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The seed protein a-gliadin is a major component of wheat flour and causes gluten-
related diseases. However, due to the complexity of this multigene family with a genome
structure composed of dozens of copies derived from tandem and genome duplications,
little was known about the variation between accessions, and thus little effort has been
made to explicitly target a-gliadin for bread wheat breeding. Here, we analyzed genomic
variation in a-gliadins across 11 recently published chromosome-scale assemblies of
hexaploid wheat, with validation using long-read data. We unexpectedly found that the
Gli-B2 locus is not a single contiguous locus but is composed of two subloci, suggesting
the possibility of recombination between the two during breeding. We confirmed that the
number of immunogenic epitopes among 11 accessions varied. The D subgenome of a
European spelt line also contained epitopes, in agreement with its hybridization history.
Evolutionary analysis identified amino acid sites under diversifying selection, suggesting
their functional importance. The analysis opens the way for improved grain quality and
safety through wheat breeding.

Keywords: o-gliadin, celiac disease epitopes, copy number variation, Gli-2 loci, wheat (Triticum aestivum L.)

INTRODUCTION

Since its origin by allopolyploidization, bread wheat (Triticum aestivum L.) has become a staple
crop, providing ~20% of the calories consumed globally (Shiferaw et al., 2013). Concentrated
breeding efforts have increased yield such that the production of bread wheat reached 766 million
tons in 2019 (FAOSTAT, 2021). Further selection has made wheat more palatable and increased the
quality of desired end-use traits.
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Wheat grains are typically processed into flour to make various
breads and noodles. Much of the rheological quality of these
products relies on gluten formation. Gluten is a complex of
two protein families, glutenins and gliadins, which are storage
proteins in wheat endosperm. Gliadins are classified into three
groups, a-, Y-, and w-gliadins, based on their electrophoretic
mobility (Shewry and Halford, 2002). a-Gliadins are the most
abundant gliadins and represent 15-30% of the wheat seed
protein (Gu et al., 2004). Genes encoding a-gliadins are tandemly
duplicated and form clusters within each GIi-2 locus. They are
located on the short arm of homoeologous chromosome group
6 in Triticum species (Qi et al, 2013; Ozuna et al, 2015).
Because T. aestivum is allohexaploid (AABBDD), it contains
three Gli-2 loci called Gli-A2, Gli-B2, and Gli-D2 (Payne, 1987).
High allelic diversity, copy number variation, and expression
differences in a-gliadins in bread wheat have been attributed
to the combination of tandem and whole genome duplications
(Salentijn et al, 2009; Noma et al., 2016; Huo et al, 2018).
Although allelic diversity, gene copy number variation and
other differences in a-gliadins may be linked to the phenotypic
differences for the wheat flour qualities among the cultivars,
little is known about precise genomic information for the Gli-
2 loci to provide a basis for comparison between cultivars. For
example, the general function of a-gliadins in the breadmaking
quality is well understood, but the role of individual a-gliadin
genes is not entirely clear (Branlard et al, 2001; Brennan,
2009; Metakovsky et al.,, 2018). a-Gliadins are also the most
common proteins that trigger an immune response in patients
with celiac disease (CD), one of the widespread wheat-related
health disorders (Scherf et al., 2016). The CD reaction is caused
by the presence of a variety of peptide sequences called epitopes
(Sollid et al., 2012; Juhdsz et al., 2018). The repetitive domain
includes the DQ2.5-glia-a1, DQ2.5-glia-a2, and DQ2.5-glia-a3
epitopes (Ozuna et al., 2015), and sometimes, these epitopes
overlap to create a 33-mer peptide that is highly immunotoxic to
celiac patients (Shan et al., 2002; Huo et al., 2018; Juhdsz et al,,
2018). The immunotoxicity of the 33-mer region was verified
by genome-editing (Sdnchez-Leon et al, 2018). Although the
three-dimensional structure of a short CD epitope bound to
human HLA has been reported (Kim et al., 2004; Petersen et al.,
2014, 2016), little is known about the higher-order structure of
gliadin proteins because they aggregate in solutions (Urade et al.,
2018). Sequence-based characterization of a-gliadin variation
within modern hexaploid wheat cultivars will aid in breeding
efforts to incorporate both desired end-use quality and lower
reactivity for consumers.

Allopolyploidization and tandem duplication have made
regions such as GIi-2 difficult to characterize in terms of the
genomic organization of and variation within multigene families
found in bread wheat. Thus, most variation within a-gliadin
gene sequences of different wheat accessions and related species
has been detected using bacterial artificial chromosome (BAC)
clones, transcriptome analysis, or low-coverage shotgun genome
sequencing (Kawaura et al., 2012; Noma et al., 2016; Juhdsz
et al., 2018). High resolution of the structure of homoeologous
Gli-2 loci has been described using long-read sequences, but
in only one cultivar, Chinese Spring (CS; Huo et al., 2018).

Recently, advances in polyploid genomics enabled the high-
quality genome assembly and polymorphism analysis of tandem
duplications (Paape et al., 2016, 2018; Avni et al., 2017). Here,
using chromosome-level assemblies for 11 accessions including
elite bread wheat cultivars and a spelt wheat line in the framework
of the “10+ Wheat Genomes Project” (Walkowiak et al., 2020),
we began to address the question of global variation in both
the structure of and polymorphism within Gli-2 loci among
multiple cultivars.

MATERIALS AND METHODS

Sequence Resources

Reference-quality genome assemblies for 9 bread wheat
accessions, ArinaLrFor, CDC Landmark, CDC Stanley, Jagger,
Julius, LongReach Lancer, Mace, Norin 61, SY Mattis and
one spelt accession, PI1190962, released by the “10+ Wheat
Genomes Project” (Walkowiak et al., 2020), were accessed
through IPK, Germany." We also used the RefSeq v1.0 assembly
of CS (International Wheat Genome Sequencing Consortium
(IWGSC) et al., 2018), which is available at INRAE, France.?

Identification of Gli-2 Loci and «-Gliadin

Sequences

To identify the location of the Gli-2 loci, BLAST searches were
conducted against chromosome assemblies for homoeologous
group 6 of the eleven accessions using the a-gliadin gene
sequences AS2 and AS7 (for chromosome 6A); AS3, AS4, AS5
and AS6 (for 6B); and AS1, AS8, AS9, AS10, and AS11 (for
6D) as queries (Noma et al., 2016). From the BLAST results,
regions with an e-value = 0 and composed of a single exon
were selected as candidates for a-gliadin gene copies. The
regions were translated into amino acid sequences. Sequences
not starting with a methionine residue were discarded as
incomplete gene fragments. Sequences that were too diverged
based on the sequence alignment or phylogenetic tree were
also omitted. Finally, we constructed a codon-based alignment
of gliadin gene copies using MUSCLE in MEGA (Kumar
et al,, 2018). Hi-C data and the alignments of CDC Landmark
Oxford Nanopore Technologies (ONT) long-read data were
obtained from Walkowiak et al. (2020). The gene coverage
values of the long-read alignments were obtained with SAMtools
v1.0 (Li et al, 2009) and BEDtools v2.29.0 (Quinlan and
Hall, 2010). Read alignments were visualized with IGV v2.8.2
(Robinson et al., 2017).

The evolutionary history of the gene family was inferred from
the 429 a-gliadin sequences identified above. Codon positions
included were Ist + 2nd + 3rd 4+ Non-coding. All positions
containing gaps and missing data were eliminated (complete
deletion option). The final dataset contained a total of 524
positions. The tree was estimated using the neighbor-joining
method (Saitou and Nei, 1987), and evolutionary distances were
computed using the Kimura 2-parameter method (Kimura, 1980)

Uhttps://wheat.ipk- gatersleben.de/
Zhttps://wheat-urgi.versailles.inra.fr/Seq- Repository/ Assemblies
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and expressed as the number of base substitutions per site.
The rate variation among sites was modeled with a gamma
distribution (shape parameter = 2.25). Support for the tree
topology was estimated using the bootstrap test with 1,000
replicates and was calculated as the percentage of replicate trees in
which the associated taxa clustered together (Felsenstein, 1985).
The tree was drawn to scale, with the units for branch lengths
being the same as those of the evolutionary distances used to infer
the phylogenetic tree.

Celiac Disease Epitope Search and Site

Selection Analysis
Using the amino acid sequences of a-gliadin copies without the
last stop codon, we searched all sequences for the presence of
nine canonical amino acid epitopes previously shown to induce
an immunogenic reaction (Sollid et al., 2012; Ozuna et al., 2015).
To test for amino acid sites likely to be under positive
selection in the a-gliadin gene family, only full-length sequences
were considered for a conservative analysis. Gaps present
at the same position in all three Gli-2 loci and sequences
containing premature stop codons were discarded. Sequences
were also removed if they had no terminal stop codon or
were not composed of multiples of three nucleotides, implying
frameshifts. Last, sites in regions that were difficult to align (the
polyglutamine regions) were not considered, as the uncertain
alignments may produce false positive signals. For the selection
analysis, a phylogenetic method was applied. First, the most likely
phylogenetic tree was estimated using nucleotide alignment and
a general time reversible (GTR) + invariant + gamma model
in MrBayes (Ronquist et al., 2012). Then, the likelihood of that
tree was calculated under different codon substitution models by
estimating the non-synonymous and synonymous substitution
rate ratios (w = dn/ds) for each codon within the alignment.
The value of w indicates the type of selection: w < 1 indicates
negative selection, w = 0 indicates neutral evolution, and w > 1
indicates positive selection. A likelihood ratio test (LRT) was run
between two nested codon substitution models, a null and an
alternative model, to determine whether the alternative model of
positive selection was supported. The null model (M7) did not
allow for sites under positive selection while the alternative model
(M8) did allow for positive selection (Yang et al., 2000). Last,
the posterior probability of a specific site being under positive
selection was estimated using Bayesian empirical Bayes (BEB)
(Yangetal., 2005). Sites with a probability > 95% were considered
significant. The likelihoods of the codon substitution models
and posterior probability calculations were implemented in the
CODEML program of the software package PAML4 (Yang, 2007).

RESULTS

Location and Validation of Gli-2 Loci in

Accessions

We identified a-gliadin gene copies within 11 wheat assemblies:
the 10 reference-quality pseudomolecule assemblies (Walkowiak
et al, 2020) plus CS RefSeq v1.0 (International Wheat

Genome Sequencing Consortium (IWGSC) et al., 2018). We
first examined the chromosomal positions of the o-gliadin
copies. Copies that mapped to chromosome 6A in the 11
wheat accessions were assigned as Gli-A2 and were located
in single region on the short arm, as expected (Table 1 and
Supplementary Table 1). The only exception was Gli-A2 of
CDC Landmark, which was split into 2 subloci 7 Mb apart
from each other. Similarly, sequences in Gli-D2 mapped to the
expected region on chromosome 6D in nine reference-quality
assemblies. In LongReach Lancer and CS, we could not identify
a-gliadin copies on chromosome 6D; however, those found in
scaffolds that were not anchored to a chromosome (chrUn)
were assigned to Gli-D2 following the suggestion of Juhdsz
et al. (2018). Surprisingly, the copies found on chromosome 6B
showed that the Gli-B2 locus was clearly split into 2 subloci
in all accessions. We called them Gli-B2-1 and Gli-B2-2, and
they were 12-21 Mb apart from each other on chromosome 6B
(Table 1 and Supplementary Table 1). The uniformity of the Hi-
C signal along the whole GIi-B2 region and its flanking regions
further supported that the bipartite structure of Gli-B2 was not
an assembly artifact (Supplementary Figure 1) (Shimizu et al,,
2020; Walkowiak et al., 2020). The position of this second locus
relative to the well-described locus at ~43 Mb on chromosome
6B in CS has not been described before, although previous studies
mention two sequences that mapped outside that region (Huo
et al,, 2018; Juhdsz et al., 2018). The consistency in the Hi-
C maps observed among all assemblies supports that Gli-B2 is
composed of two parts and opens the possibility of exploiting
genetic recombination for breeding purposes.

Although some assemblies showed the subdivision or
translocation of several a-gliadin genes compared to those of
other accessions, we interpreted them with caution. In Jagger,
a-gliadin sequences mapped to a third region (Gli-B2-3) located
at the end of the long arm of chromosome 6B. We also found
that the sublocus Gli-B2-1 of LongReach Lancer and CDC
Landmark was further split into two parts. However, the Hi-
C signal of intra- and interchromosomal interactions for these
accessions suggested potential misassembly within these regions
(Supplementary Figures 1, 2). We note that the 20 Mb regions
flanking Gli-B2-1 in CDC Landmark were highly concordant
with those in CS, but they were not concordant with those
in LongReach Lancer (Supplementary Figure 3). Because the
assembly structure and orientation of CS was also supported by
additional evidence (International Wheat Genome Sequencing
Consortium (IWGSC) et al., 2018), this suggested that the
rearrangement in CDC Landmark may represent true biological
variation. The location and orientation of these subloci remain
interesting cases for further validation to distinguish biological
rearrangement from assembly errors.

Next, we checked the accuracy of the assemblies around
each single a-gliadin gene copy. We utilized the long-read
sequence data from ONT for CDC Landmark that was
previously used to validate the assembly (Walkowiak et al.,
2020). Though often flanked by assembly gaps, the sequence
at and immediately adjacent to each a-gliadin gene copy was
supported by continuous alignments of several long reads
(Supplementary Figure 4), implying a gene-level correctness
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TABLE 1 | Genomic positions of Gli-2 loci in 11 wheat accessions.

Accession Gli-A2 Gli-B2 Gli-D2

Positions* Copy no.**  Gli-B2-1* Copy no.**  Gli-B2-2* Copy no.**  Gli-B2-3* Copy no.**  Positions* Copy no.**
ArinaL.rFor 25.5-27.7 30 (14) 44.5-45.1 6 (4) 63.0 2(1) 28.1-28.5 9(5)
CDC 25.8-26.4 11 (9) 43.4-43.6 12 (6) 63.2 2(1) 27.1-27.5 95
Landmark and and

33.0-33.1 49.5-49.7
CDC Stanley 26.1-27.0 119 45.3-46.0 12(7) 65.2 2(1) 28.2-28.7 10 (6)
Jagger 24.7-25.6 11(9) 43.6-44.4 91 65.0 2(1) 654.9-655.2 6 (4) 26.7-26.8 3(1)
Julius 24.7-25.5 10 (8) 46.6-47.1 63 64.7 2 (0) 27.0-27.4 95
LongReach  24.6-25.4 119 35.5-35.7 14 (6) 58.2 2(1) chrUn 11 (8)
Lancer and

45.7-46.0

Mace 24.8-25.6 11 (9) 43.5-44.3 13 (7) 63.8 2(1) 26.8-27.3 11 (7)
Norin 61 25.8-28.2 33 (15) 42.3-43.0 14 (8) 61.2 2(1) 26.7-27.2 11 (6)
SY Mattis 24.0-25.9 23 (8) 44.6-45.2 6(2) 61.8 2 (0) 26.6-27.1 95
PI190962 25.8-28.2  25(10) 413-41.7  5(2 60.4 2 (1) 26.4-26.9 11 (6)
(spelt)
Chinese 24.9-25.6 9(7) 43.4-44.1 8(3) 62.7 2(1) chrUn 18(12)
Spring

Genomic positions (in Mb) and copy number of a-gliadin genes that mapped within chromosome 6A, 6B, or 6D of each accession were assigned to Gli-A2, Gli-B2, and Gli-
D2, respectively. Within LongReach Lancer and Chinese Spring, copies that mapped to chrUn were assigned to Gli-D2. *Genomic positions (Mb) in the pseudomolecules
of the corresponding chromosomes. **The number of intact genes encoded in this region is shown in parentheses.

of each model. The different coverage seen among copies,
including those in close proximity, hinted at potential collapses of
paralogous copies into a single gene (Supplementary Figure 4B)
or the separate assembly of allelic heterozygous copies. To
address this possibility, we compared the coverage of the ONT
alignments for each a-gliadin gene in the assembly to the median
genome-wide gene coverage (32.23 genome equivalents). Of the
34 copies that we manually annotated in CDC Landmark, seven
(20.5%) had a mean coverage that clearly deviated from that
of other copies. As a comparison, the coverage of the three
ADH homoeologs (chosen as a single-copy gene reference) was
well within the genome-wide value (Supplementary Table 1).
While the three a-gliadin copies at high coverage likely represent
collapsed paralogs, the four genes at lower coverage may be
haplotype-specific assemblies of heterozygous allelic copies. The
long-read data suggested that the assembled a-gliadin sequences
were correctly identified, although the exact copy number of
~20% of them may be different.

The number of assembled a-gliadin genes within each GIi-2
locus is reported in Table 1. While most accessions possessed
approximately 11 a-gliadin copies in Gli-A2, the accessions
ArinaLrFor, Norin 61, SY Mattis, and P1190962 had two to three
times as many copies (Table 1). We identified 13-17 copies in
Gli-B2 in most accessions, while ArinaLrFor, Julius, SY Mattis
and the European spelt PI190962 had only half the number of
copies compared to the other accessions (Table 1). For Gli-D2,
there were approximately 10 copies in most accessions (Table 1).
An extremely high or low copy number for Gli-B2 and Gli-
D2 in Jagger, respectively, was possibly an assembly error, as
described above. Subsequent analyses in this paper will use
the assignment to a particular Gli-2 locus based on previously
published assemblies for consistency.

Phylogenetic Analysis of o-Gliadin
Copies
We then assessed the relationship between all a-gliadin copies
identified in the 11 accessions using phylogenetic analysis.
According to the clustering pattern, a-gliadin copies were
classified into three main clades named 1, 2, and 3 (Figure 1).
Clades 1 and 3 showed a compact structure and included copies
mostly from Gli-A2 to Gli-D2, respectively. In Gli-D2, unlike
other subgenome loci, there was little difference in copy number
between accessions and the genetic distances between branches
were shorter. Limited allelic diversity at the Gli-D2 locus is
consistent with the lower diversity of the coding sequences in
the D subgenome (International Wheat Genome Sequencing
Consortium (IWGSC), 2014; Jordan et al., 2015; Walkowiak et al.,
2020). Clade 2 mostly contained copies from Gli-B2 but also
included sub-clades of Gli-A2 and Gli-D2, although with weak
branch support (Figure 1). As mentioned above, we found 2
subloci in Gli-B2, i.e., Gli-B2-1 and Gli-B2-2 (Table 1). In the
phylogenetic tree (Figure 1), the two gliadin sequences encoded
in Gli-B2-2 formed subclades distinct from other sequences in
Gli-B2-1, indicating that the split of Gli-B2 was shared among
all wheat accessions and that the genes in the two subloci
experienced different histories. These data further support the
bipartite structure of Gli-B2.

The a-gliadin copies that mapped to Jagger Gli-B2-3 clustered
in clade 3, which is composed of Gli-D2 copies (Figure 1,
blue arrows). This is consistent with the possible misassembly
from Gli-D2 to the end of chromosome 6BL in this cultivar
(see also the previous section; Supplementary Figure 2). If
we reassign these sequences as a part of Gli-D2, the copy
numbers of Gli-B2 and GIli-D2 in Jagger are closer to the
average copy number found within the other accessions. In the
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case of LongReach Lancer and CS, we assigned all a-gliadin
copies in chrUn as copies of Gli-D2 following the suggestion
of Juhdsz et al. (2018). However, we found that several copies
clustered with those assigned to Gli-A2 or Gli-B2 in the other
accessions (Figure 1, orange arrows). Despite these potential
misclassifications, we were able to show that there were clear
variations among accessions.

Among the accessions with the largest differences in copy
numbers, we observed distinct clustering patterns. Branches from
accessions with the highest copy number for Gli-A2, such as
ArinaLrFor, Norin 61, SY Mattis and PI190962, were clearly
separated from the branches of the other seven accessions.
Similarly, we found distinct clusters containing copies of Gli-
B2-1 from ArinaLrFor, Julius, and SY Mattis. These three
accessions, in addition to PI1190962, contained the lowest copy
number within this locus. These examples highlight potential
differences in evolutionary and/or breeding history between

accessions and that the gene duplications or losses in some
cultivars did not originate independently but were likely from a
common ancestor.

Focusing on the spelt wheat, P1190962, we observed no clear
association with the other accessions for Gli-A2 and Gli-B2-
1. Rather, most of the copies in PI190962 formed their own
branches or small clusters. This was not the case for Gli-D2,
where the P1190962 copies were positioned on the same branches
as those for other bread wheats. Interestingly, the a-gliadin
copies in Gli-B2-2 in P1190962 also clustered with those of
the other accessions (Figure 1, purple highlight). The spelt
accession, PI190962, used in this study is a Central European
spelt, which has been suggested to have originated from the
introgression of a hulled tetraploid emmer wheat into bread
wheat during the migration of bread wheat from the Fertile
Crescent to Europe. Therefore, the A and B subgenomes between
bread wheat and European spelt had higher sequence divergence,
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FIGURE 2 | Celiac disease (CD) epitope quantification within a-gliadin copies. The frequency of canonical CD epitopes varies between accessions and

homoeologous chromosomes.

Epitopes

while the D subgenome showed greater sequence similarity
(Blatter et al., 2004; Dvorak et al., 2012). Our observation of the
separation of a-gliadin sequences in P1190962 from those of other
bread wheats in Gli-A2 and Gli-B2-1 supports that this Central
European spelt accession had an introgressed origin with a
tetraploid emmer wheat, which was recently shown to be distinct
from the origins of Iberian spelt (Abrouk et al., 2021). This result
also indicates that the introgressed loci from chromosome 6B of
emmer wheat may be confined to the region encoding Gli-B2-
1, further supporting a different evolutionary history for the two
Gli-B2 loci identified in this study.

Celiac Disease Epitope Copy Number

and Positive Selection in o-Gliadins

Specific epitopes found in a-gliadins can induce reactions in
patients with CD and gluten intolerance. Therefore, the search
for new alleles and/or copy number variations that may cause
weaker or no reaction is beneficial in breeding programs. Among
the amino acid sequences produced by a-gliadin genes from the
11 wheat accessions, we found polymorphic sites within three
major immunogenic regions, p31-43, the 33-mer, and the DQ2.5-
glia-a3 peptide, using the established nomenclature (Sollid et al.,
2012; Ozuna et al., 2015). The presence of epitope sequences

showed a subgenome-specific pattern within the 11 accessions
(Figure 2), and the count of CD epitopes in each accession
mirrored the total a-gliadin copy number present in each locus
(Table 1). Gli-A2 contained mostly DQ2.5-glia-alb, DQ2.5-glia-
a3 and p31-43-LG epitopes. Variants of the latter two epitopes
were also present, but at low frequency, in four accessions. The B
subgenome encoded the fewest epitopes, the highest proportion
of which were p31-43-PG. Among all accessions, the largest
variety of CD epitopes was present in Gli-D2 and included several
that overlapped in a single gene copy. The toxic 33-mer sequence
that contains six epitopes (33-mer 1.3-6) was found in the Gli-
D2 sequence of 5 accessions, including once in PI1190962 and
twice each in CS and LongReach Lancer (Figure 1, red curve and
Figure 2).

In general, a single known epitope sequence was not found
in the genes of all three subgenomes and sequences with
multiple overlapping epitopes were restricted to Gli-D2. For
example, DQ2.5glia-ala was present in both Gli-A2 and Gli-
D2. The sequence encoding both DQ2.5glia-ala and DQ2.5glia-
a2 (PFPQPQLPYPQ) was found only in Gli-D2 due to a P
to S substitution (PFPQPQLPYSQ) in Gli-A2. No DQ2.5-glia-
a-type epitopes were present in Gli-B2, except for the potential
misassembly or translocation of regions from chromosomes 6D
to 6B in Jagger. The patterns we observed reflected those of
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previous studies reporting the presence of specific epitopes in
the subgenomes of hexaploid wheat (van Herpen et al., 2006;
Salentijn et al., 2009; Sollid et al., 2012; Ozuna et al., 2015; Noma
et al., 2016; Juhasz et al., 2018).

Global prevalence of CD has increased (Singh et al., 2018)
and this has been attributed, by some, to modern breeding
practices. Due to its hybridization history, spelt wheats contain
different gliadin and glutenin contents and has been subject
to less intensive selection than modern bread wheats (Dubois
et al., 2016; Escarnot et al., 2018), prompting the idea it could

be less reactive for consumers. We observed that the numbers
and distribution patterns of the immunogenic epitopes in the
particular spelt accession, PI190962, were similar to those of
other bread wheat accessions (Figure 2), including one copy
of the 33-mer peptide that was identified in Gli-D2. Although
the study of Asian and other spelts (Blatter et al., 2004; Dvorak
et al., 2012) would be necessary to draw conclusions about spelt
diversity, the data from this single accession of spelt did not
support the claim that spelt (as a species) could produce weaker
reactions in people with CD, in agreement with previous genetic
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studies (Ozuna et al., 2015; Dubois et al., 2016; Ruiz-Carnicer
et al., 2019). Recent studies investigating overall protein and
gluten content of both modern and old hexaploid wheat as
well as “ancient” varieties including spelt, emmer, and einkorn
showed no conclusive role of modern breeding techniques in the
increased prevalence of CD. Rather, they exemplified the high
variability of gluten content between all varieties, new and old,
and reiterate the importance of environmental factors in overall
protein content of wheat and its relatives (Escarnot et al., 2018;
Geisslitz et al., 2019; Call et al., 2020; Pronin et al., 2021). Our
results on the genetic variability are in line with these protein-
based studies and, taken together, show the tools to identify low
immunoreactive varieties are well developed. These studies not
only proposed suitable varieties for further breeding already but
also motivate a more comprehensive characterization of wheat
and its relatives to tap into existing variability for breeding
(Shewry, 2018).

We used a method to identify selection on amino acid-
changing substitutions (PAML; Yang, 2007). This method
estimates the ratio of amino-acid replacement mutations (non-
synonymous substitutions, dN) compared with synonymous
substitutions (dS). When the dN:dS ratio is greater than 1,
it indicates positive or diversifying selection. Many positions
showed a posterior probability higher than 0.75. Among them,
in Gli-B2, we found two codon positions that were above the 95%
significance level: one in unique domain I and another in unique
domain II (Figure 3). When all GIi-2 loci were analyzed together,
the position in unique domain I remained significant (Figure 3
and Supplementary Table 2). The other amino acid position that
was significant in Gli-B2 domain II was just below the threshold
when A, B and D were analyzed together (Figure 3).

DISCUSSION

The importance of bread wheat in human nutrition and its role
in disease warrant the characterization of genetic and structural
variation within the gene family encoding gliadin, which forms
the gluten protein structure together with glutenin. However,
this research has been challenging due to the complexity of the
loci caused by tandem and homoeologous duplications. Here,
we characterized the diversity of a-gliadin gene copies and their
organization within Gli-2 loci in chromosome-scale assemblies of
11 globally distributed bread and spelt wheat accessions. Long-
read data supported that the assembled gliadin coding regions
were correct, and 80% of them were assembled as a single
copy with high confidence. The remaining 20% may possibly be
collapsed, highly similar paralogs or independently assembled
alleles of a gene copy. Unexpectedly, we found a bipartite
structure of the Gli-B2 loci in all assemblies, which was supported
by Hi-C data and evolutionarily supported by phylogenetic
analysis. This suggests that further expansion of the variation at
the gliadin locus through chromosomal recombination using the
segregation of these subloci may be applicable for future wheat
breeding. Using the PAML method, we detected amino acid
positions that were under diversifying selection, suggesting that
polymorphisms at these positions may be relevant for functional

differences, such as those involved in interactions with glutenins
(Li et al., 2014). This warrants further functional validation via
amino acid substitution experiments.

Previous reports describe the subgenome specificity of
sequences with CD epitopes, and those that cause the strongest
immune cell reactions occur mostly in the A and D subgenomes
and their respective progenitors. On the other hand, the wheat
B subgenome, barley and several other Triticeae species contain
epitopes that produce relatively weak responses from their
a-gliadin and related proteins (van Herpen et al., 2006; Juhdsz
et al, 2018). Our results not only reflect this subgenome
specificity but also show that epitopes causing gluten-related
reactions are unevenly distributed among accessions covering
a wide range of wheat diversity (Walkowiak et al., 2020). The
D subgenome is the only identified source of the toxic 33-mer
epitope within bread wheat, and its presence has been detected
at low frequency in the germplasm of the D progenitor Aegilops
tauschii (Schaart et al., 2021). Current efforts to incorporate this
knowledge into breeding safer varieties include the generation
of synthetics and Gli-D2 deletion lines (Camerlengo et al., 2017;
Li et al, 2018), the development of probes to quickly confirm
the presence of reactive epitopes (Dubois et al., 2017), and the
genome-editing to reduce the immunotoxic 33-mer (Sanchez-
Leon et al., 2018). Our study can inform these efforts. Our
results show the reduced frequency of reactive epitopes in some
accessions but also show that reactive epitopes are present in
spelt, which is consistent with a previous study (Escarnot et al.,
2018), indicating that detailed cultivar-specific analysis is needed.
While the immunogenic effects of many of the polymorphic
epitopes have not been directly tested, our main findings indicate
that resources for breeding less reactive wheat are already present
in elite germplasm.
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