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Genomic selection (GS) is becoming an essential tool in breeding programs due to its

role in increasing genetic gain per unit time. The design of the training set (TRS) in GS is

one of the key steps in the implementation of GS in plant and animal breeding programs

mainly because (i) TRS optimization is critical for the efficiency and effectiveness of GS,

(ii) breeders test genotypes in multi-year and multi-location trials to select the best-

performing ones. In this framework, TRS optimization can help to decrease the number of

genotypes to be tested and, therefore, reduce phenotyping cost and time, and (iii) we can

obtain better prediction accuracies from optimally selected TRS than an arbitrary TRS.

Here, we concentrate the efforts on reviewing the lessons learned from TRS optimization

studies and their impact on crop breeding and discuss important features for the success

of TRS optimization under different scenarios. In this article, we review the lessons learned

from training population optimization in plants and the major challenges associated with

the optimization of GS including population size, the relationship between training and

test set (TS), update of TRS, and the use of different packages and algorithms for TRS

implementation in GS. Finally, we describe general guidelines to improving the rate of

genetic improvement bymaximizing the use of the TRS optimization in the GS framework.

Keywords: training set optimization, genomic selection, genome-wide markers, statistical design, sparse

phenotyping, genomic prediction, mixed models

1. INTRODUCTION

The rate of genetic gain in plant breeding must be enhanced to meet the demand of humanity for
agricultural products in the next few decades (Xu et al., 2020). Tools, such as genomic assisted
breeding (GAB), that improve the understanding of structural and functional aspects of plant
genomes are key in modern breeding methods. GAB can be defined as the set of breeding tools
(next-generation sequencing, omics information, and statistics) that study whole genomes by
integrating multiple disciplines with new technology from informatics and robotic systems to
improve selection and mating in plant breeding programs (Varshney et al., 2005, 2021). In GAB,
other tools such as genetic transformation and genome editing are currently playing a key role
to select better-adapted genotypes while pursuing faster genetic gains (Zhang et al., 2018). One
of the emergent methodologies within GAB that have revolutionized plant and animal breeding
is genomic selection (GS). GS is considered the most promising tool for genetic improvement of
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the complex traits controlled by many genes, each with
minor effects because (i) GS can increase the rates of
genetic gain through increased accuracy of estimated breeding
values (Heffner et al., 2009), (ii) significantly shorter breeding
cycles (Crossa et al., 2017), and (iii) the better utilization
of available genetic resources through genome-guided mate
selection (Akdemir and Sánchez, 2016).

Breeders test candidate genotypes in multi-year and
multi-location trials to select superior genotypes with high
performance. This approach limits the number of variety
candidates to be tested, and it is the main cause of the fact that
plant breeding programs are time and cost-intensive. A breeding
tool that combines the power of GS and the potential of an
extensive collection of germplasm, assisted by new technologies,
will offer promise in crop breeding to contribute to global food
security (Xu et al., 2020) because it can accelerate the generation
interval by reducing the generation time in plant breeding
programs (Falconer and Mackay, 1996).

Bernardo (1994) was the first who proposed the use of
genomic information as covariates for predicting untested
genotypes but it Meuwissen et al. (2001) who came through with
a newmethodology to deal with the challenge of fitting prediction
models when the number of genomic covariates (markers, p) is
larger than the number of data points (n). Since then, simulations
and empirical studies have demonstrated that GS could greatly
accelerate the breeding cycle (Heffner et al., 2009), maintain
genetic diversity within the breeding programs, and increase
genetic gain beyond what is possible with phenotypic selection
or quantitative trait loci (QTL) mapping approaches (Crossa
et al., 2017). Genomic selection is a breeding tool that uses
supervised machine learning approach with a training set (TRS)
to predict genomic estimated breeding values (GEBVs) of an
un-phenotyped test set (TS). (Isidro et al., 2016) of genotypes.
The prediction of GEBVs involves a whole-genome regression
model in which the known phenotypes are regressed on the
markers. The GS models are trained on data that consists of
both phenotypic and genome-wide markers data that is used to
estimate marker (or lines) effects de los Campos et al. (2013). The
combination of the marker effect estimates and the marker data
from the TS is used to calculate GEBVs for the TS. The selection
of individuals is based on the GEBVs as the selection criterion.
The performance of the GS model is determined by calculating
the correlation between GEBVs (genomic predictions) and the
unknown true breeding value. As the true breeding values are
never known, the available phenotypic records in the TRS are
used by cross-validation values to evaluate GS. This is called
prediction ability and should not be confused with prediction
accuracy. The latter provides an estimate of the genotypic
correlation and is estimated as the prediction ability divided by
the square root of the heritability for the trait being predicted
(Dekkers, 2007; Lee et al., 2008; Lorenzana and Bernardo, 2009;
Riedelsheimer et al., 2012). Enhancing GS accuracy is very
important for the success of GS breeding programs since the
expected genetic gain from GS is directly proportional to the
accuracy of GS models (Crossa et al., 2010; de los Campos et al.,
2013).

There are many factors affecting the accuracy in GS by
interacting in a complex network relationship (Zhong et al.,
2009; Isidro et al., 2016; Liu et al., 2018; Zhang et al., 2019).
Within these factors, there is one that is key to the accuracy of
the prediction models in GS, and it is the design of the TRS
since the predictability of a model is critical for the success
of GS. In this study, the aim is to shed some light on the
different TRS optimization criteria by covering the fundamentals
of TRS optimization and its uses in GS, including selection
strategies for long-term gains. We focus on reviewing the TRS
methods from the literature that can be used as tools for
designing a TRS and constructed an example to compare the TRS
optimization strategies.

2. POPULATIONS IN GS

Genomic selection requires training of statistical models on
available genotypic and phenotypic data from a TRS to make
predictions about new genotypes. The selection of TRS involves
different populations (Figure 1):

1. A calibration set (CS): is the group of genotypes available for
the breeders from which the TRS is selected. If the individuals
in this CS are phenotyped and genotyped, the populations
for GS will be CS (TRS) and TS, and in theory, no need for
optimization of the TRS (branch a in Figure 1). Nevertheless,
a subset of the CS might be preferable, i.e., if very distant
individuals (Lorenz and Smith, 2015) are present, to include or
exclude extreme phenotypes (Lopez-Cruz and de Los Campos,
2021), or to remove irrelevant individuals (Brandariz and
Bernardo, 2018). If only genotypic information is available
and just a subset of them can be used for phenotyping due
to budget restrictions, then a TRS will be carefully identified
from the CS (branch b in Figure 1).

2. Training set (TRS): is where the prediction equation will be
built. The TRS individuals present genotypic and phenotypic
information. Under budget constraints, the aim is to select
the minimum number of genotypes to phenotype, but that
will assure an optimal accuracy on the TS population. The
selection of the best genotypes to select from the CS to create
the TRS is called optimization of the TRS. In TRS, the true
response values are known (phenotypes). In this study, we
used both the genotype and phenotype information from the
TRS to obtain a prediction equation, which predicts the effect
of each marker (or line) on the trait.

3. Remaining set population (RS): is the remaining genotypes
in the CS that are used in the process of optimization. It
could be also reserved for evaluating the performance of the
statistical model before making predictions if the phenotypic
information is available.

4. Test or Target set (TS): is the set of genotypes to predict. Only
genotypic information is available in this population.

Therefore, the different populations in GS depend on whether
or not the phenotypic information is available within the
CS. Figure 1 shows the distinction between the two major
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FIGURE 1 | Populations in genomic selection (GS). CS, calibration set, TRS,

training set, RS, remaining set, and TS is the test set. When CS has all the

phenotypic and genotypic information, CS and TRS are the same populations.

Otherwise, we could have up to four different populations in the GS scheme.

There are two different types of TRS selection problems: in one of these (a),

the CS is already phenotyped and genotyped, and a subset of the CS is used

as a TRS in the modeling stage. In the other (b), the CS is only genotyped and

a TRS is constructed by phenotyping a subset of the CS.

groups of TRS optimization methods found in the literature.
The first group of methods addresses the situation where the
phenotypic information is already available in the CS (Neyhart
et al., 2017; Brandariz and Bernardo, 2018; Lopez-Cruz and
de Los Campos, 2021). They aim to use only a part of the CS
when building a GS model excluding irrelevant genotypic and
phenotypic information. For instance, constructing a TRS from
only the individuals with high or low values of the phenotypes
(Neyhart et al., 2017; Brandariz and Bernardo, 2018), or the
more recently proposed sparse modeling approach Lopez-Cruz
and de Los Campos (2021). The second group of methods,
which is the main focus of discussion in this study, assumes
that the phenotypic information is not available in the CS,
and will be obtained after selecting a TRS. In this case, the
resources of the breeding program are limited and just a subset
of the individuals can be phenotype. In this situation, the TRS
must be carefully built within the CS through an optimization
process, and distinguish four different populations (CS, TRS,
RS, and TS; Figure 1). In both groups of methods, the model
validation is usually accomplished by cross-validation within the
TRS (Heffner et al., 2009; Luan et al., 2009).

In general, within the TRS optimization framework, when the
objective is to select a TRS to predict the remaining individuals
from the same population we talk about Un-targeted TRS.
Likewise, when a TS is first defined and genotyped, and then
the TRS is optimized specifically around the TS then we define
a targeted TRS. It is important to note, that not all optimization
criteria are sensitive to this distinction, (i.e., refer next section,
PAM, A-OPT, D-OPT), nevertheless, when it is so, this is reflected
in how the optimization criteria are calculated (Lorenz and
Smith, 2015; Akdemir and Isidro-Sánchez, 2019).

In addition, when there is heterogeneity within the
environment such as row/column effects in the field, the
optimal TRS of the phenotypic experiment involves not only the
selection of the TRS but also the placement of genotypes in the
environment (Heslot and Feoktistov, 2020). The experimental
design might need blocking structure and environmental
covariates and in these cases, the order in which the individuals
are positioned in the environment will be important. We refer
to this kind of optimization as the "ordered" optimization as
opposed to the “unordered” optimization (Akdemir et al., 2021).

3. DESIGN OPTIMIZATION CRITERIA

The TRS optimization process is an optimal experimental design
problem, and many aspects of GS implementation captured
the attention of statisticians in the past (Smith, 1918; Kiefer,
1959; Fisher, 1960; Fedorov, 1972; Atkinson and Donev, 1992;
Pukelsheim and Rosenberger, 1993; Fedorov and Hackl, 2012;
Silvey, 2013). The design of the concept of the experiment should
be more used to plan experimental designs in plant breeding
programs and perform sets of well-selected optimization TRS to
get the most informative combination out of the given factors.

The most common design optimization criteria method is
indisputably the classical simple random or stratified sampling,
mainly because of its simplicity and generality (Gentle, 2006), but
also because of the difficulty to sample more efficiently when the
number of candidate solutions is large. We classified the different
design optimization criteria in to three major groups.

• Parametric design criteria are based on the assumption that
the experimenter has specified a model before collecting
the training data. These criteria usually depend on a scalar
function of the information matrix for the model parameters
which indicates the sampling variances and covariances of
the estimated parameters or inferences of the model made
from these models such as predictions for new individuals.
Many popular designs such as the A−,D−, E− criteria (Kiefer
et al., 1985) are derived using a linear model as the underlying
model. A linear model is a regression model where a response
variable is modeled as a linear function of features that are
functions of the explanatory variables plus some residual error:

y = Xβ + ǫ

where y is the n dimensional vector for independent
realizations of the response variable, X is the n × p design
matrix for the corresponding explanatory variables and X is
the n × q feature matrix, ǫ is the n dimensional vector of
independent residual terms which we assume to have mean
zero and fixed variance σ

2
e and finally, β is the q dimensional

vector of regression coefficients. The least-squares estimator
for the regression coefficients is given by β̂ = (X′X)−1X′y

and for this estimator of the coefficients we can write the
variance-covariance matrix as

Cov(β̂) = σ
2
ǫ
((X′X)−1).

Now, suppose we have a certain design we want to evaluate
which is expressed in a specific design matrix XTRS. Since
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FIGURE 2 | Diagram of the matrix of the coefficient of determination (CD) criterion in the TRS optimization for unordered and ordered experiments for the un-targeted

case. We assume that we have n genotypes in the candidate set, nTRS genotypes are selected to the TRS. In this case, the n× n kinship matrix is used to calculate the

n× n CD matrix for a given TRS, then the mean CD is calculated based on certain diagonals that correspond to TRS or remaining set (RS). The optimization algorithm

is used to find the best TRS. When provided with a design matrix that has heterogeneous rows, then we are also looking for a design in addition to the selection of a

TRS. In this case, both the kinship matrix and the nTRS × q environmental covariates matrix are used to calculate the n× n CD matrix for a given TRS, then the mean

CD is calculated based on certain diagonals that correspond to TRS or RS. The optimization algorithm is used to find the best TRS and best design with this TRS.

we can write the covariance of the estimated coefficients
as (X′

TRSXTRS)
−1 up to a proportionality constant (which

is the same for all other possible designs), we can use a
function of this matrix to compare it with other designs. In
general, a scalar function of this matrix is used to order the
different designs. D-optimality criterion, for instance, can be
expressed as |(X′

TRSXTRS)|, and designs with higher values
are considered better. A-optimality criterion is expressed as
trace

[
(XTRS)

′XTRS)
−1

]
, and designs with lower values are

considered better.
Some other criteria such as CDmean, PEVmean, (Laloë,

1993; Rincent et al., 2012; Isidro et al., 2015) rely on a mixed
model as the underlying model: In the linear mixed-effects
model of interest, the observations are assumed to result from
a hierarchical linear model:

y = Eβenv + Zu+ ǫ

with E is the n × p design matrix for the environmental
covariates, βenv is the p vector of the effects of the
environmental covariates, Z is the n×N design matrix for the
N genotypes in the candidate set, ǫ ∼ Nn(0,R) is independent
of u ∼ Nq(0;G). When using this mixed model in genomic
prediction for a single environment, we use G = σ

2
k
K and

R = σ
2
e I, where K is the relationship matrix of the genotypes

(CS and if available the TS). When we use this mixed model
with a multi-environmental genomic prediction, we assume
G = Vk ⊗ K and R = Ve ⊗ I.

For this model, the CD matrix of û for predicting u is given
by

(GZ′PZG)⊘ G

where P = V−1 − V−1E(E′V−1E)−1E′V−1 is the projection
matrix and⊘ expresses the element-wise division. Usually, the

mean of certain diagonal elements of the CD matrix is used
to measure the quality of a sample. For instance, in a targeted
design, the mean of the diagonal elements that correspond to
the TS genotypes are used. When the design is un-targeted, we
can use the mean over the diagonals that correspond to the
remaining set. Another approach involves the calculation of
the CDmatrix for a given set of contrasts then taking the mean
of the diagonals of this matrix (Rincent et al., 2012, 2017).
In Figures 2–4, we diagrammatically illustrate the different
populations, input matrices, the different parts of the CD
matrix, and the process of optimization.

• Non-parametric designs criteria are model-free, i.e., they do
not rely on models we intend to use with the resulting
data. Some nonparametric designs are based on distance or
similarity measures and aim to spread the TRS over the design
space (space-filling design). Different measures or metrics
quantify how a set of points is spread out. Some examples are:
(i) partition around medoids (PAM) where the objective is to
find a sequence of objects called medoids that are centrally
located in clusters for a given distance measure, (ii) the
maximin criteria are such that the minimum distance among
the TRS is maximized, (iii) the minimax design (Johnson
et al., 1990) where the TRS is such that the maximum of the
minimum distances from the TRS to the rest of the CS or the
TS is minimized, (iv) the Latin hypercube sampling divides the
design region evenly into cubes and ensuring that the sample
contains just one point in each such segment and aims at
ensuring that each of the scalar inputs has the whole of its
range well scanned, according to a probability distribution,
and (v) the minimum spanning tree (MST) (Dussert et al.,
1986). An MST is a tree that connects all the candidate design
points and whose total edge lengths are minimal. Once a
spanning tree of the candidate points is built, the mean and SD
of edge lengths can be calculated. The spanning trees with the
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FIGURE 3 | Diagram of the matrix of the CD criterion in the TRS optimization for unordered and ordered experiments for the targeted case. We assume that we have

nTS genotypes in the TS, n− nTS genotypes in the CS, nTRS genotypes are selected to the TRS from the CS. In this case, the n× n kinship matrix is used to calculate

the n× n CD matrix for a given TRS, then the mean CD is calculated based on certain diagonals that correspond to TS. The optimization algorithm is used to find the

best TRS. When provided with a design matrix that has heterogeneous rows, then we are also looking for a design in addition to the selection of a TRS. In this case,

both the kinship matrix and the nTRS × q environmental covariates matrix are used to calculate the n× n CD matrix for a given TRS, then the mean CD is calculated

based on diagonals that correspond to TS. The optimization algorithm is used to find the best TRS and best design with this TRS.

FIGURE 4 | Diagram of the matrix of the CD criterion in the TRS optimization for unordered and ordered experiments for the targeted case in a multi-environmental

phenotypic experiment. We assume that we have n genotypes, nts of them are in the target set (TS), the remaining of in the candidate set, nTRS1 genotypes are

selected to the TRS in environment 1, nTRS2 genotypes are selected to the TRS in environment 2. Two environments are assumed to have a positive genetic

covariance, and this is expressed in Vk . The residual genetic covariance expressed in VE is diagonal, meaning that errors are uncorrelated between the two

environments. These covariance matrices along with the genomic relationship matrix and if provided environmental covariates matrices for the environments are used

to calculate the CD matrix (2n× 2n) for a given design. The mean of the diagonals of this matrix that correspond to the TS is used as a criterion for evaluating different

designs. The optimization algorithm tries to find the design that maximizes this criterion.

smallest mean are called minimal and among them, the ones
with high variance are preferred. A TRS from an MST can be
obtained by recursively pruning out, from the candidate set,
the candidate points on the leaves of the MST with small edge
lengths (Guo et al., 2019).

Non-parametric designs such as space-filling designs are
well suited to the initial exploration objective. They can be
used to select a smaller candidate set from a bigger candidate

set to reduce the computational complexity of optimizing
parametric design criteria.

• Multiple design criteria. Multiple models optimal
experimental design criteria try to overcome the choice
issue by combining more than one criteria into one via some
type of averaging on multiple-objective optimization methods
(Pukelsheim, 1993; Akdemir and Sánchez, 2016). In this
approach, the Pareto front approach is used to evaluate several
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criteria. The Pareto front is a set of non-dominated designs,
i.e., as compared to the design points on the frontier, no other
design point can be found that does not degrade at least one
of these criteria values (as shown in Figure 5).

Many GS experiments will be performed in several environments
and then the TRS optimization aims to find subsets of genotypes
from the candidate set to be tested in each of the environments
and perhaps the corresponding designs within some of these
environments to address the heterogeneity within environments.
The use of CD for this situation is illustrated in a diagram in
Figure 4.

4. TRS OPTIMIZATION FOR SPARSE
PHENOTYPING

The most important current bottleneck in plant breeding
programs is the phenotypic evaluation (Crossa et al., 2017).
Although genotyping is still costly, next-generation sequencing
has decreased genotyping cost more than 100K folds in the last 20
years (National Human Genome Research Institute, 2020), and
therefore, phenotyping needs to be optimized within a breeding
program. The use of GS in breeding programs is potentially
costly without the careful design of populations. When designing
the implementation of the GS scheme into the breeding cycle,
breeders need to focus first on several aspects: (i) to generate
a specific breeding database for GS, (ii) to choose the filial
generation to start GS, and (iii) to select the TRS to start GS
modeling (Albrecht et al., 2011; Clark et al., 2012). The design
of the TRS, also called optimization of the TRS, is the breeding
process that uses the information from these aspects to create a
TRS to start the GS process.

Training set optimization consists of choosing (within a
panel of candidates) a set of training individuals that will better
predict un-phenotyped germplasm in a TS. TRS optimization
has attracted notable interest in the breeding community
for several reasons (Table 1). First, the fact that predictions
are based on markers or line effects calculated on the TRS
raises the question of how to select the TRS to increase the
efficiency and effectiveness of GS. Second, currently, the high
cost of phenotyping makes the phenotype information the
most important constraint in plant breeding programs. Better
allocation of resources within plant breeding programs by
observing a small size but representative TRS would reduce
phenotypic cost and increase the quality of the phenotypic data
by focusing on more expensive traits with more sophisticated
instruments, or increasing complementary measurements of
the same traits (sparse or selective phenotyping). Third, the
traditional optimization process based on random sampling as
a strategy to create the TRS does not always lead to an increase in
predictive ability due to the under or over-representation of the
genetic information in the TRS. The TRS optimization aims to
enhance the process of sparse phenotyping, to reduce the cost of
phenotyping while maintaining high prediction accuracymodels.

Two important aspects within the TRS optimization are the
fact that the TRS is a dynamic populations that must be updated

through the breeding cycle program, and also that the TS needs
to be into account when building the TRS (Akdemir et al., 2015).

The design of the TRS was initially started in animal breeding
(Habier et al., 2007, 2010; Clark et al., 2012; Pszczola et al.,
2012). These studies and others in plants (Windhausen et al.,
2012; Wientjes et al., 2013) were focused on the importance
of the relatives for the makeup of the TRS and on how
to update the TRS to improve genomic prediction across
generations. They highlighted how the TRS should be composed
in terms of resemblance between TRS and TS, but they did not
perform any optimization process, TRS was selected randomly.
A random sampling of genotypes from a CS is a risky procedure
because could lead to low-quality coverage of the total genetic
space especially when the CS contains population structure
(Windhausen et al., 2012; Isidro et al., 2015; Bustos-Korts et al.,
2016). In the last decade, many studies (Table 1) examined the
importance of optimization of the TRS by comparing specific
selection criteria to random sampling.

The first study highlighting the importance of using statistical
approaches to develop an optimal TRS was shown by Rincent
et al. (2012) (Table 1). In this study, the objective was to define
which individuals from a calibration (candidate) set are the
optimal ones to predict a selection (TS) candidates. The idea
was to use a criterion that could minimize genetic similarity
within the TRS, because of the more similar the individuals
within the TRS, the more duplication of the alleles, and therefore,
more redundancy. Based on concepts from the mixed model
equations introduced by Laloë (1993), Rincent et al. (2012)
introduced criteria that aimed to maximize the reliability CD,
the square correlation between GEBVs and true breeding values
or minimized the prediction error variance (PEV) on the CS.
In this study, they used a generalized version of CD and
PEV (the contrast between breeding values). They showed that
the optimization criteria improved prediction accuracy when
comparing with random sampling. Rincent et al. (2012) have
shown that mean of the coefficient of determination (CDmean)
captured more genetic variability when building the TRS than
mean of the prediction error variance (PEVmean) and that
an optimized set of 100 lines achieved on average the same
prediction accuracy as a set of 200 lines selected at random.

Isidro et al. (2015) proposed stratified sampling and stratified
CD as alternative algorithms to improve the optimization of TRS
under population structure effects. The optimization of the TRS
based on genomic relationships resulted in higher prediction
accuracies when compared with random sampling. In this study,
they concluded that the optimization of the TRS depended on
the interaction of trait architecture and population structure
and on the ability of the algorithm to capture phenotypic
variance. In the same year, Akdemir et al. (2015) derived a
computationally efficient approximation to the PEV based on
principal components of the genotypes as a criterion for TRS
design that showed less computational burden than previous
criteria. These studies were the first ones that open the door to
other strategies to optimize the TRS. Bustos-Korts et al. (2016)
proposed a TRS construction method that uniformly sampled
the genetic space comprised by the target population (TS) of
genotypes, although, the results were similar to CDmean.
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FIGURE 5 | Pareto front for minimizing the mean genomic distance of TRS genotypes to the TS genotypes (i.e., maximizing the negative of this quantity), and

maximizing the mean genomic distance among the TRS genotypes. The figure represents a toy example where a sample of size 10 is selected from 23 candidate

genotypes to predict 7 TS genotypes (the total number of different solutions is 23 choose 10 which is more than a million). Target genotypes along with selected TRS

and the remaining sets are displayed in the genotypic space represented by the first two principal components of the marker matrix. With different symbols and colors,

we indicate the optimal CD TRS’s for targeted and un-targeted cases, D-optimal TRS, and the TRS selected by PAM. The red dots are the TRS that are on the Pareto

front, i.e., no other TRS will be better than any of these for both criteria (non-dominated solutions). All the brown dots are dominated by the same two criteria. We get

the most diverse set when the mean genetic distance in the TRS is maximal. We get a TRS closest to the TS when we minimize the mean genetic distance (maximize

the negative) of TRS to TS. All of the parametric design criteria and PAM are dominated. Among those, CDmean targeted gives a TRS that is close to the TS. The

remaining optimal TRS’s are genetically diverse. The most genetically diverse set among the optimization criteria is the CDmean calculated for all genotypes in CS.
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TABLE 1 | Key relevant scientific studies on training set (TRS) optimization.

Study CDmean PEVmean Clustering Other criteria Package

Rincent et al. (2012) ✗ ✗ – – Own code

Isidro et al. (2015) ✗ ✗ ✗ – Own code

Akdemir et al. (2015) ✗ ✗ ✗ – STPGA

Lorenz and Smith (2015) – – – Levels of TRS relationship Own code

Bustos-Korts et al. (2016) ✗ – ✗ Uniform Sampling Own code

He et al. (2016) – – – Random –

Rincent et al. (2017) ✗ – ✗ CDpop and Crit_Kin Own code

Neyhart et al. (2017) ✗ ✗ – Top and bottom proportion Own code

Cericola et al. (2017) – – – Random sampling Own code

Momen and Morota (2018) ✗ ✗ Additive and Non-additive Own code

Norman et al. (2018) – – ✗ Random Own code

Akdemir and Isidro-Sánchez (2019) ✗ ✗ – D and A-OPT STPGA

Ou and Liao (2019) ✗ ✗ ✗ r-score TSDFGS

Mangin et al. (2019) ✗ ✗ – EthAcc Own code

Guo et al. (2019) ✗ ✗ PAM FURS STPGA

de Bem Oliveira et al. (2020) – – – Random, Family Random Own code

Adeyemo et al. (2020) – – ✗ – Own code

Mendonça and Fritsche-Neto (2020) – ✗ – STPGA

Olatoye et al. (2020) ✗ – – Random Own code

Roth et al. (2020) – ✗ Maximum and Mean relationship STPGA

Sarinelli et al. (2019) – ✗ ✗ – Own code

Tayeh et al. (2015) ✗ – – – Own code

Atanda et al. (2021) ✗ – – Avg_GRM Own code

Yu et al. (2020) – – – Upper Bound reliability Own code

Ben-Sadoun et al. (2020) ✗ – – CDmean-multi Own code

Heslot and Feoktistov (2020) – – PEVridge Own code

Akdemir et al. (2021) ✗ ✗ ✗ – TrainSel

Kadam et al. (2021) ✗ ✗ – – STPGA

CDmean, Mean of the coefficient of determination; PEVmean, Mean of the predictor error variance. A cross in the cell indicates that the criterion has been used for TRS optimization.

Criteria different than CD, PEV, and Clustering are shown in the column Other Criteria. The software using R is specified in the Package column.

Other studies also stressed the importance of considering an
other way to construct the TRS by random sampling (Lorenz
and Smith, 2015; He et al., 2016; Cericola et al., 2017; Neyhart
et al., 2017; Norman et al., 2018; de Bem Oliveira et al., 2020;
Olatoye et al., 2020), clustering approaches (Akdemir et al.,
2015; Isidro et al., 2015; Bustos-Korts et al., 2016; Rincent
et al., 2017; Norman et al., 2018; Guo et al., 2019; Sarinelli
et al., 2019; Adeyemo et al., 2020), by using different levels of
relatedness between TRS and TS (Lorenz and Smith, 2015; Berro
et al., 2019; Roth et al., 2020) or by using other alternatives
algorithms to CD-mean and PEV-mean such as different design
matrix algorithm (Akdemir and Isidro-Sánchez, 2019), estimated
theoretical accuracy (EthAcc) (Mangin et al., 2019), upper bound
reliability (Yu et al., 2020), or the Fast and Unique Representative
Subset Selection (FURS) (Guo et al., 2014). A criterion that is
derived directly from Pearson’s correlation between GEBVs and
phenotypic values of the TS derived from the GBLUP model
showed higher predictive ability than CD and PEV (Ou and
Liao, 2019). Most aforementioned approaches above, do not
use information from the TS while building the TRS, which is
detrimental for prediction accuracy (Lorenz and Smith, 2015;

Akdemir and Isidro-Sánchez, 2019; Ou and Liao, 2019). The
main reason for the decrease in accuracies is because the most
informative TRS to predict the TS is the one where individuals
are more closely related to the TS. This is because when pairs of
individuals are closely related, they tend to inherit QTL blocks
in the same linkage phase (Andreescu et al., 2007; Habier et al.,
2010). This is especially critical when there is low marker density
coverage because the assumption in GS of getting at least one
marker in QTL with the trait of interest will not be perfectly met.
The genetic relatedness between TRS and TS was addressed by
Lorenz and Smith (2015), Rincent et al. (2017), and Akdemir
and Isidro-Sánchez (2019). Recently, Atanda et al. (2021) used
the average genomic relationship (AvgGRM in Table 1) between
a specific line in the TRS and all lines in the TS, and they
statistically significant increase in the accuracies when compared
with CD in some bi-parental populations. Nevertheless, this
approach as in Rincent et al. (2017) did not consider the possible
alleles duplication within the TRS.

Training optimization selection also has been used for pre-
breeding discovery. Tanaka and Iwata (2018) proposed a strategy
that used genomic prediction in pre-breeding for discovering
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the best genotypes from a large number of candidates. They
demonstrated by simulation that their Bayesian optimization
could reduce the number of phenotyped accessions needed to
find the best accession among a large number of candidates. Their
strategy was based on predict uncertainty of the prediction rather
than based only on high predicted values. Following this strategy,
Tsai et al. (2021) used an augmented expected improvement for
sequential phenotyping to identify the best individual from the
CS. It is important to note that these studies are not focusing on
building a TRS for GP, but on identifying the best candidate to
be used for commercial or mating purposes. These approaches
could be used when phenotyping is very expensive and not
very time-consuming.

In the area of hybrid breeding, the optimization of the TRS
is even more critical than in other breeding systems, since the
selection of superior F1 hybrids (single crosses between fully
inbred lines) implies developing first inbred lines and then
identifying the best hybrid combinations between them. To
facilitate this process, breeders typically split germplasm into
complementary heterotic groups and select lines within each
group for their ability to produce good hybrids when crossed
to lines from a complementary group. The fullest assessment of
single-cross performances would be a complete factorial mating
design achieved by making all possible single crosses. However,
the high number of lines to be evaluated per heterotic group
makes this approach prohibitive (i.e., for 1,000 lines in each
heterotic group, there would be 1 million possible crosses).
Genomic models have been applied to hybrid prediction mainly
in maize (Bernardo, 1994; Schrag et al., 2009; Technow et al.,
2014; Kadam et al., 2016; Marulanda et al., 2016; Fristche-Neto
et al., 2018; Seye et al., 2020), and wheat (Zhao et al., 2013, 2014,
2015; Longin et al., 2015; Marulanda et al., 2016; Schulthess et al.,
2017), and less in other species such as rye (Wang et al., 2014)
or sunflower (Reif et al., 2013; Mangin et al., 2017; Dimitrijevic
and Horn, 2018; Heslot and Feoktistov, 2020). These studies have
emphasized the interest in using TRS optimization compared to
the traditional crossing designs.

In general, most of the TRS studies have used model-based
parametric criteria (CDmean, PEVmean, and r-score), followed
by non-parametric (i.e., PAM, FURS), and just a few studies used
their own criteria (i.e., AvgGRM, U score) (Table 1). All these
studies show that there is not a universal criterion to create a TRS.
It will mainly depend on linkage disequilibrium between markers
on TRS vs. TS, the relationship between TRS and TS (Habier
et al., 2007; Goddard, 2009), the genetic architecture of the trait
(McClellan et al., 2007; Jannink, 2010; Burstin et al., 2015), trait
heritability (Hayes et al., 2009), and population structure effects
(Isidro et al., 2015; Rincent et al., 2017).

To shed some light on the different TRS optimization criteria,
we constructed a toy example where we compared several
design criteria (CD, PAM, D-OPT, and r.score) with each other
(Figure 5). In this example, there were 30 genotypes in total,
seven of these genotypes were selected as the TS. The remaining
23 genotypes were used as the CS. We set the TRS size to 10,
giving 23 choose 10 (1144066) different TRS possibilities. For
each of these designs, we calculated the value of the mean genetic
distance among the TRS (DistTRS), and the negative of the mean

genomic distance from TRS to the TS (DistTS). In the Figure,
the red dots are the TRS that are on the Pareto front, i.e., no
other TRS will be better than any of these for both criteria (non-
dominated solutions). Balancing the DistTRS and DistTS in the
Pareto front gives you different TRS. For instance, when we
minimize the mean genetic distance (maximize the negative) of
TRS to TS, we obtained a TRS closest to the TS (top left graph).
We get the most diverse TRS when the DistTRS in the TRS is
maximal (bottom right graph). If you balance both distances,
then we get a TRS where there is a trade-off between DistTRS
and DistTS. The remaining TRS on the same plot is dominated
with respect to the same two criteria. A TRS is dominated if
we can find another TRS that improves at least one of these
criteria without deteriorating the other criterion value. All of the
design criteria and PAM are dominated with respect to DistTRS
and DistTS. Among those, CDmean targeted gives a TRS that is
close to the TS, where CDmean calculated over the candidate set
(CDMEAN-Cand) comes very close to the most diverse design.
The contours of the density of DistTRS and DistTS over 1144066
different TRS possibilities show that a random design on average
would be dominated by all of the optimal samples and would fall
far away from the Pareto frontier. It is important to understand
the different trade-offs involved in choosing a good TRS since
this will help the experimenter to choose a suitable TRS or a TRS
selection criterion among the alternatives.

Breeding programs usually deal CS’s with 1,000’s or 10,000’s
of genotypes. Although direct enumeration of all the possible
TRS’s is not possible in these cases, multi-objective optimization
techniques can be utilized to approximate the frontier curves and
single-objective optimization tools can be used to find optimal
TRS’s according to several single criteria. Then a plot similar
to the one presented in Figure 5 can be produced to evaluate
the trade-offs among different designs. When the number of
genotypes in the CS is so large that computationally intensive
methods are prohibitive, we recommend using a less intensive
method such as PAM or stratified sampling (Isidro et al., 2015;
Guo et al., 2019), or one of the space-filling designs to reduce
the number of CS to a manageable size ahead of comprehensive
analysis. A practical overview of the statistical analysis needed to
optimize the TRS using R and issues associated with the analysis
have been addressed along with the R code in the study by Isidro y
Sánchez et al. (2022). In addition, extra information can be found
in the extensive vignette (https://github.com/TheRocinante-lab/
TrainSel/blob/main/inst/TrainSelUsage.pdf).

5. SOFTWARE TOOLS FOR TRS
OPTIMIZATION

While the practical use of TRS optimization in GS is supported
by the literature, as shown above, the number of software tools
for implementation is limited. As far as we are concerned, just
three software have been developed and available for public use.
The package STPGA Akdemir (2017) is an R package that uses
a modified GA for solving subset selection problems but also
allows users to chose from many predefined or user-defined
criteria. Similarly, the package TSDFGS Ou and Liao (2019) is
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an R package that focuses on optimization of the TRS by a
genetic algorithm (GA) and can be used for TRS optimization
based on three built-in design criteria [CDscore, PEVscore, and
Pearson correlation (r-score)]. Recently, Akdemir et al. (2021)
designed a new package called TrainSel to provide many more
options than previous software. For example, TrainSel can select
multiple sets from multiple candidate sets, users can specify
whether or not the resulting set needs to be ordered, or the power
to perform multi-objective optimization. In addition, TrainSel
can be used for searching for solutions to a variety of TRS and
experimental design problems, such as randomized complete
block design, and lattice design, etc. Furthermore, it can be
also used in combinatorial optimization problems for supervised
and also unsupervised learning. The strength of TrainSel is that
it combines TRS optimization with a particular experimental
design, which has not been implemented in both of the above
alternatives by Akdemir et al. (2021).

6. GENERAL GUIDELINES FOR A GOOD
TRS

In this study, we highlight some of the guidelines learned from
the literature when building an optimal TRS:

• When building the first TRS is key to keep, within the
TRS, the historical germplasm used to generate the breeding
populations. This will allow capturing the allelic diversity
within the breeding program.

• The larger the TRS size the better predictions (Daetwyler
et al., 2008; Zhong et al., 2009), since most characters are
quantitative with a large number of loci and a very small effect
size. The number of loci affecting quantitative characters likely
ranges from 2,000 to 4,000 (MacLeod et al., 2016). Although
adding genetically distant individuals might decrease accuracy
(Lorenz and Smith, 2015), this is not a general rule. In
addition, large TRS are needed to capture rare alleles at
high frequencies to obtain a reliable estimate of their effects
(MacLeod et al., 2016), even for highly quantitative traits if
the rare allele is present in the sequencing or the genotyping
is done from coding and regulatory regions.

• Markers can capture genetic relationships among genotypes,
thereby affecting the accuracies of GEBVs (Habier et al.,
2007). Therefore, a genetic relationship between TRS and
TS is needed to obtain high accuracies. In general, a TRS
should maximize the relationship with the TS (Albrecht et al.,
2011; Pszczola et al., 2012; Akdemir and Isidro-Sánchez,
2019), but should minimize the relationship within the TRS
(Clark et al., 2011; Lorenz, 2013; Bustos-Korts et al., 2016;
Pszczola and Calus, 2016). That is to say, if TRS and TS
come from different populations or breeding generations, a
drop in accuracy is expected. The main reasons for the drop
in accuracy are because LD between markers and QTL, or
that QTL allele frequencies and/or effects can differ among
populations (Hayes et al., 2009; Wientjes et al., 2015, 2017).
The difference in allele frequencies between TRS and TS
can affect prediction accuracy because allele frequencies can

affect the estimated genomic relationshipmatrix when GBLUP
models are implemented.

• The TRS must be updated with new genotyped and
phenotyped individuals to assure the accuracy of GEBVs,
is maintained over generations. Otherwise, recombination
events will decrease LD between markers and QTL (Auinger
et al., 2016). As phenotypes are the current bottleneck in plant
breeding programs, the quality of the phenotypes is critical to
the TRS optimization.

• The design of the TRS highly depends on the TS population.
For example, if your TS is highly diverse, your TRS must be
built to capture that diversity, otherwise, a significant drop
in accuracy might occur. That is why targeted optimization
approaches are chosen when building TRS (Akdemir and
Isidro-Sánchez, 2019; Akdemir et al., 2021). From Figure 5

we can observe that we get a TRS closest to the TS when we
minimize the mean genetic distance (maximize the negative)
of TRS to TS. Among the different TRS selection criteria,
CDmean targeted gives a TRS that is close to the TS. The
remaining optimal TRS’s are genetically diverse but the most
genetically diverse set among the optimization criteria is the
CDmean calculated for all genotypes in CS. This type of
evaluation of different design criteria together along with a
frontier curve should shed some light on the selection of a
particular TRS.

• If certain QTL with large effects for traits of interest exists,
then these QTL can be givenmore influence while selecting the
TRS. This could be done, for example in the mixed modeling
framework by using the QTL as fixed effects (Spindel et al.,
2016). In the non-parametric approach, more weights can be
given when calculating the genetic distance matrix.

• In general, optimization criteria from mixed model theory
(CDmean, PEVmean) performs better than random sampling
under most scenarios, except for scenarios with a large
population structure where these criteria might not be optimal
(Isidro et al., 2015).

7. PERSPECTIVES FOR TRS
OPTIMIZATION

Genomic selection is an emergent methodology that
revolutionized plant and animal breeding, by using a statistical
framework that uses genome-wide markers to predict breeding
values for key breeding traits. In this framework, one critical
step is how to select the best individuals to train the statistical
models. As shown above, there has been quite a great research
in this area, but there are still some questions to be answered.
Following the literature, there is no “best” strategy to optimize
the TRS, and therefore, a comparison between algorithms
focusing on the different factors affecting the TRS on different
populations would be helpful to answers some questions
regarding TRS optimization.

We envision a substantial benefit applying TRS optimization
methods to hybrid prediction, and also sparse testing in multi-
environment, and multi-trait experiments (Jarquín et al., 2014;
Akdemir et al., 2021; Crossa et al., 2021). For instance, in hybrid
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prediction, TRS are traditionally constructed by methods such
as top crosses, North Caroline design, etc. It has been shown
that the TRS optimization methods improve hybrid prediction
accuracies when comparing with the traditional design methods
(Zhao et al., 2015, 2021; Fristche-Neto et al., 2018; Heslot and
Feoktistov, 2020; Yu et al., 2020; Technow et al., 2021).

It is also expected that TRS selection methods will be used
more commonly in multi-environmental phenotypic experiment
design (Montesinos-López et al., 2019; McGowan et al., 2020)
as more flexible and powerful tools such as the package R
TrainSel becomes available for researchers. The use of genomic
information in designing these experiments shifts the attention
from replication of individuals to replication and representation
of alleles in different environments.

In addition, more studies using haplotypes rather than
just markers are needed, since accuracies are greater if TRS
and TS share long-range haplotypes (Akdemir et al., 2015;
Meuwissen et al., 2016; Scott et al., 2021). The decrease of whole
genomic sequencing is allowing us to develop pan-genomes
studies of many crops, which will allow us to switch from
SNPs to longer more important haplotypes in the design of
TRS populations. The development of haplotype-informed DNA
markers will enable the selection of new haplotype combinations,
which will increase the opportunity to attain optimized genetic
combinations for improved performance and disrupt linkage
drag (Varshney et al., 2021).

An unresolved issue in TRS optimization is the determination
of the size of TRS. The size of TRS is usually dictated by
the budget for the experiment, however, a breeder might need
guidance for selecting a TRS size to avoid redundancy of
individuals. For example, even though a breeder might have the
resources to do 20 individuals, the breeder should know what is
the optimal size to experiment. The optimal size of the TRS can
be obtained from the multi-objective optimization framework
Akdemir et al. (2019). The solutions on the Pareto front of an
optimization problem Markowitz (1968), where one or more
design criteria along with the TRS size are optimized, will provide
the experimenter with a scenery of the optimal design space at
each sample size. The usual methods of selecting a solution on a
frontier can guide the determination of the TRS size.

Finally, a comparison of criteria with different populations,
different genetic architectures, heritability values, and

relationships among TRS and TS is needed, especially to
evaluate if some previous claims in the TRS optimization area
are true under the same population scenarios.
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