levels, the simulation effect of the estimated curve
of 0.1 heritability is obviously better than that of the estimated
curve of 0.05 heritability. For heritabilities of both levels 0.05
and 0.1, the green estimated curve with 200 simulated quantities
is the closest to the actual curve, and the simulation effect
is the best, followed by the blue curve with 100 simulated
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quantities, and the red curve with 66 simulated quantities.
As expected, the simulation effects increase with sample size.
Larger sample sizes, such as 200, can effectively minimize
noise and are suitable for QTL mapping using a multiphasic
growth model.

DISCUSSION

The phase transition during tree growth is the internal
mechanism for optimal development and reproduction.
At the same time, it should not be ignored that phased
development is not characterized by organ morphology and
growth morphology independence, but there is a correlation
between each morphology. For example, in the relationship
between biomass yield and shrub growth traits, increasing
the number of stems would reduce the average stem diameter
but not the average stem length of plants (Mosseler et al.,
2014). There are proportional relationships between stem
cross-sectional area and stem weight, stem weight and leaf
weight, and leaf weight and leaf area at the twig level (Sun
et al., 2006). In our analysis of the phases of stem growth
in trees, we emphasized the interaction between stem height
and diameter during infancy, which has important biological
significance. The NGE not only explored the continuous phase
transitions that are difficult to distinguish in traditional analysis
but also quantitatively described the interaction relationship
between cooperation and confrontation among traits, thus
further recognizing the individual functions of stem growth.
We implemented systems mapping (Fu et al., 2017) to identify
specific SNPs involved in multiphasic growth and provided
a reliable ecophysiological perspective for understanding
the growth of two sets of complex traits, tree height, and
tree diameter.

The Gene Ontology (GO) analysis shows that the most
significant SNPs can be annotated to genomic regions
of candidate genes that encode particular biological
processes (Supplementary Table S3). We find that a set
of significant SNPs detected are highly linked within
the same regions of chromosomes. Given that our
mapping population is a full-sib family derived from two
heterozygous parents, the linked SNPs, collectively acting
as a QTL, may represent the same genes. A more precise
characterization of the linked SNPs is needed through other
genetic approaches.

The competitive or cooperative relationship between stem
height and diameter is present throughout the growth history
of trees, although it may take different forms during different
phases and is sometimes not obvious. Our Lotka-Volterra-
based interaction model can be extended to different phases of
growth, describing complete tree growth and development and
the interaction of traits within them. In addition, the overall
multiphasic growth system of trees does not include only the
interaction between the two traits. For example, the stem growth
of trees also includes the growth of some lateral organs and
branches in addition to the height and diameter of the stem.

The compound phase growth model can be extended from a
two-dimensional to a multidimensional model to conduct a
comprehensive overall analysis of tree growth, although this
expansion will greatly increase the complexity of the model and
the difficulty of parameter estimation.

In the actual growth process, studies have shown that,
in addition to endogenous regulatory factors, developmental
genetic programs that control the transition between different
phases of organisms are also regulated by environmental stimuli
(Isabel and Dean, 2006; Huijser and Schmid, 2011; Srikanth
and Schmid, 2011). Common environmental controls include
stimuli such as temperature and photoperiod (Winfield et al.,
2009; Kubota et al., 2014). For example, transcriptome changes
in the transition of wheat from the vegetative to the reproductive
growth stage are induced by cold and light (Winfield et al.,
2009). Environmental factors affect the utilization of resources
and morphological adaptation of trees to the environment, thus
changing the competitive relationship between stem height and
diameter and the growth and development phases. Therefore,
our multiphasic framework can be extended to developmental
transitions in different environments in order to study how
stem growth structures respond to environmental changes.
This theory can be used to analyze the interaction between
QTLs and the environment with respect to the transformation
of stem phase growth, and to analyze stem growth structure
from the evolutionary point of view of tree adaptation to the
ecological environment.

We performed many simulation analyses based on the
actual data, and the QTL mapping method based on
the composite multiphasic growth model exhibited good
statistical characteristics and reasonably high specificity.
Our composite multiphasic growth model provides an
effective tool to describe the growth and development of
tree diameter and height. In addition, relationship between
phase development and internal growth is not limited to the
stem growth structure of trees but also applies to the growth
and phase transformation of quantitative traits associated
with other organisms, such as root length, root thickness,
and root number. The composite multiphasic growth model
provides a reliable framework to map phylogenetic QTLs for
phase change.
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