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Quantitative genetics states that phenotypic variation is a consequence of the interaction

between genetic and environmental factors. Predictive breeding is based on this

statement, and because of this, ways of modeling genetic effects are still evolving.

At the same time, the same refinement must be used for processing environmental

information. Here, we present an “enviromic assembly approach,” which includes using

ecophysiology knowledge in shaping environmental relatedness into whole-genome

predictions (GP) for plant breeding (referred to as enviromic-aided genomic prediction,

E-GP). We propose that the quality of an environment is defined by the core of

environmental typologies and their frequencies, which describe different zones of plant

adaptation. From this, we derived markers of environmental similarity cost-effectively.

Combined with the traditional additive and non-additive effects, this approach may

better represent the putative phenotypic variation observed across diverse growing

conditions (i.e., phenotypic plasticity). Then, we designed optimized multi-environment

trials coupling genetic algorithms, enviromic assembly, and genomic kinships capable

of providing in-silico realization of the genotype-environment combinations that must be

phenotyped in the field. As proof of concept, we highlighted two E-GP applications:

(1) managing the lack of phenotypic information in training accurate GP models across

diverse environments and (2) guiding an early screening for yield plasticity exerting

optimized phenotyping efforts. Our approach was tested using two tropical maize sets,

two types of enviromics assembly, six experimental network sizes, and two types

of optimized training set across environments. We observed that E-GP outperforms

benchmark GP in all scenarios, especially when considering smaller training sets.

The representativeness of genotype-environment combinations is more critical than

the size of multi-environment trials (METs). The conventional genomic best-unbiased

prediction (GBLUP) is inefficient in predicting the quality of a yet-to-be-seen environment,

while enviromic assembly enabled it by increasing the accuracy of yield plasticity

predictions. Furthermore, we discussed theoretical backgrounds underlying how intrinsic
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envirotype-phenotype covariances within the phenotypic records can impact the

accuracy of GP. The E-GP is an efficient approach to better use environmental databases

to deliver climate-smart solutions, reduce field costs, and anticipate future scenarios.

Keywords: genomic selection, adaptability, genotype × environment, climate-smart, selective phenotyping

INTRODUCTION

Environmental changing scenarios are a challenge for
agricultural research. Developing climate-smart solutions
in a time-reduced and cost-effective manner is crucial to
minimize economic and environmental impacts in farm
fields (Tigchelaar et al., 2018; Cortés et al., 2020; Ramirez-
Villegas et al., 2020). All these strategies must be linked
with the characterization of growing conditions of crops
(Xu, 2016) because it allows for a deeper understanding
of how the environmental signal is a driver to shape the
past, present, and future phenotypic variations observed
in farm fields (e.g., Cooper et al., 2014; Ramirez-Villegas
et al., 2018; Heinemann et al., 2019; de los Campos et al.,
2020; Antolin et al., 2021; Costa-Neto et al., 2021b). In plant
breeding research, mostly based on the selection of best-
evaluated genotypes in a certain experimental network, this
approach discriminates which genetic and non-genetic factors
affect adaptative responses and yield performance. Thus, a
conscious and well-conducted environmental characterization is
crucial to bridge the results obtained in some experimental
networks and expectations for the target population of
environments (TPEs) of the breeding program (e.g., Chenu
et al., 2011; Heinemann et al., 2015, 2019; Crespo-Herrera et al.,
2021).

The not so fresh, yet underused, field of “envirotyping”
(environmental+ typing, Cooper et al., 2014; Xu, 2016) emerges
to not only deliver reliable data for purposes of environmental
characterization but also for enriching the breeding analytics
routines (Costa-Neto and Fritsche-Neto, 2021) and closing
the gap between breeding goals and agronomic development
(Cooper and Messina, 2021). Consequently, new ways to
establish a biologically accurate approach for predicting a given
growing environment, as well as its relationship with TPE
major conditions, have been better understood by quantifying
the impact and frequency of the major environment-types
(envirotypes) across years or locations (e.g., Chenu et al., 2011;

Abbreviations:A, Additive effects; b, Coefficient of yield adaptability from Finlay–
Wilkinson; BD, Block-diagonal matrix of the genomic by environment effect; D,
Dominance effects; EC, Environmental covariate; E-GP, Enviromic-aided genomic
prediction including envirotype markers; Envirotype, Environmental-type; FW,
Finlay–Wilkinson adaptability model; GBLUP, Genomic best linear unbiased
predictions; G×E, Genotype by environment interaction; GP, Genomic prediction;
MET, Multi-environment trials; MSE, Mean squared error; NGE, Minimum
core of genotype-environment combinations; OTS, Optimized training sets for
genomic prediction; r, Predictive ability given by the average linear correlation
between observed and predicted trait values; RN, Enviromic by genomic
matrix for reaction norm effects; T, Typology matrix of envirotype markers
(qualitative covariables and their frequencies); W, Environmental covariable
matrix (quantitative covariables); W-GP, Enviromic-aided genomic prediction
using quantitative environmental covariates.

Heinemann et al., 2019; Antolin et al., 2021; Cooper et al., 2021).
Furthermore, this might also lead to a better understanding of the
quality of a certain environment (e.g., a field trial) in providing
representative phenotypic records to support selection purposes
or as a training population set in predictive breeding approaches.
The end result is twofold beneficial, both for capitalizing the
effects of genotype by environment interaction in targeting
cultivars, yet for providing a better comprehension of the
environmental drivers acting on the yield plasticity observed on
the field trials (Costa-Neto et al., 2021a; Crossa et al., 2021).

Prediction-based tools have leveraged agronomic and modern
plant breeding research in the last decade (see Heinemann et al.,
2019; Herzmann et al., 2020; Cooper and Messina, 2021 in
this edition). Perhaps one of the major contributions of the
predictive tools is the better use of good quality phenotypic
records for feeding in silico platforms, aimed at screening a
large number of genotypes and candidate cultivars (Crossa et al.,
2017; Messina et al., 2018; Rogers et al., 2021). Whole-genome
prediction (GP, Meuwissen et al., 2001) is the most extensively
used predictive tool that is already developed and validated for
several crop species and application scenarios (e.g., Lorenzana
and Bernardo, 2009; Windhausen et al., 2012; Crossa et al., 2017;
Morais Júnior et al., 2018; Fonseca et al., 2021). In crops such as
maize, its uses have been consolidated to support diverse stages
of breeding programs, from the selection of individuals among
breeding populations to advanced stages aimed at predicting
the performance of single crosses across multiple environments
(e.g., Dias et al., 2018; Messina et al., 2018; Alves et al., 2019;
Costa-Neto et al., 2021a; Rogers et al., 2021).

Genome prediction platforms in plant breeding were
conceived to model genotype-to-phenotype relationships (G-
to-P) under specific environmental conditions, such as certain
planting dates and standardized management where the
genotypes are mated and evaluated at nursery (e.g., Lorenzana
and Bernardo, 2009; Windhausen et al., 2012). Thus, it is
reasonable to assume that the realized G-to-P relationship might
capture a large part of the observed phenotypic variation,
although this is environmental-specific, which generates a noisy
marker × environment interaction (Burgueño et al., 2012) when
we aim to predict multiple growing conditions. Thus, there
is an environmental-phenotype covariance intrinsic on each
phenotypic records. Consequently, it generates the well-reported
lack of accuracy under genotype × environment interaction
(G×E) conditions (Crossa et al., 2017). Therefore, novel ways
that include environmental data (Heslot et al., 2014; Jarquín
et al., 2014; Ly et al., 2018; Gillberg et al., 2019; Millet et al.,
2019; Monteverde et al., 2019; Costa-Neto et al., 2021a) and
process-based crop growth models (CGMs) (Messina et al., 2018;
Robert et al., 2020; Toda et al., 2020; Cooper et al., 2021) are
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considered the best pathways to fix it in the context of the multi-
environmental GP. Most of the success of such approaches lies
in understanding the ecophysiology interplay between genomics
diversity and environment variation (Gage et al., 2017; Li et al.,
2018; Guo et al., 2020; Costa-Neto et al., 2021b).

In addition to possible accuracy gains, the explicit integration
of enviromic and genomic sources is also an easy way to lead
GP to a wide range of novel dimensions of applications (Crossa
et al., 2021), such as envisaging the performance of crops under
untested growing conditions (de los Campos et al., 2020; Guo
et al., 2020; Jarquin et al., 2020; Costa-Neto et al., 2021a),
optimizingMET networks (Rincent et al., 2017a,b) and screening
genotype-specific reaction-norms for key environmental factors
(Ly et al., 2018;Millet et al., 2019). This is an excellent advance for
predictive breeding (i.e., the range of prediction-based selection
tools for crop improvement) because it reduces the time and cost
of the research pipelines while better supporting the selection
of adapted genotypes for target scenarios. However, to the
best of our knowledge, most of the current studies on this
topic vary in accuracy and applicability, mostly because of
three aspects:(1) processing protocols used to translate raw data
into explicit environmental covariables (ECs) with biological
meaning for explaining G×E over complex traits, (2) the lack
of a widely-used envirotyping pipeline that not only supports
the design of field trials but also increases the accuracy of
trained GP models, and in addition, (3) for most biological-
enriched predictive platforms, such as those enabled by CGMs,
there is a possible limitation due to increased demand for the
phenotyping of additional intermediate phenotypes (i.e., biomass
accumulation and partitioning, specific leaf area), which can
involve managed iso-environments and expert knowledge on
cropmodeling (Cooper et al., 2016; Robert et al., 2020; Toda et al.,
2020). The latter can be expensive or difficult for plant research
programs in developing countries, with low budgets to increase
the phenotyping network and install environmental sensors. In
addition, most developing countries are located in regions where
environments are subject to a broader range of mixed stress
factors, such as drought and heat stresses in combination with
nutrient limitation conditions.

Therefore, in this study, we revisit Shelford’s Law (Shelford,
1931) and other ecophysiology concepts that can provide
foundations for translating raw environmental information
into an enviromic source for predictive breeding, hereafter
denominated enviromic assembly. The benefits of using the
so-called “enviromics-aided GBLUP” (E-GP) under existing
experimental networks are then presented, followed by a proof-
of-concept application of E-GP for optimizing field-based
phenotyping. Finally, we benchmark E-GP with the traditional
genomic-best unbiased prediction (GBLUP) to discuss the
benefits of enviromic data to reproduce the expected G×E
pattern, which seems to provide a cost-effective platform to
screen the yield plasticity of genotypes.

MATERIALS AND METHODS

The Materials and Methods section is organized in the following
manner: First, we briefly address the concepts underlying the

novel approach of enviromic assembly inspired by Shelford’s
Law. Then, we describe the data sets, along with the statistical
models and prediction scenarios used, to show the benefits
of enviromics in GP across multi-environment trials (METs).
Finally, we present a scheme to optimize phenotyping efforts in
training GP over MET and support the screening for the yield
plasticity of maize single crosses.

Theory: Adapting the Shelford Law of
Minimum
As an exemplification, please consider two experimental
networks (MET) of the same target population of environments
(TPEs, e.g., different locations, years, and crop management)
covering two distinct ranges of environmental factors (colorful
gradient bar) (Figure 1). Then, consider two distinct genotypes
evaluated under both METs (G1, G2), in which their putative
response curves of phenotypic plasticity (Allard and Bradshaw,
1964) can also be expressed as different linear reaction-
norms (dotted lines), which consequently results in distinct
observable G×E patterns across METs (Figures 1A,B). For MET
1 (Figure 1A), both genotypes are experiencing a wider range
of possible growing conditions (large interval between the two
vertical solid lines), which results, in this case, in a possible
crossover G×E pattern. Conversely, in MET 2 (Figure 1B), the
range of growing conditions is different. Thus, it is expected that
the same genotypes will also produce a distinct G×E pattern,
which is, in this case, a non-crossover. Therefore, it is feasible
to conclude that, although the genetic variation is essential
for modeling the potential phenotypic plasticity of genotypes
(curves, Figures 1A–C), the diversity of environmental growing
conditions dictates the observable G×E patterns (Bradshaw,
1965). Thus, by bringing these observations into the GP context,
we envisage thatmost decisions guided byMETGPmodelsmight
be unbiased with the quality and diversity of growing conditions
are not well-accounted in the modeling approach.

Currently, approaches such as CGM aim to mechanistically
reproduce phenotypic plasticity curves in a non-linear way.
Conversely, benchmark reaction norm models try to reproduce
the observable reaction norm in a linear way. Both approaches
can achieve adequate results (e.g., Cooper et al., 2016; Ly et al.,
2018; Heinemann et al., 2019; Millet et al., 2019; Monteverde
et al., 2019; Jarquin et al., 2020; Toda et al., 2020; Antolin
et al., 2021), although, to the best of our knowledge, we
have observed three key issues: (1) the quality of the linear
modeling of a reaction norm depends on the diversity of
METs, and thus, on the range of environmental conditions
evaluated, which consequently implicates that the screened
impact of environmental factors is MET-specific (not TPE-
specific) and varies across years; (2) A CGM demands greater
phenotyping effort for training genotype-specific parameters
capable of reproducing the achievable phenotypic plasticity, from
a reduced core of phenotypic records collected from field trials in
near-iso environments (e.g., well-watered conditions vs. water-
limited conditions for same planting date and management),
which, for some regions or crops, can limit the applicability of
the method, even if it is a biologically accurate way to reproduce
yield plasticity for certain scenarios such as drought stress; (3)
the use of reaction norm models trained from high technological
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FIGURE 1 | Ecophysiological insights to translate raw environmental data into

enviromic sources. (A) Representation of an experimental network involving an

unknown number of environments from a theoretical target population of

environments (TPEs) and two genotypes (G1 and G2). The range of the

environmental gradient is delimited by the space between the two vertical

green lines. Each genotype has a non-linear function describing the genetic

limits of phenotypic plasticity (curves) and genetic potential (horizontal dotted

lines) of a given trait. Diagonal dotted lines denote the observed reaction norm

experienced by the genotypes. (B) Representation of a second experimental

network involving the same genotypes, but different environments were

sampled from the theoretical TPE. (C) Adaptation of Shelford’s Law of

Tolerance, describing the cardinal (or biological) genetic limits (vertical green

lines) to determine the amount of the factor that results in different adaptation

zones. Across these zones, crop performance is described by zones of stress

caused by deficit or excess (physiological tolerance range) and zones of

optimal growing conditions that allow the plants to express the genetic

potential for a given trait (optimum range). The core of possible environmental

variations is contemplated as putative phenotypic plasticity for a given

genotype, germplasm, or crop species.

and well-designed phenotyping platforms might be efficient to
collect reliable environmental phenotype associations, but it
might not be feasible for certain regions of the world with limited
resources to invest in precision (and expensive) phenotyping
efforts. Because of this, there is a need to develop a cheap and easy
way to approach environmental diversity, translating it into a
source of data capable of mimicking the impact of environmental
range in the expression of phenotypic plasticity in the current
GP platforms.

We understand that Shelford’s Law of Tolerance (Shelford,
1931) is suitable for explaining how the environmental signals are
a drive source of the phenotypic plasticity in plants. It can inspire
the implementation of a cost-effectively pipeline for processing
raw environmental data (Figure 1C). It states that the adaptation
of a target population (e.g., germplasm) is modulated as a
certain range of minimum, maximum, and optimum threshold
limits achieved over an environment gradient (vertical solid
green lines). Thus, the potential phenotypic plasticity (curves) of
genotypes is not regarded as a linearized reaction norm variation
across an environmental gradient (Arnold et al., 2019); instead,
it is a non-linear curve of variation, which can be summarized
into a discrete distribution, based on the cardinal thresholds for
each biophysical factor, with well-documented ecophysiological
relevance. Therefore, crops may experience stressful conditions
because of the excess or lack of a certain environmental
factor (e.g., temperature, water), which depends on cardinal
thresholds (vertical solid green lines in Figure 1C) for each plant
species, germplasm, genetic pool, and even varies according
to the lifetime of a crop, development stages. Consequently,
the expected variation under environmental conditions across
different field trials can be visualized as a core of environment
types (envirotypes) acting consistently yet varying in impact
and due to genetic-specific sensibility, as preconized in CGMs.
Finally, the quality of a certain growing condition depends on
the balance between crop necessity and resource availability,
which can be modeled as a quantity of resources and its frequency
across time and space. This came with the idea of separating
the environmental inputs as constant effects, such as the type of
treatments in a trial (e.g., fertilizer inputs) and transitory effects
variables, such as weather events (e.g., heat stress).

From these concepts, we observe that by envirotyping (e.g.,
typing the profiles of a particular environment) we can visualize
the contribution of the observable G×E pattern as an end-result
of the shared frequency of envirotypes across different field trials.
Thus, the envirome of a certain experimental network or TPE
(the core of possible growing conditions) can be mathematically
assembled in three steps: (1) collecting large-scale environmental
data, (2) processing this raw data in envirotyping entries for each
real or virtual environment, and (3) processing the envirotyping-
derived entries to achieve theoretical relatedness between the
buildup of different environments from the shared frequency
of envirotypes. Thus, the expected envirotypes can be designed
relying on the adaptation zones inspired by the model proposed
here, based on Shelford’s Law, in which we can envisage the
process of deriving environmental covariables for GP in an
ecophysiological-smart way.
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Proof-of-Concept Data Sets
Grain yield data (Mg per ha) collected from two distinct sets
of maize hybrids (single crosses of inbred lines) were used as
a proof of concept. The data sets were originated in Brazil
from different germplasm sources developed under tropical
conditions (hereafter referred to as Multi-Regional and N-levels).
The experimental design, cultivation practices, and fundamental
statistical analysis are given in Bandeira e Souza et al. (2017) and
Alves et al. (2019). Below, we provide a short description of the
number of genotypes and environments tested and the nature of
the genotyping data of this study.

Multiregional Set (Five Locations in Different Regions)
The so-called “Multi-Regional set” is based on germplasm
developed by the Helix Seeds Company (HEL) in South America.
It includes 247 maize lines evaluated in 2015 at five locations
in three regions of Brazil (Supplementary Table 1). Genotypic
data were obtained using the Axiom Maize Genotyping Array
(Affymetrix, Sta. Clara, CA, United States) containing 616 K
single-nucleotide polymorphisms (SNPs) (Unterseer et al., 2014).
Only SNPs with minor allele frequency >0.05 were considered.
Finally, a total of 52, 811 high-quality SNPs that achieved the
quality control level were used in further analyses.

N-Level Set (Fertilization Levels Across Years and

Locations)
The so-called “N-level set” is based on the germplasm developed
by the Luiz de Queiroz College of Agriculture of the University
of São Paulo (USP), Brazil. A total of 570 tropical maize
hybrids were evaluated across eight environments, involving
an arrangement of two locations, 2 years, and two nitrogen
levels (Supplementary Table 2). The sites of this study involved
two distinct edaphoclimatic patterns, i.e., Piracicaba (Atlantic
Forest, clay soil) and Anhumas (savannah, silt–sandy soil). Two
contrasting nitrogen (N) fertilization levels were managed at each
site. One experiment was conducted under ideal N conditions
and received 30 kg ha−1 at sowing, along with 70 kg ha−1 in
a coverage application at the V8 plant stage, which is the
main recommendation for fertilization in tropical maize growing
environments in Brazil. In contrast, the second experiment under
low N conditions received only 30 kg ha−1 of N at sowing,
resulting in N-limited growing conditions. The genotyping data
of this set were obtained using the Axiom Maize Genotyping
Array (Affymetrix, Sta. Clara, CA, United States) containing 616
K SNPs (Unterseer et al., 2014) andminor allele frequency>0.05.
At the end of this process, a total of 54,113 SNPs were considered
and used in the further analysis.

Envirotyping Pipeline
In this section, we present the methods used for data collection,
processing, and implementing what we call enviromic assembly.
This envirotyping pipeline was developed using the functions
of the R package EnvRtype (Costa-Neto et al., 2021b) and is
available at no cost.

Environmental Sensing (Data Collection)
This study used environmental information for the main abiotic
plant-environment interactions related to daily weather, soil
type, and crop management (available only for the N-level set).
Daily weather information was collected from NASA POWER
(Sparks, 2018) and consisted of eight variables: rainfall (P,
mm day−1), maximum air temperature (TMAX, ◦C day−1),
minimum air temperature (TMIN, ◦C day−1), average air
temperature (TAVG, ◦C day−1), dew point temperature (TDEW,
◦C day−1), global solar radiation (SRAD, MJ per m²), wind
speed at 2m (WS, m s−1day−1), and relative air humidity (RH,
% day−1). In addition, elevation above sea level was obtained
from the Shuttle Radar Topography Mission (SRTM) of NASA.
Both sources were imported into R statistical-computational
environments using the functions and libraries organized within
the EnvRtype package (Costa-Neto et al., 2021b). A third
GIS database was used to import soil types from Brazilian
soil classification provided by Empresa Brasileira de Pesquisa
Agropecuária (EMBRAPA), available at http://www.dpi.inpe.br/
Ambdata/mapa_solos.php and at the Git Hub tutorial https://
github.com/gcostaneto/EGP.

Data Processing
Quality control was adopted by removing variables outside
the mean ± three SDs and repeated columns. After checking
for outliers, the daily weather variables were used to model
ecophysiological interactions related to soil-plant-atmosphere
dynamics. The thermal-radiation interactions computed
potential atmospheric evapotranspiration (ET0) following the
Priestley–Taylor method (Priestley and Taylor, 1972). The slope
of the curve of saturation vapor pressure (SVP) and vapor
pressure deficit (VPD) was computed as given in the food and
agriculture organization (FAO) manual (Allen et al., 1998).
An FAO-based generic function was used to estimate crop
development as a function of days after emergence (DAE). We
assume a three-segment leaf growing function to estimate the
crop canopy coefficient (Kc) of evapotranspiration using the
following Kc values: Kc1 (0.3), Kc2 (1.2), Kc3 (0.35), equivalent
to the water demand of tropical maize for initial phases,
reproduction phases, and end-season stages, respectively. Using
the same three-segment function, we estimate the crop canopy
using a leaf area index (LAI) of LAI = 0.7 (initial vegetative
phases), LAI = 3 (maximum LAI for tropical maize growing
conditions observed in our fields), and LAI = 2 (LAI tasseling
stage). We computed the daily crop evapotranspiration (ETc)
estimated by the product between ET0 and the Kc from the two
estimations. Then, we computed the difference between daily
precipitation and crop evapotranspiration as P-ETc.

The apparent photosynthetic radiation intercepted by the
canopy (aPAR) was computed following aPAR = SRAD × [1-
exp(–k × LAI)], where k is the coefficient of canopy, considered
as 0.5 (Sinclair, 2006). Water deficiency was computed using
the atmospheric water balance between the input (precipitation)
and output of atmospheric demands (crop evapotranspiration).
The effect of temperature on radiation use efficiency (FRUE)
was described by a three-segment function based on cardinal
temperatures for maize, using the cardinal temperatures 8◦C

Frontiers in Plant Science | www.frontiersin.org 5 October 2021 | Volume 12 | Article 717552

http://www.dpi.inpe.br/Ambdata/mapa_solos.php
http://www.dpi.inpe.br/Ambdata/mapa_solos.php
https://github.com/gcostaneto/EGP
https://github.com/gcostaneto/EGP
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Costa-Neto et al. Enviromic-Aided Genomic Prediction

(Tb1, base lower), 30◦C (To1, base optimum), 37◦C (To2, upper
optimum), and 45◦C (Tb2, base upper). This function assumes
values from 0 to 1, depending on: FRUE = 0 if TAVG ≤ Tb1;
FRUE = (TAVG-Tb1)/(To1-Tb1) if Tb1 < TAVG < To1; FRUE = 1
if To1 < TAVG < To2; FRUE = (Tb2-TAVG)/(Tb2-To2) if To2 <

TAVG < Tb2; and FRUE = 0 if TAVG > Tb2 (Soltani and Sinclair,
2012).

Finally, we sampled each piece of weather and
ecophysiological information across five-time intervals in
the lifetime of the crop: from emergence to the appearance
of the first leaf (V1, 14 DAE), from V1 to the fourth leaf (V4,
35 DAE), from V4 to the tasseling stage (VT, 65 DAE), from
VT to the kernel milk stage (R3, 90 DAE), and from R3 to
physiological maturity (R6, 120 DAE), in which DAE stands for
days after emergence. These time intervals were based on fixed
DAE according to our expertise in tropical maize and how its
germplasm grows under Brazilian conditions. After emergence
to V1, there are two critical vegetative phases in which different
absorption rates of soil resources and dry matter production are
expected. Radiation and factors of water balance are important
for these stages. Then, between V1 and V3, a higher rate of leaf
growth is expected, which starts to become faster from V4 until
it stops in VT (tasseling stage). A third critical stage begins at the
beginning of VT, passing through the milk stage (R1) until R3.
At the same time, the sensibility of abiotic stresses, such as heat
stress and drought stress, also increases. In this phase, pollination
and kernel formation will start, which directly impacts grain yield
production. Finally, from R3 to R6, the grains pass the dough
(R4) and dent stages (R5), which have less sensibility to most
environmental stresses but are still affected by thermal-related
factors, which can also accelerate these stages. For adapting the
methodology to other crops, we encourage the readers to (1)
explore ecophysiology concepts from the literature, especially
those related to plant science; (2) incorporate multidisciplinary
efforts in agronomic expertise; (3) use crop growth models to
establish development stages, if necessary.

T Matrix: Envirotype Markers Using Typologies
The raw envirotyping data were used to assemble markers for
environmental similarity, depending on the group of ECs. The
first group of ECs involves transitory effect variables, which
vary in the frequency of occurrence, depending on the crop
development cycle. Thus, according to the concepts inspired by
Shelford‘s Law, we designed the expected envirotypes using the
number of inputs required to lead crops in at least three levels of
adaptation: (1) stress by deficit, (2) optimum growing conditions,
and (3) stress by excess. These levels were defined using
cardinal thresholds or frequency tables concerning the growing
conditions archived in the range of experimental networks. Then,
having reviewed the literature, we considered the intervals for
thermal-related variables: 0 to 9◦C (death), 9.1 to 23◦C (stress
by deficit), 23.1 to 32◦C (optimum growing conditions), 32.1
to 45◦C (stress by excess), and 45 to ∞◦C (death). According
to our agronomic expertise in the crop, we computed the types
of the expected rainfall requirements for tropical maize growing
environments: 0 to 10mm, 10.1 to 20mm, and 20.1 to∞mm. In
the same way, for crop evapotranspiration (ETc), we assumed the

envirotypes 0–6, 7–10, 10–15, and 16 to ∞ mm.day−1. Finally,
for FRUE, we assumed four impact levels: 0 to 25% (0–0.25), 26
to 50% (0.26–0.5), 51 to 75% (0.51–0.75), and 76 to 100% (0.76–
1). Finally, for the remaining variables, we preferred to adopt a
simple discretization approach, using a histogram of percentiles
(0–25, 26–50, 51–75, and 75–100%) of occurrence for a target
envirotype. We understand that, for other crop species or a lack
of expertise in the crop or the germplasm, the use of discretization
must suffice until we know the genetic thresholds of each limit for
each environmental factor better.

Additionally, we also considered the group of constant effect
variables. This group involved factors related to elevation, crop
management, and soil classification in each environment. Soil
information was entered as an incidence matrix (0 or 1) based on
the occurrence in each environment. In addition, for the N-level
set, nitrogen input levels were computed as two discrete classes:
ideal, N = 10, and low, N = 30; we entered the same incidence
matrix for soil information. Because both sets have a gradient for
elevation, we used a histogram of percentiles (0–25, 26–50, 51–
75, and 75–100%) as in the transitory group of variables. Finally,
each designed envirotype × time interval frequency was used as
a qualitative marker of environmental relatedness (hereafter, the
T matrix, from typologies).

W Matrix: Assembly Quantitative Covariables
The quantitative descriptors of environmental relatedness are the
most common method to include environmental information in
GP studies considering reaction norms (e.g., Jarquín et al., 2014;
Morais Júnior et al., 2018; Monteverde et al., 2019; Costa-Neto
et al., 2021a; Rogers et al., 2021). Jarquín et al. (2014) proposed
the creation of the so-called environmental relatedness kinship
(KE), carried out with a matrix of quantitative environmental
covariables (the W matrix; thus we refer to this environment
kinship as KE,W). Here, the pattern of similarity in KE,W was
captured using percentile values (25; 50, and 75%) in each of
the five-time intervals of development, as suggested by Morais
Júnior et al. (2018) and expanded by Costa-Neto et al. (2021a).
As a result, we found 255 and 307 quantitative descriptors for
the multiregional and N-level sets, respectively, at the end of the
process. In this study, we used KE,W as a benchmark method
to test the effectiveness of the KE,T matrix and the total absence
of environmental information (baseline genomic model without
environmental information; refer to section Baseline additive-
dominant GBLUP).

Statistical Models
From a baseline additive-dominant multi-environment GBLUP
(section Baseline additive-dominant GBLUP), we tested four
other models, by including two types of enviromic assembly (T
or W) and two structures for G×E effects. More details about
each statistical model are provided in the next subsections. All the
kernel models were fitted using the BGGE R package (Granato
et al., 2018) using 15,000 iterations, with 2,000 used as burn-in
and using a thinning of 10. This package was used because of
the following aspects: (1) it is an accurate open-source software
and (2) it can accommodate many kernels in a computation-
efficient way.
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Baseline Additive-Dominant GBLUP
The baseline model includes a fixed intercept for each
environment and random genetic variations due to additive and
dominance effects and their interaction with the environment.
We will refer to this model as just GBLUP, which was modeled
as the main effect plus a genomic-by-environment deviation (the
so-called G+ GE model), as follows:

y = 1µ+ZEβ+ZAuA+ZDuD+uAE+uDE+ε (1)

where y =
[

y1, · · · , yn
]

′ is the vector of observations
collected in each of the q environments with hybrids, and
1µ+ZEβ is the general mean and the fixed effect of the
environments with incidence matrix ZE. The genetic variation
was modeled assuming main additive effects (uA), with
uA∼N(0,Jq⊗K

A
σ 2
A), plus a random dominance variation (uD),

with uD∼N(0,Jq⊗K
D
σ 2
D), where σ 2

A and σ 2
D are the variance

components for additive and dominance deviation effects;
ZA and ZD are the incidence matrixes for the same effects
(absence = 0, presence = 1), Jq is a q × q matrix of 1s, and
⊗ denotes the Kronecker product. G×E effects are modeled
using a block diagonal (BD) matrix of the genomic effects,
built using uAE∼N(0,Iq⊗K

A
σ 2
A) and uDE∼N(0,Iq⊗K

D
σ 2
D), in

which Iq is a diagonal matrix of the q × q dimension. Residual
deviations (ε) were assumed as ε∼N(0,Inσ 2), where n is the
number of genotype-environment observations. Furthermore,
the genotyping data were processed in two matrices of additive
and dominance effects (Vitezica et al., 2013), modeled with

A = {0 = aa; 1 = Aa; 2 = AA} and

D =
{

−2f 2
l
= aa; 2f

(

1− fl
)

= Aa;−2f
(

1− fl
)2

= AA
}

,

where fl is the frequency of the favorable alleleA at locus l. Thus,
the genomic-related kinships were estimated as follows:

K =
XX′

tr (XX′) /r
(2)

where K is a generic representation of the genomic kinship (KA,
KD), X is a generic representation of the molecular matrix (A or
D), and r denotes the number of rows in the X matrix. Equation
(2) was also used to shape the environmental relatedness kernels
using the T orW matrix. The linear kernel for KE was described
by Jarquín et al. (2014), which was several other authors named
after “Ω .” Thus, here, we only tested the difference between
the source of enviromics considered for building it and not the
merit of the kernel method, as was done in previous studies
(Costa-Neto et al., 2021a).

GBLUP With Enviromic Main Effects From T Matrix

(E-GP)
From equation (1), we added a main environmental relatedness
effect, that is, an enviromic main effect carried out with the T
matrix (uE,T), as follows:

y = 1µ+ZAuA+ZDuD+uAE+uDE+uE,T+ε (3)

with uE,T∼N(ZEβ ,KE,T⊗Jpσ
2
E,T

), where Jq is a p × p matrix

of 1s, and KE,T is the environmental relatedness created and

variance component from the Tmatrix. If non-enviromic sources
are considered, the expected value for environments is given
by ZEβ as the baseline model (Costa-Neto et al., 2021a,b). In
this model, the effects of G×E are also modeled as the BD
genomic matrix. Thus, we refer to this model as “E-GP (BD).”
The kernel of the enviromic assembly (KE,T) was built using the
panel of envirotype descriptors (T) in the same way as described
in equation (2).

From model (3), we substitute the BD for a reaction norm
(RN, Jarquín et al., 2014) based on the Kronecker product
between the enviromic and genomic kinships (Martini et al.,
2020) for additive (uAE,T) and dominance effects (uDE,T):

y = 1µ+ZAuA+ZDuD+uT+uA,T+uD,T+ε (4)

with uA,ET∼N(0,KE,T⊗KAσ 2
AE,T) and uD,ET∼

N(0,KE,T⊗KDσ 2
DE,T), where σ 2

AE,T and σ 2
DE,T are the variance

components for enviromic × additive and enviromic ×

dominance effects, respectively, performed as reaction norms
(Costa-Neto et al., 2021a; Rogers et al., 2021). For brevity, this
model will be called “E-GP (RN).”

GBLUP With Enviromic Main Effects From the W

Matrix (W-GP)
Finally, in models (4) and (5), we replaced the source of
enviromic assembly derived from T with the same kernel
size derived from W, that is, environmental relatedness with
uE,W∼N(ZEβ ,KE,W⊗Jpσ

2
E,W

), thus, creating two other models:

y = 1µ+ZAuA+ZDuD+uAE+uDE+uE,w+ε (5)

and

y = 1µ+ZAuA+ZDuD+uE,w+uAE,w+uDE,w+ε (6)

uAE,W∼N(0,KE,W⊗KAσ 2
AE,W) and uDE,W∼

N(0,KE,W⊗KDσ 2
ED,W), where KE,W and σ 2

E,W are the resulting
kinship and variance components estimated for enviromic
assembly from the W matrix, respectively. Thus, for brevity,
models (5) and (6) will be referred to as “W-GP (BD)” and
“W-GP (RN)” (Jarquín et al., 2014), respectively.

Study Cases for the E-GP Platform
In this study, we conceived two cases to check the possible
benefits of involving E-GP in current prediction-based platforms
for hybrid testing in maize breeding (Figure 2). The first case
(Case 1) consists of the prediction of single-crosses considering
diverse sizes of the experimental network in terms of the
number of environments considered for the training set. For
this case, we dissected the predictive ability over four G×E
prediction scenarios. In the second case (Case 2), we envisaged
the design of a super-optimized experimental network using the
most representative combination of genotypes and environments
selected using genomics, enviromic assembly, and genetic
algorithms. Then, we envisaged how a small training set (and
reduced phenotyping effort) for E-GP and GBLUP might be
useful to reproduce the adaptability of maize hybrids for the
full-rank MET. Below, we describe in detail each case we studied.
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FIGURE 2 | Workflow of the enviromic-aided genomic prediction (E-GP) considering the two study cases (Case 1 and Case 2) of this study. Phenotypic records from

existing field trials (red box) are based on observed genotypes (G) in tested growing environments (E). Currently, these data are being used for training prediction

models considering untested genotypes at the same conditions (nG, E), especially when we have some type of structure of genetic relationships, such as genomic

data (blue colors). In addition, novel growing conditions can be predicted (G, nE and nG, nE) using enviromic sources (wine colors), Case 1. First, raw environmental

data are collected from trials involving equipment installed in situ (e.g., micro-weather stations) or remote sensing techniques. Then the raw data are processed and

translated into an enviromic source that carries some ecophysiology process or statistical distribution of the raw data across time and space. The enviromic assembly

is then finalized, in which its product is a matrix of envirotype markers by environments. Taking the T matrix as an example (qualitative descriptors based on

typologies), a predictive breeding tool merging genomic, enviromics, and phenotypic data can be trained and deliver predictions for several scenarios of G×E.

However, there is a second way to create an E-GP platform, the hereafter Case 2, in which the previously collected genomic and enviromic sources for a given TPE

are used to develop in silico realizations of the expected G×E for a certain experimental network. Then, optimization algorithms are used to design a selective

phenotyping strategy (green box) in which only the most representative genotype-environment combinations are phenotyped and considered for training the E-GP

models (gray box). Finally, diverse G×E can also be predicted.

Case 1: Expanding the Existing Field Trials
In the first case (Case 1), we adapted a cross-validation scheme
to split the global available phenotypic information (n), from
p genotypes and q environments, into different training setups.
Consequently, four G×E prediction scenarios were created based
on the simultaneous sampling of the phenotypic information
for S genotypes and R environments (adapted from Millet
et al., 2019). The description and size of each training set are
given below:

• G, E refers to predictions of tested genotypes within
the experimental network (known genotypes in known

environmental conditions). The size of this set is n[G,E] =

n×
(

S
p

)

×
(

R
q

)

;

• nG, E refers to predictions of untested (new) genotypes within
the experimental network (known environmental conditions).

The size of this set is n[nG,E] = n×
(

1− S
p

)

×
(

R
q

)

;

• G, nE, in this scenario, predictions are made under
environmental conditions external to those found within
the experimental network. However, there is phenotypic
information available within the experimental network. The

size of this set is n[G,nE] = n×
(

S
p

)

×
(

1− R
q

)

;
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• nG, nE refers to predicting untested(new) genotypes and
untested (new) environmental conditions. The size of this size

is n[nG,nE] = n×
(

1− S
p

)

×
(

1− R
q

)

.

Theoretically, if R/q = 1, then n[G,nE] = n[nG,nE] = 0, equal to
the commonly used CV1 scheme (prediction of novel genotypes
in known environments). Different intensities of R/q can be
sampled, for instance, which permits the testing of setups of
experimental networks. Here, we tested three setups for each
tropical maize data set. For the N-level set, we made 3/8, 5/8,
and 7/8; for the Multi-local set, we made 2/5, 3/5, and 4/5. We
assumed the same level of genotype sampling as the training
set for all the experimental setups, equal to a fraction of S

p =

0.7. Each training setup was randomly sampled 50 times in
order to compute the statistics of prediction quality. For this
purpose, two statistics were used to assess the performance of
the statistical models over the training setups. First, we calculated
Pearson’s moment correlation (r) between observed (y) and
predicted (ŷ) values and used the average value for each model
and training setup as a predictive ability statistic. Second, to
check the ability of GP to replace field trials, we computed the
coincidence (CS, in %) between the field-based selection and the
selection-based selection of the top 5% best-performing hybrids
in each environment.

Case 2: Designing Super-Optimized Field Trials
The design of “super-optimized field trials” was based on three
steps. First, we computed a full-entry G×E kernel based on
the Kronecker product (⊗) between the kernels derived from
enviromic assembly-based (KE,T , q × q environments) and
genomic kinship (KG, p × p genotypes); thus, KGE,T = KE,T ⊗

KG, with an n × n dimension, in which n = pq. Here, we adopt
the additive effects (KG = KA) as the genomic kinship, despite
the benefits of dominance effects in the modeling of G×E. We
chose to use only KA for simplicity, since additive effects seem
to be a major genomic-related driver of G×E for grain yield in
tropical maize (Dias et al., 2018; Alves et al., 2019; Costa-Neto
et al., 2021a; Rogers et al., 2021), a fact that was also observed
for Case 1 (see section Case 1: accuracy in predicting diverse
G×E scenarios). Later, we applied a single-value decomposition
in KGE,T , following KGE,T = UVUT, where U is the total of
eigenvalues, and V is the respective eigenvectors. The number of
eigenvalues that explains 98% of the variance present in KGE,T

indicates the number of effective SNPs by envirotype-marker
interactions (adapted from Misztal, 2016), which is also the
minimum core of genotype-environment combinations (NGE).
Thus, the reduced phenotypic information of some genotypes
in some environments (NGE) was used to predict a virtual
experimental network (Ntest), involving all remaining single
crosses in all the available environments, as given by Ntest =

n− NGE.
Following this step, a genetic algorithm scheme using the

design criteria PEVMEAN was used to identify the NGE entries
within the KGE,T . Optimization was implemented using the
SPTGA R package (Akdemir and Isidro-Sánchez, 2019) using
100 iterations: five solutions selected as elite parents were used

to generate the next set of solutions and mutations of 80% for
each solution generated.

Virtual Screening for Yield Plasticity
Finally, we checked the potentialities of using E-GP to predict the
environmental quality and adaptability of each genotype across
the environments using only the NGE phenotypic information.
First, the prediction ability was computed for genotypes by
correlating the predicted and observed grain yield values across
the environments (Costa-Neto et al., 2021a). The secondmeasure
was based on the regression slope of the Finlay–Wilkinson
adaptability model (Finlay and Wilkinson, 1963). The values of
GP were regressed to the observed environmental deviations
as follows:

Mij = yi. + biIj + εij (7)

where Mij is the expected GP-based mean value of grain yield

for the ith genotype in the jth environment; yi. is the mean
genotypic value for the ith genotype, bi is the genotype plastic
response across the mean-centered standardized environmental
score (Ij), and εij is the variety of residual deviation sources not
accounted for in themodel. After this step, the Pearson’s product-

moment correlation between GP-based (b̂i) and phenotypic-
enabled estimates were computed as an indicator of the ability
to reproduce plastic responses in silico for the p genotypes. For
this, mean squared error is also calculated as:

MSE =

p
∑

i=1

(bi − b̂i)
2

p

All the statistics were computed using the entire data sets, and
only the top 5% of genotypes were selected for each environment.
The latter aimed to check the efficiency of the E-GP method to
produce high-quality virtual screenings for plasticity.

Data and Code Availability
All the data sets and codes (in R), with a toy example of use, are
freely available at https://github.com/gcostaneto/EGP.

RESULTS

Case 1: Predicting Diverse G×E Scenarios
The first case tests the effect of experimental setups in providing
reliable phenotypic information as training population sets.
For this, sample genotypes (70%) and environments were
used to compose a drastically sparse training set (training
environments/total of environments). This helped assess the
efficiency of E-GP for Case 1, in which we were able to dissect the
predictive ability in different scenarios of a scarcity of phenotypic
records: novel genotypes in tested environments (nG, E), tested
genotypes in untested environments (G, nE), and novel genotype
and environment conditions (nG, nE). Tables 1, 2 present the
results of N-level and multiregional sets, respectively. Then,
these results were gathered for both the data sets and the four
prediction scenarios in order to check for the analysis of joint
predictive ability (Figure 3).
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TABLE 1 | Predictive ability (± standard error) of the genome-based prediction models (GP) for the N-level set of tropical maize hybrids (570 hybrids × 2 locations × 2

years × 2 nitrogen managements).

Training setup Model Prediction Scenario

G, E G, nE nG, E nG, nE

7/8 environments GBLUP 0.771 ± 0.064 0.397 ± 0.046 0.310 ± 0.054 0.297 ± 0.029

E-GP (BD) 0.903 ± 0.115 0.493 ± 0.169 0.615 ± 0.022 0.416 ± 0.153

E-GP (RN) 0.833 ± 0.118 0.477 ± 0.199 0.613 ± 0.040 0.394 ± 0.193

W-GP (BD) 0.915 ± 0.115 0.333 ± 0.208 0.614 ± 0.025 0.242 ± 0.189

W-GP (RN) 0.885 ± 0.117 0.327 ± 0.210 0.613 ± 0.031 0.230 ± 0.196

5/8 environments GBLUP 0.747 ± 0.049 0.432 ± 0.046 0.294 ± 0.026 0.323 ± 0.04

E-GP (BD) 0.905 ± 0.056 0.554 ± 0.144 0.659 ± 0.015 0.464 ± 0.113

E-GP (RN) 0.833 ± 0.056 0.570 ± 0.132 0.660 ± 0.025 0.475 ± 0.104

W-GP (BD) 0.931 ± 0.057 0.449 ± 0.286 0.659 ± 0.019 0.347 ± 0.253

W-GP (RN) 0.897 ± 0.056 0.501 ± 0.229 0.660 ± 0.026 0.395 ± 0.198

3/8 environments GBLUP 0.739 ± 0.040 0.527 ± 0.080 0.295 ± 0.015 0.394 ± 0.044

E-GP (BD) 0.899 ± 0.026 0.534 ± 0.081 0.660 ± 0.012 0.388 ± 0.038

E-GP (RN) 0.823 ± 0.026 0.566 ± 0.086 0.663 ± 0.015 0.420 ± 0.041

W-GP (BD) 0.924 ± 0.026 0.532 ± 0.080 0.660 ± 0.015 0.384 ± 0.038

W-GP (RN) 0.886 ± 0.025 0.579 ± 0.088 0.663 ± 0.020 0.424 ± 0.041

Values in bold denote higher predictive ability for each scenario: [G,E], known genotypes under known growing conditions; [G,nE], known genotypes under new growing conditions;

[nG,E], new genotypes under known growing conditions; and [nG,nE], new genotypes under new growing conditions.

TABLE 2 | Predictive ability (± standard error) of the genome-based prediction models (GP) for the multi-local set of tropical maize hybrids (247 hybrids × 5 locations in

different regions of Brazil).

Training setup Model Prediction Scenario

G, E G, nE nG, E nG, nE

4/5 environments GBLUP 0.953 ± 0.040 0.497 ± 0.072 0.552 ± 0.171 0.340 ± 0.138

E-GP (BD) 0.987 ± 0.006 0.526 ± 0.054 0.599 ± 0.097 0.363 ± 0.131

E-GP (RN) 0.873 ± 0.084 0.520 ± 0.064 0.496 ± 0.126 0.358 ± 0.143

W-GP (BD) 0.989 ± 0.005 0.527 ± 0.056 0.599 ± 0.098 0.361 ± 0.131

W-GP (RN) 0.931 ± 0.057 0.492 ± 0.078 0.501 ± 0.130 0.366 ± 0.125

3/5 environments GBLUP 0.927 ± 0.045 0.528 ± 0.066 0.543 ± 0.208 0.381 ± 0.142

E-GP (BD) 0.984 ± 0.006 0.556 ± 0.052 0.597 ± 0.097 0.400 ± 0.131

E-GP (RN) 0.845 ± 0.073 0.550 ± 0.059 0.477 ± 0.120 0.385 ± 0.135

W-GP (BD) 0.987 ± 0.005 0.555 ± 0.053 0.598 ± 0.095 0.394 ± 0.132

W-GP (RN) 0.915 ± 0.049 0.514 ± 0.072 0.483 ± 0.124 0.392 ± 0.119

2/5 environments GBLUP 0.913 ± 0.050 0.552 ± 0.063 0.538 ± 0.223 0.409 ± 0.149

E-GP (BD) 0.982 ± 0.006 0.574 ± 0.051 0.593 ± 0.095 0.410 ± 0.135

E-GP (RN) 0.831 ± 0.069 0.572 ± 0.060 0.468 ± 0.117 0.394 ± 0.134

W-GP (BD) 0.986 ± 0.004 0.575 ± 0.051 0.592 ± 0.096 0.411 ± 0.139

W-GP (RN) 0.906 ± 0.046 0.539 ± 0.067 0.476 ± 0.119 0.404 ± 0.116

Values in bold denote higher predictive ability for each scenario: [G,E], known genotypes under known growing conditions; [G,nE], known genotypes under new growing conditions;

[nG,E], new genotypes under known growing conditions; and [nG,nE], new genotypes under new growing conditions.

Within the Experimental Network
Predictions within known environmental conditions of a certain
experimental network involve two scenarios: G,E and nG,E.
For the G,E scenario (the classic “training set”), all the models
outperformed the GBLUP in any setup of the N-level set and
most of the setups of the multiregional set. The highest values of
predictive ability were observed for enviromic-aided GP models

using the block-diagonal matrix for G×E effects (BD), that is, the
E-GP (BD) and W-GP (BD), respectively. Two general trends
were observed: the size of the experimental setup has a small
effect on the accuracy of the GP models. Second, higher accuracy
gains were observed for the N-level set (Table 1), with a higher
number of entries (more genotypes and more environments).
The accuracy gains in the N-level set ranged from +8 (r = 0.83
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FIGURE 3 | Joint accuracy trends of GP models for each training setup of existing experimental networks. (A) Predictive ability computed with the correlation (r)

between observed (y) and predicted (ŷ) values for the grain yield of each genotype in each environment, over three experimental setups (number of environments

used/total of environments) for both maize sets (N-level and multilocal), using 70% of the genotypes as a training set and the remaining 30% as a testing set. (B)

Coincidence index (CS) between the field-based and prediction-based selection of the best 5% genotypes in each environment for the same experimental setups and

data sets. Dots and triangles represent the point estimates of predictive ability and CS for models involving a block diagonal genomic matrix for G×E effects (dotted)

and an enviromic × genomic reaction norm G×E effect (triangle). Trend lines were plotted from the partial values of each sample (from 1 to 50) and three prediction

scenarios (nG, E; G, nE; and nG, nE) using the gam () integrated with smoothness estimation in R. Black dotted lines represent the benchmark GBLUP method,

considering the effect of the environment as a fixed intercept. Yellow two-dash lines represent the GBLUP involving the main effect from quantitative descriptors (W

matrix). Finally, solid dark pink lines represent the GBLUP involving the main effect of envirotype descriptors (T matrix). Thus, the latter represents the E-GP based

approach for Case 1 (predictions under existing experimental networks).

for E-GP RN at 7/8 experimental setup), in relation to r = 0.77
(GBLUP), to +24% (r = 0.92 for W-GP RN at 3/8 experimental
setup), in relation to r = 0.74 (GBLUP). In contrast, for the
multiregional set (Table 2), both the RN-G×E models reduced
the accuracy (on average by −3%). For the BD-G×E models,
small gains in accuracy (from+4 to+8%) were observed.

That is also a trend for the second prediction scenario (nG,
E), in which the multiregional set presented an average gain of
10% for all the enviromic-aided GP models with BD-G×E and
a reduction of 10% for all the RN-G×E models. Conversely to
the previous scenario (G, E, within the experimental network,
using known genotypes), nG, E is one of the most important
plants breeding scenarios. It represents the ability to predict
new single-crosses within the known environmental gradient,
by borrowing genomic and enviromic information from the
phenotypes of the relatives, thus expanding the spectrum of
possible genotypes using known growing conditions from the
past. For the N-level set, gains of up to 100% were observed
for all the enviromic-aided models using any G×E structure.
No differences were observed between enviromic-aided models
and experimental setups. On average, all the enviromic-aided
models achieved a predictive ability of approximately r = 0.66
across all experimental setups (3/8, 5/8, and 7/8, Table 1).
In contrast, the GBLUP model was impacted with reduced
accuracy and a lack of phenotypic records. The highest gains
in predictive ability were observed for scenario 3/8, with an
average of +118% for the BD-G×E models, and +119% for the
RN-G×E models.

Across the Experimental Network
The predictions of yet-to-be-seen growing conditions were
evaluated by the scenarios G, nE, and nG, nE. For G, nE, the
E-GP models outperformed W-GP and GBLUP across most of
the experimental setups, despite small differences between the
enviromic-aided approaches. For the E-GP (BD) at the N-level
set (Table 1), the gains in predictive ability ranged from +24%
(r = 0.49 in the 7/8 setup, Table 1), in relation to r = 0.4
(GBLUP), to +35% (r = 0.57 in the 5/8 setup), in relation to
r = 0.43 (GBLUP). However, for scenario 3/8, the gains were
equal to+10% (r = 0.57) in relation to the+13% archived by the
benchmark W-GP (RN) (r = 0.58), both over the r = 0.53 from
GBLUP. In scenario 7/8, W-GP was outperformed by GBLUP,
with a reduction in accuracy between −18 and −16%, where
the E-GP made better use of the large phenotypic information
available for the training of the GP models (gains from +20
to +24% over GBLUP). A similar pattern was observed for the
multiregional set (Table 2), in which the gains of E-GP ranged
from +4 to +6% across all the setups, and W-GP ranged from
−3 to+6% under the same conditions.

The nG, nE scenario is the most complex situation, because it
is expected to predict yet-to-be-seen genotypes under unknown
growing conditions. Thus, all the predictions were based on
the quality of the association between the observed phenotypic
records of relativities and their resemblance due to genomic or
enviromic assembly. With a large size setup, it seems that the
E-GP models outperform W-GP and GBLUP when predicting
new G×E. Observed accuracy gains ranged from 33 (r = 0.39
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for E-GP RN) to 40% (r = 0.42 for E-GP BD) in experimental
setup 7/8 (Table 1), where GBLUP achieved r = 0.3, and from
47 (r = 0.46 for E-GP BD) to 51% (r = 0.48 for E-GP BD) in
experimental setup 5/8, where GBLUP achieved r = 0.32. Unlike
observations in the other prediction scenarios, the RN-G×E
models outperformed BD-G×E in the following experimental
setups: 3/8 (N-level set) and 2/5 (multiregional set).

Accuracy Trends Across Diverse
Experimental Setups
This section highlights the main target of our Case 1, in
which the predictive ability was achieved using the merged
information of scarce genotypes tested in some environments.
Joint accuracy trends showed E-GP was useful for increasing GP
accuracy (Figure 3A) and explaining the phenotypic variation
sources in both maize data sets (Supplementary Tables 3, 4).
For scenarios with reduced phenotypic information (e.g., 3/5,
3/8, and 4/8), any model with some degree of environmental
information outperformed GBLUP in all the scenarios. The
E-GP approach (purple colors in Figure 3A) better captured
envirotype-phenotype relationships and converted them into
accuracy gains among these models. This is also reflected in
the efficiency of E-GP as a predictive breeding tool capable
of reproducing field-based trials (Figure 3B). Regarding the
G×E structures, the contribution of RN-G×E is significant
only for drastically lacking phenotypic records (training setup
3/8), leading to the conclusion that the use of a main-effect
is substantial and that, in most cases, E-GP is enough to
increase accuracy in GBLUP. For setup 2/5 (multiregional set),
no differences were observed among all the GP models.

The coincidence between the GP-based selection and the in-
field selection (CS, %) ranged from∼35 to∼50%, in models with
some environmental information, while it ranged between 30
and 40% for GBLUP (without environmental information). For
the E-GP approach accounting for a wide number of phenotypic
records in the training sets (7/8, 3/5, and 4/5), CS values of up
to 55% were found. Among these models, it seems that RN-
G×E reduces the CS estimates concerning the BD-G×E based
models. Considering both Figures 3A,B, it is possible to suggest
that predictive ability does not imply an increase in CS, that is, in
the power of selecting the best performing genotypes in certain
environments. However, the drastic increase in E-GP accuracy in
relation to the othermodels leads us to infer that despite the lower
rise in CS, the E-GP models are useful when predicting G×E for
a vast number of single-crosses.

Case 2: Enviromic Assembly With
Optimized Training Sets for Genomic
Prediction
The results mentioned above led us to investigate Case
2 (Figure 2), where we checked the possibility of training
efficient and biologically accurate GP scenarios from super-
optimized training sets. Then, we studied the potential
of using these optimized field trials for predicting novel
G×E under the so-called “virtual experimental networks.”
This approach was implemented by combining two selective

phenotyping approaches (Misztal, 2016; Akdemir and Isidro-
Sánchez, 2019), aiming to identify combinations of genotypes
and environments by in-silico representations of enviromic
assembly× genomic kinships.

Predicting G×E in Virtual Experimental Networks
The process of designing virtual networks in maize hybrid
breeding involved two steps (Supplementary Figure 1). First,
we used a single-value decomposition (SVD)-based algorithm
to select the effective number of individuals (NGE) (Misztal,
2016) representing at least 98% of the variation of KG,ET . It
was done in KG,ET , because this kernel represents an in-silico
representation of envirotypes and genotypes, which differs from
the original approach that uses only genomic kinships (Akdemir
and Isidro-Sánchez, 2019). Under sparse MET conditions, it led
to a training size of NGE = 67 and NGE = 49 for the N-level
(n = 4,560) and multiregional sets (n = 1,235), respectively. It
represents only 1.5 and 4% of the whole experimental network
(Supplementary Figures 2, 3). For didactic purposes, we will
represent the values of NGE as the training set size/number of
genotypes from here onwards.

We also checked the use of all environments, although the
differences in accuracy were small in relation to sparse MET
scenario (Table 3). Furthermore, small differences were achieved
by E-GP and W-GP models with BD-G×E, but both were
higher than RN-G×E and GBLUP (Figure 4). Major differences
were highlighted as follows. For within-field trials (observed
phenotypes), the predictive ability ranged from r = 0.76 (W-
GP) to r = 0.87 (E-GP). It was observed that lower values
were due to lack of phenotypic records in the virtual networks,
in which the predictive abilities ranged from r = 0.14 ± 0.11
(GBLUP) to r = 0.6 ± 0.06 (E-GP). However, in the virtual
networks, it was observed that the predictive ability of models
trained with drastically reduced phenotypic records ranged
from r = 0.1 (GBLUP, NGE = 67/4,560) to r = 0.58 (E-GP,
NGE = 67/4,560) and r = 0.18 (GBLUP, NGE = 49/1,235) to
r = 0.81 (E-GP, NGE = 49/1,235). Therefore, it seems that
the reduction of phenotype information does not compromise
the enviromic-enriched models, but it is capable of delivering
accurate predictions in some experimental networks, and in
most cases, at least it will deliver consistent results with fewer
phenotyping efforts.

The predictive ability was computed considering only the
top 5% of genotypes in each environment and data set. The
objective was to verify if the GP approaches could adequately
predict the performance of the best-evaluated genotypes in the
field. For the multiregional set, the predictive ability ranged from
r = 0.098 (GBLUP, NGE = 210/1,235) to r = 0.579 (W-GP BD,
NGE = 49/1,235) and r = 0.578 (E-GP BD, NGE = 49/1,235); for
the N-level set, W-GP outperformed E-GP, leading to r = 0.554
(W-GP BD, NGE = 536/4,560) in front of r = 0.554 (E-GP RN,
NGE = 67/4,560) but with less phenotyping data. In contrast,
the best E-GP model at the higher number of genotypes and
environments evaluated in the field r = 0.484 (E-GP RN,
NGE = 536/4,560) was outperformed by the samemodel, but with
less phenotyping data, r = 0.554 (E-GP RN, NGE = 67/4,560).
For GBLUP, the effective size of the training set was important,
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FIGURE 4 | Accuracy of GP models trained with super-optimized experimental networks. Predictive ability (r) plus standard deviation measured by the correlation

between observed and predicted values for each model in (A) the optimized multiregional set and for (B) the N-level set. Bar plots were colored according to the type

of environmental covariable (ECs) used: none (black), envirotype descriptor (T matrix, wine), and quantitative descriptor (W matrix, yellow).

TABLE 3 | Predictive ability of the GP models for two tropical maize data sets (multiregional and N-level) produced using the effective number of phenotypic records (NGE,

genotype-environment observations) and for the scenarios Field Trials (training set, that is; predicting NGE) and Virtual Network (predicting n–NGE, where n is the number

of genotypes by environments available in the full data set).

Scenario Models

GBLUP W-GP (BD) W-GP (RN) E-GP (BD) E-GP (RN)

Multi-Regional set

Field trials

NGE = 210 (full) 0.698 0.962 0.892 0.964 0.893

NGE = 210 (5%) 0.991 0.995 0.992 0.997 0.998

NGE = 49 (full) 0.738 0.941 0.840 0.942 0.840

NGE = 49 (5%) 0.991 0.991 0.991 1.000 1.000

Virtual network

NGE = 210 (full) 0.175 0.794 0.787 0.793 0.787

NGE = 210 (5%) 0.098 0.736 0.750 0.713 0.715

NGE = 49 (full) 0.190 0.810 0.788 0.810 0.789

NGE = 49 (5%) 0.241 0.759 0.755 0.758 0.706

N-Level set

Field trials

NGE = 536 (full) 0.982 0.984 0.775 0.991 0.775

NGE = 536 (5%) 0.964 0.861 0.861 0.998 0.999

NGE = 67 (full) 0.983 0.981 0.718 0.989 0.719

NGE = 67 (5%) 0.967 0.833 0.802 0.998 1.000

Virtual network

NGE = 536 (full) 0.196 0.608 0.612 0.601 0.612

NGE = 536 (5%) 0.152 0.554 0.545 0.406 0.484

NGE = 67 (full) 0.102 0.574 0.572 0.578 0.573

NGE = 67 (5%) 0.070 0.545 0.539 0.379 0.510

The reference “full” and “5%” in parentheses represents the predictive ability produced with all genotypes using only the top 5%, respectively.

ranging in predictive ability from r = 0.07 (NGE = 67/4,560) to
r = 0.152 (NGE = 536/4,560). The results of both sets suggest
that when using enviromics-aided approaches, the use of a less
but more representative amount of phenotyping information is

better than the use of a higher but less representative number of
phenotyping records collected across METs.

Figure 4 is created with the average values provided in Table 3
and shows that the optimization was more effective for growing
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conditions contrasting across macro-regions (Figure 4A) than
for experimental networks involving fewer locations (Figure 4B).
Notably, it is possible to drastically reduce field costs for
experimental networks conducted across diverse locations.

Predicting Genotype-Specific Plasticity and

Environmental Quality
In this step, we checked the ability of the models to perform
virtual screenings for yield plasticity (Figure 5). We used the
Finlay–Wilkinson method (FW, Equation 7) over the predicted
GY means of each genotype i in environment j (Mij). Hence, we
compared the ability of E-GP in the prediction of (1) individual
genotypic responses across environments, (2) the gradient of
environmental quality (hj), and (3) the plasticity coefficient (b1)
of the FW model describing the rate of responsiveness to h. The
results shown in Figure 5 involve a joint analysis of both data sets.

All models that included some degree of enviromic assembly
outperformed the GBLUP-based approach when predicting
individual genotype responses across the METs (Figure 5A).
The median values of r ranged from 0.17 (GBLUP), in which
45% of the genotypes were not well-predicted (red colors), to
0.83 (E-GP), in which up to 60% of the genotypes were very
well-predicted (purple colors). The inclusion of any enviromic
assembly and G×E structure led to drastic gains in accuracy
for a particular genotype response across contrasting (and
unknown) G×E conditions (gains up to ∼378%). However,
the BD structure outperformed RN in resolution (many purple
colors in Figure 5A). A major part of the accurately predicted
performance of genotypes across the environments ranged from
r = 0.75 to r= 1. Due to this, for the next figures, we plotted only
the E-GP considering the BD-G×E structure.

The GBLUP approach was unable to correctly reproduce
hj for an in silico study using the FW model (Figure 5B).
We observe that E-GP better describes the hj gradient (mean-
centered average values of GY for each environment), with r close
to 1 (correlation between observed and predicted environmental
qualities), also suggesting a low bias (slope = 0.924 between
observed and predicted values). Consequently, this was reflected
in the quality of yield plasticity predictions (Figures 5C–E), as
yield plasticity was represented as linear responsiveness over
the environmental variation. The graphical representation of
genotype-specific linear reaction norms dictated by the linear
regression slope (b1) was likely more similar to E-GP than
GBLUP to those observed in field-based testing (Figure 5B). The
accuracy of b1 ranged from r =0.08 (GBLUP) to r = 0.43 (E-GP),
with an increase of 437%.

DISCUSSION

Large-scale envirotyping, or simply enviromics, is an emerging
field of data science in agricultural research andmodern breeding
program routines. Here, we demonstrated that enviromics is
capable of bringing together environment information and
quantitative genomics in an ecophysiology-smart manner. In
this study, we presented the first report on (1) the use
of Shelford’s Law to guide the assembly of the enviromics
for predictive breeding purposes over experimental networks;

(2) the integration of enviromic assembly-based kernels with
genomic kinship into optimization algorithms capable of
designing selective phenotyping strategies; (3) a break of
the paradigm relying on the fact that phenotyping a higher
number of genotypes in a higher number of environments does
not always contribute to increasing the accuracy of GP for
contrasting G×E scenarios, but there are pieces of evidence
suggesting that enviromics increases accuracy in sparse multi-
environment networks; and (4) the process of deriving markers
of environmental relatedness, here called “enviromic assembly,”
that is crucial for the implementation of low-cost GP platforms
under multi-environmental conditions.

In this study, we also envisage that the process of enviromic
assembly is supported by a strong theoretical background in
ecophysiology, illustrating the potential uses of environmental
information to increase the accuracy of predictive breeding
for yield and plasticity. Our results indicate that the E-GP
platform (Figure 2) can fit two types of prediction scenarios in
plant breeding programs: (1) better use of available phenotypic
records to train more accurate GP models capable of aiding the
selection of genotypes across multi-environmental conditions,
and (2) a method that reduces costs for field-based testing
and enables early screening for yield plasticity under crossover
G×E conditions. Furthermore, we show that any model with
some degree of enviromic assembly (by typology or quantitative
descriptors) is always better in reproducing the environmental
quality of genotypes in field trials and phenotypic plasticity.

Below, we discuss the aspects that support the use of E-
GP for multi-environment predictions, involving the importance
of breaking the paradigm that states that enviromics are not
necessary to predict G×E accurately. We then discuss how
genomic and enviromics sources are linked in the phenotypic
records collected from the fields and how this knowledge
can improve the quality of prediction-based pipelines for
crop improvement. Finally, we envisage possible environmental
assembly applications supporting other predictive breeding
fields, such as optimizing crop modeling calibration, and how it
can couple with a novel level of climate-smart solutions for crop
improvement by anticipating the plasticity of many genotypes
using reduced phenotypic data.

Benefits of Enviromics for
Multi-Environment Genomic Prediction
Genomic prediction platforms were first designed to model
genotype-to-phenotype relationships under single environment
conditions, e.g., in a breeding program nursery (Lorenzana and
Bernardo, 2009;Windhausen et al., 2012; Zhao et al., 2012; Zhang
et al., 2015). Under these conditions, the micro-environmental
variations within breeding trials (e.g., spatial gradients in soil
properties) are minimized in the phenotypic correction step
by separating useful genetic patterns and experimental noises
(non-genetic patterns). However, the phenotypic records carry
the indissoluble effects of macro-environmental fluctuations of
certain weather and soil factors that occurred during crop
growth and development (Li et al., 2018; Millet et al., 2019;
Vidotti et al., 2019; Guo et al., 2020; Jarquin et al., 2020). This
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FIGURE 5 | Accuracy of GP models in reproducing the genotype-specific plasticity. (A) Panel of predictive ability (r) explaining the plasticity of genotypes across

environments. This statistic was estimated for each individual (hybrid) by correlating observed and predicted values across the environments. Individuals with values

below 0 were considered unpredictable and marked in red. (B) Ability of the prediction-based tools to reproduce the quality of an existing experimental network (hj ). In

the X-axis, we computed hj using the phenotypic records of a current experimental network. In the Y-axis, the hj values are presented considering a virtual

experimental network built using GBLUP and E-GP (with BD) predictions. (C–E) Yield plasticity panels denoting G×E effects of each genotype across the hj values for

observed field testing screening (C) concerning prediction-based (D,E). Only the 5% best genotypes in each environment were used to create this plot. Each line was

colored with the genotype-specific plasticity coefficient (b1). For the N-level set, the full-optimized set (536 hybrids over eight environments) was used.

seems to be of no concern when predicting novel genotypes
under the same growth conditions (the CV1 scheme for single-
environment models) but becomes noise for multi-environment
prediction scenarios. It is a consequence of macro-environment
fluctuations in the lifetime of crops (Allard and Bradshaw,
1964; Bradshaw, 1965; Arnold et al., 2019), responsible for
modulating the rate of gene expression (e.g., Jończyk et al.,
2017; Liu et al., 2020), fine-tuning epigenetic variations and
transcriptional responses (e.g., Vendramin et al., 2020; Cimen
et al., 2021).

For each unit that we call “environment” (field trial in a
specific year, location, planting date, and crop management),
there are various environmental factors, such as water
availability, canopy temperature, global solar radiation, and
nutrient content in the soil. The balance of these conditions will
dictate the availability of resources for each crop species across
each development stage, that is, considering its physiological
specificities, which is a consequence of the aforementioned
environmental growing conditions and the current phenotypic

architecture in the soil-plant-atmosphere momentum. Thus, for
each crop species, with a different phenotypic architecture of
roots, leaves, and accumulated biomass, it is also expected that
the quality of certain environment will also have a range because
of species-specific sensibilities. This is one of the main principles
for conceiving crop growth models since the establishment of
the “School of de Wit” back in the 1960s (see Bouman et al.,
1996). However, it also seems very likely with a previous theory
in ecophysiology, which suggests that the fitness of a population
is given by the amount and distribution of resources available
for its establishment and adaptation (Shelford, 1931). Thus, we
reinterpret this concept by assuming that the relation between
input availability (deficit, optimum amount, or excess), across
different crop development stages, drives the rate and amount
of the genetic potential for a given environment. Therefore, it
provides the foundations to elaborate the argument that there
is also an indissoluble envirotype-phenotype covariance in the
phenotypic records that is interpreted as a G×E interaction
for each environment. Because of that, we envisage that any

Frontiers in Plant Science | www.frontiersin.org 15 October 2021 | Volume 12 | Article 717552

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Costa-Neto et al. Enviromic-Aided Genomic Prediction

environmental relatedness kernel must account for it in any way,
for it seems that the typology-based matrix is the more biological
accurate way to parametrize environmental information aimed
for enviromic assembly.

The pioneer approaches to measuring crop adaptability use
the average value of a given trait in each environment as an
environmental quality index (e.g., Finlay and Wilkinson, 1963).
However, the problem with this approach is that it explains the
quality of the environment realized by the genotypes evaluated in
it, making it inefficient in explaining the drivers of environmental
quality and incapable of predicting untested growing conditions,
as observed in our results for Case 2 using GBLUP without
enviromic data. In addition, our results for Case 1 highlight that
there is a limit in accuracy for traditional GBLUP across METs,
in which the accuracy remains almost the same, regardless of the
number of phenotypic records available.

A second intrinsic covariance can interpret the last result
within the phenotypic records, which is the genotype-envirotype
covariance. By adapting the Quantitative Genetics theory to
the terminology used here, we can infer that each genotype
reacts differently to each envirotype, resulting in each phenotype.
This phenotype is then used to provide small crop phenology
differences (genetically determined window sizes for each
development stage). Recent but pioneer studies were carried out
to understand the genetic and environmental determinants of
flowering time in sorghum (Li et al., 2018) and rice (Guo et al.,
2020) that can be indirectly interpreted as cardinal differential
thresholds for temperature response. Furthermore, Jarquin et al.
(2020) proved that it is possible to increase the ability of
genomic prediction (GP) in predictive novel G×E by coupling
information of day-length in benchmark GP models. For all
the examples reported above, we can infer that, when trying to
predict a novel genotype, borrowing genotypic information from
the relatives in different environments makes it impossible to
reproduce the genotype-envirotype covariance without adding
any enviromic information into the model.

The presence of both genotype-envirotype and envirotype-
phenotype covariances might explain the gains in the predictive
ability due to the use of multi-environment GP models in
contrast to single-environment GP models (Bandeira e Souza
et al., 2017; de Oliveira et al., 2020) and why deep learning
approaches have successfully captured intrinsic G×E patterns
and translated them into gains in accuracy (Montesinos-
López et al., 2018; Crossa et al., 2019; Cuevas et al., 2019).
Conversely, this also might explain the need to incorporate
secondary sources of information in the prediction of grain
yields across multiple environments (Westhues et al., 2017; Ly
et al., 2018; Millet et al., 2019; Jarquin et al., 2020; Costa-
Neto et al., 2021a,b), as well as the possible limitations of
CGM approaches contrasting scenarios differing from those
targeted near-iso conditions of CGM calibration (e.g., Cooper
et al., 2016; Messina et al., 2018). Thus, an alternative
could be supervised approaches to describe the environmental
relatedness, such as in this article, and perhaps unsupervised
algorithms capable of taking advantage of the covariances related
to genotype-phenotype, genotype-envirotype, and envirotype-
phenotype dynamics.

Sometimes Main-Effect Enviromics Is
Better Than Reaction Norm Models
Our results from Case 1 show that the inclusion of enviromic
sources (for main effects or explicitly incorporated in the RN-
G×E structure) led to a better description of the envirotype-
phenotype covariances, which was reflected in accuracy gains.
Based on our data and the Bayesian approach used, it is worth
highlighting that incorporating enviromic sources does not
replace the incorporation of a design matrix for environments
(here used as fixed effects), as is commonly associated in previous
studies of GP reaction norms. Here, we show that enviromic
sources came up as tentative to capture the envirotype-phenotype
covariances. The cross-validation scheme used in Case 1 allowed
us to observe that the joint prediction of different genotype-
environment conditions (Figure 3) might highlight better how
enviromic sources can contribute to increasing the predictive
ability of GP, mostly due to its usefulness in approaching the
environmental correlation among field trials. Furthermore, it
shows more transparency for the influence of scenarios G, nE,
and nG nE, in which we had a considerable lack of phenotypic
information on training GP. Thus, we can infer that schemes such
as CV1 (only nG, E) are the least adequate option to show the
benefits of coupling enviromics in GBLUP. However, looking at
a drastically sparse MET condition (joint prediction scenarios)
shows that enviromics improves the accuracy of GP as the size
of the MET also increases. Predictions are made up of tiny
experimental networks.

Differences Between W and T Covariable
Matrices
Regarding the enviromic assembly approaches used in this study,
there was evidence that using typologies as envirotype descriptors
(T matrix) is more biologically accurate in representing
environmental relatedness than using quantitative descriptors
(W matrix) based on quantile covariables. The use of typologies
directly integrates the classic approaches used for environmental
characterization (e.g., Chenu et al., 2011; Heinemann et al.,
2015, 2019), thus providing a single platform to integrate
historical studies of environmental impacts in the design of
environmental relationship matrices for predictive purposes.
This represents an increase in the biological accuracy of the
GP models, which can also reflect in the statistical accuracy.
In conclusion, it can boost the ability of plant breeders to
better select and recommend cultivars across multi-environment
conditions. Further efforts in this sense must be devoted to
increase the level of explanation of the genotype-envirotype
covariances, which can also take advantage of Shelford’s Law
to refine the limits of tolerance for genotypes. Thus, different
genotypes will be under the influence of a diverse set of
envirotypes, which can be realized for the same environmental
factor (e.g., solar radiation, air temperature, soil moisture)
according to its occurrence across crop lifetime (e.g., vegetative
stage) and the adaptation zone designed from ecophysiology
concepts (e.g., temperature cardinals defining which temperature
level results in stress and optimum growing conditions). Because
of that, we envisage that further studies must be conducted to
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create a genotype-envirotype × environment T matrix, that is,
a matrix considering genotype-specific envirotypes also based
on genotype-specific cardinal thresholds and tolerance limits for
discriminating each typology of adaptation.

A second difference may be explained because quantitative
environmental covariates are not an additive effect to compose
an environment variation. Despite this, we agree with Resende
et al. (2021), and we adapted the idea of envirotypes as markers of
environment-relatedness differently. For example, the common
use of mean values of covariates, such as rainfall, solar radiation,
and air temperature, represents a non-additive between each
other; however, they are very well-correlated for a given site-
planting date condition, even when using strategies to deal with
collinearity, such as partial least squares (e.g., Vargas et al., 2006;
Porker et al., 2020). We can use as an example a given day
of crop growing when a large amount of rainfall has occurred.
We can suppose that the sky is cloudy, with less radiation
and lower temperature. Thus, using such a G-BLUP inspired
approach is not an ideal solution to estimate the environmental
variance. Conversely, environmental typologies (T) are based
on frequencies (ranging from 0 to 1), where the sum of all
frequencies is equal to 1 (100% of the variation). In addition,
these typologies can be built for a given site using historical
weather data, adapting the approach of Gillberg et al. (2019)
and de los Campos et al. (2020). As presented in section
GBLUP with enviromic main effects from T matrix (E-GP), if
no typologies are considered, the expected environment effect
is given for a fixed-environment intercept (with 0 variances
within and between environments). Despite this fact, another
option is using non-linear kernel methods to estimate only the
environment-relatedness, as this approach takes advantage of
non-linear relationships among covariates (Costa-Neto et al.,
2021a,b).

Does More Phenotype Data Mean Higher
Accuracy in Multi-Environment Prediction?
This study shows that environmental information can break the
paradigm that claims that more phenotype information leads to
higher accuracy of GP models over METs. Our results highlight
that the traditional GBLUP models assume that the variation due
to G×E is purely genomic-based across field trials, leading to an
implicit conclusion that the yield plasticity is constant (slope ∼
0) for all genotypes, which is unrealistic. It also reflects that G×E
patterns are non-crossover (scale changes in performance across
different variations), that is, a well-performing genotype will
always be good across environments, and a poorly performing
genotype has the same trend for all environments. Despite the
gains achieved in predicting the quality of a novel environment
and the plasticity for tested and untested genotypes, we noticed
that the inclusion of enviromic sources also leads to the
unrealistic conclusion that all genotypes respond in the same
way gradient of climate and soil quality. Our results show a
reasonable accuracy in predicting yield plasticity, but further
efforts must bemade to improve the explanation by this approach
of yield plasticity as a non-linear variation across the gradient of
environmental factors. In addition, further studies using larger

experimental networks and other crop species must be conducted
to check the consistency of the suggestions we made from our
proof-of-concept study. Finally, if the experimental network is
based on a higher number of environments, perhaps the use
of enviromic assembly will also serve to find groups of mega-
environments that historically share the same typology. Then,
the G×E optimization algorithm would be used within each
historical mega-environment.

We observed that the use of selective phenotyping strategies
made with enviromic assembly × genomic kinships showed
a drastic reduction of in-field efforts. Furthermore, combined
with enviromic-aided GBLUP models, it led to the development
of almost the same predictive ability, using a large number of
genotypes and environments for a large experimental network.
Thus, we can enumerate the benefits of the enviromic-based
approaches tested in this study as: (1) the possibility of training
prediction models for yield plasticity with reduced phenotyping
efforts, (2) the assembly of enviromics with genomics allowing
the selection of the genotype-environment combinations and
the envirotype-phenotype covariances among phenotypes across
different environments.

Considering both enviromics approaches evaluated in this
study, we conclude that the advantages of E-GP over W-GP can
be enumerated as (1) the flexibility to design a wide number of the
environment types assuming different frequencies of occurrence
of key stressful factors in crop development; (2) it allows the
use of historical weather and in-field records to compute trends
of certain envirotypes in certain environments, which can be
coupled into (3) the definition of TPE and characterization
of mega-environments, as the main approach used for this
relies on studies on the frequency of occurrence of the main
environment types (e.g., Heinemann et al., 2019). For the latter,
for example, the T matrix proposed here is just an arrangement
of an environment × typology matrix, in which each entry
represents its frequency of occurrence at a particular time
interval of the crop lifetime. Conversely, the advantages of W-
GP over E-GP rely on plasticity in creating large-scale envirotype
descriptors with reasonable biological accuracy. Finally, it does
not depend on other steps for checking covariate importance
and any criteria of covariate selection, because the all-possible
environmental information, with some ecophysiological sense,
will be used and discretized in typologies by literature-based
criteria (e.g., cardinals of temperature), agronomic expertise, or
statistical criteria (distribution tables). Then, the resemblance
between two different field trials will be approached based on
the shared frequencies of the possible typologies for your crop
and germplasm. Finally, selective phenotyping will be guided by
shared typologies, not by quantitative relationships within the
collected environmental information.

Can We Envisage Climate-Smart Solutions
From Enviromics With Genomics?
Modern plant breeding programs must deliver climate-smart
solutions cost-effectively and time-reduced (Crossa et al., 2021).
By climate-smart solutions, we mean (1) adopting cost-effective
approaches capable of providing fast and cheap solutions to
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face climate change, (2) better resource allocation for field
trial efforts to collect representative phenotype information to
feed prediction-based platforms for crop improvement, such
as training accurate GP models and CGM-based approaches
capable of guiding several breeding decisions, (3) a better
understanding of which envirotypes most limit the adaptation
of crops across the breeding TPE, revising historical trends
and expecting future scenarios (e.g., Ramirez-Villegas et al.,
2018, 2020; Heinemann et al., 2019), and (4) understanding the
relationship between secondary traits and their importance in
explaining the plant-environment dynamics for given germplasm
at a given TPE (e.g., Cooper et al., 2021). However, most
of these objectives will be hampered if MET-GP platforms
do not consider models with a higher biological meaning
(Hammer et al., 2019) and reliable environmental information.
A cost-effective solution for that, if the breeder has no
access to sensor network tools, relies on the use of remote
sensing tools to collect and process historical weather data
(from 1981 to present) and other sources of data (soil data,
such as SoilGrid, https://soilgrids.org/) using tools from the
open-source EnvRtype R package (Costa-Neto et al., 2021b).
However, this data source is only efficient for field trials with
a certain geographic distance, as the current NASA POWER
resolution is 1/2 by 1/2 arc degree (almost 0.5 × 0.5 degrees
of latitude × longitude), which was the case of our data set in
this study.

Suppose selective phenotyping is added in the enviromics-
aided pipeline for GP (Supplementary Figure 1). In that case,
additional traits and the possibility of screening genotypes
across a wide number of managed environments will increase.
Furthermore, it can support the training of field trials for CGM
approaches, which demand the phenotyping of traits across crop
lifetime, such as biomass accumulation and partitioning among
different plant organs. Finally, using models considering an
explicit environmental gradient of key environmental factors is
a second alternative for this approach. It can be done to discover
the genetic determinants of the interplay between plant plasticity
and environmental variation. As a wide range of genes reacts
to each gradient of environmental factors, the use of whole-
genome regressions of reaction norms for each environmental
factor must be useful to screen potential genotypes (in our case,
single-crosses) for a diverse set of scenarios (e.g., increased heat
stress). Pioneer studies used this methodology in wheat breeding
(Heslot et al., 2014; Ly et al., 2018) and inspired other cereal
crop applications.

For example, Millet et al. (2019) developed an approach
including whole-genome regressions and factorial regression for
the main environmental drivers of G×E. In the past, studies
involving FR analysis found that the effect of high temperatures
on grain filling and maturation (Epinat-Le Signor et al., 2001;
Romay et al., 2010), water balance at flowering (Epinat-Le
Signor et al., 2001; Millet et al., 2019) and intercept radiation
in the vegetative phase (Millet et al., 2019) are the main
drivers of G×E for yield components in maize. Thus, Millet
et al. (2019) explored this opportunity offered by FR to use

genotypic-specific regressions, which coupled with genomic data,
led to an increase of 55% in the accuracy of MET-GP over the
benchmark environmental similarity model made of mean values
of environmental factors, as proposed by Jarquín et al. (2014).

From the aspects mentioned above, we envisage that the
use of GP for multi-environment predictions must account for
some degree of ecophysiological reality while also considering
the balance and relationship between parsimony and accuracy
(Hammer et al., 2019; Cooper et al., 2021; Costa-Neto et al.,
2021b). Here, we also highlight that multi-environment GP
must account for the impact of (1) resource availability in
creating biologically accurate platforms in training CGM-based
approaches and delivering reliable envirotyping information
for those purposes, and (2) the availability of the knowledge
of experts in training CGM approaches. Thus, ecophysiology
concepts to provide solutions for raw environmental data
processing in enviromic assembly information for predictive
purposes seem to be a cost-effective alternative to leverage
accuracy involving parsimony and biological reality.
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