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Sunburn in grapevine berries is known as a recurring disorder causing severe yield losses

and a decline in berry quality. The transition from healthy to sunburnt along a temporal

trajectory is not fully understood. It is driven by light-boosted local heat impact and

modulated by, e.g., past environments of the berry and its developmental state. Events of

berry sunburn are often associated with heatwaves, indicating a link to climate change.

In addition, the sensitivity of grapevine architecture to changing environmental condition

indicates an urgent need to investigate and adapt mitigation strategies of berry sunburn

in future vineyards. In this perspective, we want to identify missing links in predicting

berry sunburn in vineyards and propose a modeling framework that may help us to

investigate berry sunburn in future vineyards. For this, we propose to address open

issues in both developing a model of berry sunburn and considering dynamic canopy

growth, and canopy interaction with the environment and plant management such as

shoot positioning or leaf removal. Because local environmental conditions drive sunburn,

we aim at showing that identifying sunburn-reducing strategies in a vineyard under future

environmental conditions can be supported by a modeling approach that integrates

effects of management practices over time and takes grapevine architecture explicitly into

account. We argue that functional-structural plant models may address such complex

tasks. Once open issues are solved, they might be a promising tool to advance our

knowledge on reducing risks of berry sunburn in silico.

Keywords: climate change, grapevine, heat, canopy architecture, light, functional-structural plant model

1. INTRODUCTION

Berry sunburn in grapevines is a recurring disorder that can reduce berry quality and cause severe
yield loss (Keller, 2015). Recently, Gambetta et al. (2021) reviewed current knowledge on berry
sunburn in grapevine. They conclude that processes resulting in sunburn are highly complex and
not fully understood, but key drivers of sunburn are local light conditions and heat impact on
the berry surface and a cultivar-specific susceptibility of the berry to sunburn. The latter may
depend on various characteristics of the berry such as its developmental stage and its adaptation
to the environment.

An increased emergence of sunburn has been observed in recent years in some vine regions in
France and Germany (Gambetta et al., 2021). Given that berry sunburn is driven by extreme heat,
more frequent and intense heatwaves, which can be expected in future (Masson-Delmotte et al.,
2021), could indicate a link of climate change and sunburn. Thus, a more frequent occurrence of
sunburn could be expected in the future (Silvestre et al., 2019; Santos et al., 2020; Gambetta et al.,
2021), but only if viticulturist could not fully adapt canopy management and associated practices.
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Yet, we think that climate change might have even more
significant effects on sunburn patterns in a future vineyard:
Climate change might further advance phenological phases
(Duchêne et al., 2010; Bernardo et al., 2018) and, e.g., shift
the ripening phase into periods with higher temperatures, for
example, in European and Australian wine regions (Jones et al.,
2005; Webb et al., 2007, 2012). In the ripening phase, berries are
particularly susceptible to sunburn (Bondada and Keller, 2012);
thus, climate change might aggravate sunburn risks of newly sun-
exposed berries in this phase. Being less susceptible to sunburn
in earlier phases (Hulands et al., 2014) does not mean that there
is no potential sunburn risk. Extreme temperatures in heatwaves
might counterbalance the protective trait. Thus, assuming that
climate change intensifies extreme events (Perkins-Kirkpatrick
and Lewis, 2020), this might add sunburn-risk periods even to
the earlier growth season. Then again, elevated CO2 (eCO2),
one driver of climate change, may change bunch architecture
(i.e., longer bunches), which might affect sun exposure, and
increase growth of secondary lateral shoots, but periods of
high temperatures may weaken this effect (Wohlfahrt et al.,
2018). Obviously, both statements neglect effects of adapted
management practices (Stoll et al., 2010; Zheng et al., 2017;
Gatti et al., 2018; Valentini et al., 2018, 2021; Bei et al., 2019;
Lavado et al., 2019; Hunter et al., 2020; Gutiérrez-Gamboa
et al., 2021; Martinez De Toda, 2021; Naulleau et al., 2021;
Schäfer et al., 2021) and other limiting factors like reduced
soil water availability (Lopes et al., 2018). Thus, eCO2 might
reduce sunburn risks in the later season because of shading
berries by increased lateral leaf area, but high temperatures might
attenuate the positive effect. On the other hand, leaf removal is
a common management practice (Palliotti et al., 2013; Pastore
et al., 2013; Torres et al., 2021), for example, to influence grape
composition or to reduce disease pressure (Zenoni et al., 2017;
Tóth, 2020; O’Brien et al., 2021; VanderWeide et al., 2021).
While timing, extent, and need for leaf removal depend on local
environmental factors, opening up the canopy at some point is
usually recommended for promoting wine quality (Frioni et al.,
2017; Hickey and Wolf, 2019; Satisha and Somkuwar, 2019;
Würz et al., 2020; O’Brien et al., 2021). Even though, early leaf
removal in the bunch zone can allow berries to better adapt
to sunlight and, thereby, reduce their susceptibility to sunburn
(Gambetta et al., 2021), leaf removal events just before or during
a heatwave might dramatically increase sunburn occurrence due
to newly sun-exposed berries being insufficiently adapted to the
risky environment (Hayman et al., 2012; Palliotti et al., 2014).
Again, if we expect more heatwaves due to climate change, this
would shorten and reduce the time windows of leaf removal
for protection against sunburn. In addition, strategic decisions
such as row orientation, cultivar choice, and trellis system might
interplay with the above-mentioned scenarios (Palliotti, 2011;
Hunter et al., 2016, 2017; Zheng et al., 2017; Bernardo et al.,
2018; Leeuwen et al., 2019; Chopard et al., 2021; Kurtural and
Fidelibus, 2021; Sargolzaei et al., 2021). For example, in north-
south oriented rows sunburn occurs often just on the west side
of the rows (Spayd et al., 2002; Gambetta et al., 2021) due to
an unbalanced temperature distribution with heat peaks in the
afternoon (Lopes et al., 2018; Strack et al., 2021). Therefore, in
order to reduce sunburn risks in such vineyards, leaf removal

is sometimes limited to the morning side (east) of the canopy.
However, climate change might increase temperature to a point
where the heat impact might cause sunburn on non-shaded
berries on the morning side. Thus, climate change might increase
the sunburn risk of hitherto low-risk berries and add new
locations of possible sunburn occurrence to the grapevines.

In summary, the interplay of the discussed future climatic
conditions, seasonal management practices, and strategic
decisions on vineyard planning might severely affect future
seasonal sunburn occurrence pattern. This underlines the
importance of taking climate change explicitly into account
when addressing sunburn in future vineyards. Hence, an
advanced modeling tool for systematically analyzing future
scenarios may then be needed to support and accelerate
the development of adapted mitigation strategies. Recently,
Gambetta et al. (2021) suggested predicting sunburn events
based on the following modeling approach: “If the susceptibility
of a given cultivar and developmental stage and the duration of
adaptation were known, this information could be combined
with accurate berry fruit surface temperature (FST) to predict
sunburn events. In addition, modeling approaches on canopy
level could provide a better insight for mitigation strategies of
sunburn protection considering plant architecture and training
systems in vineyards.” Figure 1 illustrates this idea.

In this perspective, we want to advance this idea and propose a
modeling framework that may help us to investigate the extent of
berry sunburn in future vineyards, while particularly considering
climate change and pointing out missing links to be resolved for
such a berry sunburn prediction. Other factors effecting canopy
development and hence light penetration, such as nutrition and
water status (Keller, 2005; Lopes et al., 2018; Briglia et al.,
2020), are assumed to be unaltered and linked to a selected
reference condition, although this limits the initial scope of the
modeling framework.

2. MODELING BERRY SUNBURN OF
GRAPEVINES

Following Gambetta et al. (2021), a model of berry sunburn of
grapevine may assume that sunburn occurrence can be predicted
from the following key characteristics of the berry: susceptibility
of the given cultivar to sunburn, developmental stage, and
duration of adaptation and berry surface temperature.

The output of the sunburn model for a berry is its sunburn
state, either healthy or sunburnt. At the onset of berry and
bunch growth, all berries can be assumed healthy. This could
be reflected in the model by an initial sunburn value of SB =

FALSE for all berries. During development, a berry either keeps
this value or, if subjected to a sunburn event, its trait is set to
SB = TRUE. For the decision of an irreversible state transition
from healthy to sunburnt, the model could compare the surface
temperature of the berry, FST, with a cultivar-specific threshold
surface temperature Tc. If the threshold surface temperature is
exceeded, sunburn occurs. This can be expressed by

if FST > Tc then the sunburn state of berry: SB = TRUE .
(1)
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FIGURE 1 | Sunburn in grapevine berries is a heat-induced disorder that requires direct exposure of the berries to the sun. Gambetta et al. (2021) suggested to

predict the occurrence of berry sunburn from local sun exposure, local surface temperature, and the susceptibility of berry to sunburn. These traits are affected by

environment and plant management. The abiotic environment can influence both heat impact on berries and vine architecture, thus local sun exposure. Plant

architecture is also determined by the vineyard layout and management practices, such as shoot positioning and leaf removal, which in turn influences light

penetration into the canopy and thereby affects sunburn risks.

The current susceptibility of a berry to sunburn could be
expressed by a scaling factor fs of the threshold temperature. This
changes (Equation 1) as follows

if FST > fs × Tc then the sunburn state of berry: SB = TRUE .
(2)

Based on this approach, a decreasing fs would cause sunburn at
lower FST. If the factor fs reflects both, the developmental stage
of berry and duration of adaptation, the model could echo the
changing susceptibility of a berry to sunburn. Such a modeling
approach seems quite appealing at the first glance, because of its
simplicity and close link to observations in the field. However,
we need to overcome missing links before it would be applicable.
These missing links are directly related to the model components
in Equation (2) but also to the fact that berry sunburn is a
disorder that requires direct sun exposure of the berries and,
therefore, depends on the canopy architecture of the grapevines.
The reason for this is that shaded berries typically do not show
sunburn symptoms at all, since the required heat impact for

sunburn is not supplied by ambient temperature alone (Gambetta
et al., 2021).

Cultivar-specific threshold temperature, Tc: Since the model
should consider varying susceptibility of a berry to sunburn by
accounting for the developmental stage of the berry and duration
of adaptation, the cultivar-specific threshold temperature, Tc,
has to represent a reference condition. This reference condition
could be a combination of developmental stage “véraison”
(beginning of berry ripening) and lowest susceptibility of a
berry to sunburn. In addition, to be useful as reference value
in the model, Tc has to be a constant value. Yet, it is still
an open task to show that Tc is such a robust trait to
asses sunburn.

Susceptibility factor, fS: To allow the comparison of
temperatures in Equation (2), the susceptibility factor of a berry
to sunburn has to be dimensionless and equal 1 for the reference
condition of Tc. In order to echo observations, fs should depend
on both, developmental stage (DS) and berry skin adaptation to
sun exposure (SE). The following equation mimics a simplified
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modeling approach of this relation:

fs = function(fDS, fSE) (3)

where fDS represents the dependency of sunburn susceptibility
on the developmental stage of a berry, and fSE includes variation
in susceptibility with respect to the sustaining sun exposure of
berry. Thus, fDS should cause fs to decrease with time from
minimum susceptibility at the onset of berry growth tomaximum
susceptibility at harvest. In contrast, a minimum susceptibility
should be reached at full sun adaptation reflected by a fSE causing
fs to increase. However, response functions of the different
aspects of berry susceptibility are unknown and it is unclear
whether these aspects act independently from each other. For
estimating parameters experimentally, first attempts have shown
that grapes grown in different conditions can successfully be
burnt applying artificial light and taking thermal images to
determine a surface temperature (Müller et al., 2021).

Berry surface temperature, FST: For predicting berry
sunburn in future vineyards, it would be necessary to predict
berry surface temperature as well. Energy-balance models allow
estimating FST of single berries grown in controlled conditions
(Smart and Sinclair, 1976) and in the field (Cola et al., 2009;
Ponce de León and Bailey, 2021). The model of Cola et al.
(2009) is setup for red grapevine berries in a hedge-like row
canopy from véraison to harvest and predicts FST from sensible
heat flow, air temperature and a turbulent exchange coefficient
using constant values of leaf area index and row height as
input. This model estimates FST within static architectural
conditions in the field sufficiently accurate for the model purpose
(Cola et al., 2009). In contrast, the model of Ponce de León
and Bailey (2021) successfully introduced a heat storage term
for predicting rapid spatial and temporal fluctuations in berry
temperature. The model is validated against experimental data
and predicts average berry temperature with high accuracy
(assessed by coefficients of determination above 94% and low
errors). However, advancements are needed to make both
models sensitive to changing canopy architecture caused by
grapevine growth and interactions with the environment or plant
manipulation events.

Light-exposure of the berries: Berry sunburn requires sun
exposure, which, therefore, needs to be monitored as mandatory
prerequisite of the above-described approach of modeling
sunburn. However, the sheer number of berries in a vineyard
does not permit tracking sun exposure of all berries in a
vineyard simultaneously. It seems reasonable that predicting
local light conditions on the berries could help to overcome these
challenges. Certainly, the penetration of light into the grapevine
canopy depends on many factors such as the trellis system (e.g.,
vertical shoot positioning), row spacing and orientation, leaf
positioning within the canopy including the optical properties of
canopy, but also plant management such as leaf removal (Zorer
et al., 2017; Naulleau et al., 2021). A simple model of light
attenuation within a canopy, such as Beer-Lambert equation,
allows precise estimates in horizontally homogeneous canopies
based on leaf area index and an experimentally derivable light
extinction coefficient (Monsi and Saeki, 2005). However, such

an approach does not result in accurate snapshots of local
light conditions within a heterogeneous grapevine row canopy.
As a consequence, for modeling sunburn in vineyards, model
approaches are needed that echo canopy architecture and its
interplay with the incoming light in high resolution.

3. TOWARD PREDICTING BERRY
SUNBURN IN FUTURE VINEYARDS

A specific class of plant models, the so-called functional-
structural plant models (FSPMs), can integrate structural
components of a canopy in detail and can even catch the
variability of canopy (e.g., Schmidt and Kahlen, 2019; Boudon
et al., 2020). They explicitly combine plant architecture and
plant functioning. FSPMs can be used to deal with research
questions ranging from basic research to applied sciences
(Louarn and Song, 2020). Understanding plant functioning
across scales and integrating multidisciplinary knowledge
remain an ambitious task in FSPMs (Louarn and Song,
2020), but they have particularly proven useful for addressing
complex interactions of plants and their light environment
(e.g., Kahlen and Stützel, 2011).

For grapevine, there already exist several FSPM approaches.
Most of them consider canopy architecture in detail but focus on
static snapshots of grapevine architecture captured by digitized
real plants (e.g., Louarn et al., 2005). The pioneering model
Top-vine simulates light-sensitive differences in the variability
of canopy structure of cultivar × training system pairs for
cvs. Grenache Noir and Syrah (Louarn et al., 2008). Follow-
up models of Top-vine (Prietro et al., 2012; Prieto et al.,
2019) and further grapevine-FSPMs (Zhu et al., 2018; Albasha
et al., 2019) focus on linking complex physiological processes
such as photosynthesis and transpiration to static architectural
constraints: Prietro et al. (2012) adapted the architectural model
of Top-vine to fit it to digitized data of a single grapevine
cv. Syrah of each experimental site and used this model to
examine the variability of gas exchange within the canopy, taking
into account the nitrogen content of the leaves and the local
adaptation to radiation in the grapevine. The latest development
of this study highlights the role of N-distribution within the
canopy on gas exchange of canopy architectures established by
different training systems (Prieto et al., 2019). In the FSPM
GrapevineXL, Zhu et al. (2018) linked local plant architecture to a
bio-mechanical model of gas exchange and a water status model.
They simulated berry quality based on carbon andwater fluxes. In
this study, the descriptive architecture mimicked the conditions
of grapevine fruiting cuttings of cv. Cabernet Sauvignon in a
greenhouse environment. The model HydroShoot is a FSPM that
considers plant architecture for simulating transpiration and net
photosynthesis rates at leaf and plant level of single grapevines
(Albasha et al., 2019). To achieve this, HydroShoot does not take
into account time-dependent changes in plant architecture.

So far, just a very few grapevine-FSPMs consider dynamic
plant growth over the season (Garin et al., 2014; Schmidt
et al., 2019). Top-vine data also served as the basis of the
first dynamic grapevine-FSPM to analyze the development of
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TABLE 1 | Grapevine FSPMs, their original purpose, and necessary features listed to model berry sunburn.

Grapevine FSPMs Necessary features for berry sunburn modeling

Model* Purpose Cultivar Dynamic

growth

In-season

management

Berries Berry

growth

FST

model

Top-vinea canopy structure

× training system,

gas-exchange

× nitrogen content

× radiation

Grenache Noir,

Syrah

no no no no no

Hydroshootb gas-exchange

× water deficit

Syrah no no no no no

GrapevineXLc berry growth

× water flux

× carbon flux

Cabernet

Sauvignon

no no yes yes no

Top-vine (OpenAlea)d powdery mildew

development

n.a yes no no no no

Virtual Rieslinge canopy structure

× training system

× plant management

× light interception

Riesling yes yes no no no

Heliosf berry temperature

× training system

Cabernet

Sauvignon

no no yes no yes

*model specific information taken from cited publications.
a(Louarn et al., 2005, 2008; Prietro et al., 2012; Prieto et al., 2019).
b (Albasha et al., 2019).
c(Zhu et al., 2018).
d (Garin et al., 2014).
e(Schmidt et al., 2019; Bahr et al., 2021).
f (Ponce de León and Bailey, 2021).

powdery mildew (Garin et al., 2014). In contrast, Virtual Riesling,
a FSPM for field-grown Riesling, was developed using repeatedly
digitized vines grown in a unique vineyard facility established
to catch climate change impact on grapevine (Schmidt et al.,
2019). This model already allows assessing the role of changing
temperatures in grapevine architecture and thereby considering
management techniques such as vertical shoot positioning
(Schmidt et al., 2019). Most recently, Virtual Riesling was
coupled with a light model (Bahr et al., 2020) for analyzing
the effects of leaf removal on light distribution within the
canopy (Bahr et al., 2021) and it was initially calibrated for
assessing the effects of elevated ambient CO2 concentrations
on grapevine growth and development (Schmidt et al., 2020).
However, the current version of Virtual Riesling does not include
generative growth and an in-depth model evaluation is still
missing. Recently, Ponce de León and Bailey (2021) developed
a model for simulating single berry temperature in vineyards.
Their canopies representing snapshots of four different trellis
systems were built using a procedural plant model generator
implemented in the software environment Helios (Bailey, 2019).
Hence, this approach is mainly lacking of dynamic growth
features for the canopy and the berries, to be applied in the
proposed context of modeling berry sunburn (cf. Table 1). In
summary, we conclude that all the above-mentioned grapevine-
FSPMs require important advancements to allow for integrating
a sunburn sub model and reliably predicting sunburn in
future vineyards.

4. TOWARD IN SILICO EXPERIMENTS FOR
DEVELOPING MITIGATION STRATEGIES
OF SUNBURN PROTECTION

An advanced grapevine-FSPM could be used to identify plant
architectures and management strategies favorable for reducing
sunburn risks under detrimental environments based on in silico
experiments. Such in silico experiments are simulation studies
that mimic real experiments. In other words, the advanced
model would be used to simulate virtual vineyards including
treatments and replications. From the in silico experiments,
we could extract information on sunburn occurrence within
virtual vineyards (location, time and probability) to identify
correlations with characteristics from climatic measures (thermal
course and radiation intensity), morphological measures (leaf
area and bunch dimensions), phenological stages and applied
management practices.

Before exploring future conditions in silico, an obligatory
validation study comparing recent sunburn occurrence
with simulated sunburn risks has to attest sufficient model
accuracy. Simulations of vineyards responding to changes in
environmental conditions should give us answers to the impact
of climate change on sunburn. For this, a series of in silico
experiments should be performed to estimate the effects of
morphological responses to eCO2, increased temperature, and
heatwaves on sunburn occurrence. Performing simulations
with various options for management practices, such as timing,
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location, and intensity of leaf removal, under challenging
environments would then allow us to identify optimized
management practices for reducing sunburn. However, a model
focusing exclusively on sunburn would not cover trade-offs
between possible conflicting objectives of a viticulturist such as
controlling sugar content or avoiding pests and other diseases
(Santos et al., 2020). Thus, it would be of great advantage to apply
newly identified strategies theoretically favorable for reducing
sunburn risks in real vineyards to test their effect and also to
reveal potential management conflicts (e.g., in VineyardFACE at
Geisenheim University, Germany, e.g., Wohlfahrt et al., 2018).
In addition, it could be necessary to advance the grapevine
model to include further processes of interest, yet this is beyond
the scope of this perspective. To summarize, we suggest to
integrate a sunburn model into an advanced grapevine-FSPM,
to conduct in silico experiments and use them to identify
management strategies and plant architectures favorable for
reducing sunburn risks in future vineyards, and to test them in
the field.

Since almost all existing grapevine-FSPMs on vineyard level
are based on data collected on a specific site, this reduces
the transfer ability of any such advanced model to other
sites or environmental conditions that were not considered for
model development (Jones et al., 2017). Nevertheless, if the
proposed approach proves to be valuable, further extensions
(various varieties, scion-rootstock combinations, and cultivation
methods) can follow.

5. CONCLUSION

Viticulture demands to control fruit quality and yield, while
reducing pest, diseases, and disorders such as berry sunburn.
Canopy management can reduce the risk of sunburn; however,
climate change and particularly heatwaves might make it
necessary to adapt strategies to the new environmental
conditions. Sunburn events are results of the complex interplay of

environment and grapevine architecture affecting both the local
heat impact on the berry surface and the susceptibility of berry to
sunburn. Accordingly, a modeling approach to predict sunburn
in vineyards should consider plant architecture, environment,
and their interaction over time. We suggest that functional-
structural plant models can be appropriate tools to integrate these
sunburn aspects. However, current grapevine-FSPMs require
further advancements to allow for integrating a sunburn sub-
model reliably predicting sunburn in future vineyards. In this
perspective, we highlighted missing links that have to be
addressed. These are related to a concept and the parametrization
of a berry sunburn model, the model input of berry exposure
to direct sunlight and the role of dynamics in plant growth,
and plant canopy management and environment. Once open
issues are solved, and the proposed modeling framework should
help us to better understand how climate change may affect
sunburn and, thus, could provide new ideas for mitigating effects
of climate change.
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