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We investigated increasing genetic gain for grain yield using early generation genomic
selection (GS). A training set of 1,334 elite wheat breeding lines tested over three
field seasons was used to generate Genomic Estimated Breeding Values (GEBVs) for
grain yield under irrigated conditions applying markers and three different prediction
methods: (1) Genomic Best Linear Unbiased Predictor (GBLUP), (2) GBLUP with the
imputation of missing genotypic data by Ridge Regression BLUP (rrGBLUP_imp), and
(3) Reproducing Kernel Hilbert Space (RKHS) a.k.a. Gaussian Kernel (GK). F2 GEBVs
were generated for 1,924 individuals from 38 biparental cross populations between
21 parents selected from the training set. Results showed that F2 GEBVs from the
different methods were not correlated. Experiment 1 consisted of selecting F2s with
the highest average GEBVs and advancing them to form genomically selected bulks
and make intercross populations aiming to combine favorable alleles for yield. F4:6 lines
were derived from genomically selected bulks, intercrosses, and conventional breeding
methods with similar numbers from each. Results of field-testing for Experiment 1
did not find any difference in yield with genomic compared to conventional selection.
Experiment 2 compared the predictive ability of the different GEBV calculation methods
in F2 using a set of single plant-derived F2:4 lines from randomly selected F2 plants.
Grain yield results from Experiment 2 showed a significant positive correlation between
observed yields of F2:4 lines and predicted yield GEBVs of F2 single plants from GK (the
predictive ability of 0.248, P < 0.001) and GBLUP (0.195, P < 0.01) but no correlation
with rrGBLUP_imp. Results demonstrate the potential for the application of GS in early
generations of wheat breeding and the importance of using the appropriate statistical
model for GEBV calculation, which may not be the same as the best model for inbreds.

Keywords: early generation genomic selection, linear and non-linear kernels genomic matrices, wheat breeding,
breeding methodology, response to selection

INTRODUCTION

Genomic selection (GS) (Meuwissen et al., 2001; Bernardo and Yu, 2007) has become possible
through the rapid development of next-generation sequencing technologies that allow the use
of abundant and low-cost molecular markers. Evidence in plant breeding literature has shown
that GS provides an important increase in prediction accuracy compared to pedigree and
marker-assisted selection for low heritability traits (de los Campos et al., 2009, 2010, 2013;
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Crossa et al., 2010, 2011, 2013, 2014; González-Camacho et al.,
2012, 2016; Heslot et al., 2012, 2014; Hickey and Gorjanc,
2012; Pérez-Rodríguez et al., 2012; Riedelsheimer et al., 2012;
Windhausen et al., 2012; Zhao et al., 2012). An initial review
of the main activities of GS in the International Maize and
Wheat Improvement Center (CIMMYT) maize and wheat
breeding programs was published by Crossa et al. (2014).
Simultaneously, breeding programs around the world have
been studying GS, initially performing extensive research, and
the development of new statistical models for incorporating
pedigree, genomic, and environmental covariables (climatic and
soil data). Models that incorporated genomic × environment
and marker × environment and genomic × environmental
covariables were earlier developed to improve the accuracy for
predicting unobserved cultivars in new environments (Burgueño
et al., 2012; Heslot et al., 2014; Jarquín et al., 2014; Lopez-Cruz
et al., 2015; Crossa et al., 2016).

After these initial studies, an increasing number of research
articles have been published effectively testing the integration
of GS into conventional plant breeding pipelines for different
traits measured in different environments (Crossa et al., 2017;
Dreisigacker et al., 2021). The application of GS has focused
on two approaches. One approach predicts the complete genetic
values of individuals and focuses on both additive and non-
additive effects, thereby estimating the genetic performance of
candidate cultivars (Crossa et al., 2017). Additive or genetic
values are predicted in breeding generations using as much
phenotypic information as possible obtained from different
environments in a complete or incomplete (sparse) multi-
environment testing scheme (Jarquin et al., 2020). A second
approach is predicting additive effects in early generations (bi-
parental F2, or multi-parental populations) to achieve a rapid
selection cycle with a short interval (Vivek et al., 2017; Zhang
et al., 2017; Beyene et al., 2021). In these instances, the main
focus is on the prediction of breeding values of the genotypes.
The application of GS offers attractive benefits but comes
with challenges when implemented into current conventional
breeding systems.

Genomic selection is affected by a range of factors occurring
at different levels. For example, one complexity arises while
incorporating genotype × environment (G × E) interaction into
statistical models. Also important are the genome interactions
related to G × E interactions for multi-traits and the complexity
of the traits (complex vs. simple) evaluated in multiple
environments. Some of these complexities can be addressed
using parametric models where the effect of phenotypic lines
can be replaced by gj expressed as a linear regression of the
line phenotype on marker covariates (this approximates the
genetic value of the line). The matrix G is a genomic relationship
matrix with markers centered and standardized (VanRaden,
2007), which leads to what is known as Genomic Best Linear
Unbiased Predictor (GBLUP). The genomic relationship matrix
G is the most common parametric linear kernel that accounts for
the additive relationship between lines. Also, the effect of the line
can be replaced by A, the additive relationship matrix of the linear
kernel is derived from pedigree and proportional to the identical
by descent (IBD) probabilities.

Semi-parametric genomic regression methods are efficient
for capturing non-additive variation. The Reproducing Kernel
Hilbert Space (RKHS) method was initially used in animal
breeding (Gianola et al., 2006; Gianola and Van Kaam, 2008;
Gonzalez-Recio et al., 2008) and in wheat genomic-assisted plant
breeding with very promising practical results (de los Campos
et al., 2009, 2010; Crossa et al., 2010; González-Camacho et al.,
2012; Pérez-Rodríguez et al., 2012). Semi-parametric models use
kernel methods capturing non-linear relationships between the
phenotype and genotype for complex traits, such as grain yield.
The Gaussian Kernel (GK) or RKHS method is a non-linear
kernel (González-Camacho et al., 2012) that captures major and
complex marker effects in addition to their interaction effects.
Note that the non-linear kernels and the linear kernels can be
employed for a single environment model and on a genomic
multi-environment model, such as G × E. According to de los
Campos et al. (2009); Crossa et al. (2010); Pérez-Rodríguez et al.
(2012), and Cuevas et al. (2017), it is well known that the GK is
efficient for capturing additive× additive epistasis interactions in
multi-environment trials.

While GS is routinely deployed in the stage 1 yield trials of the
CIMMYT Global Wheat Program, genomic prediction has not
yet been applied in early generations due to a number of factors
including, but not limited to, genetic complexity of the crop,
logistics, and expense of establishing a faster cycle integrated
into the existing shuttle breeding method, which involves moving
seed within and/or outside Mexico each breeding generation.
However, from the 2009–2010 to 2014–2015 seasons, a large GS
proof-of-concept experiment was carried out with the objective of
incorporating genomic prediction for increased yield in the early
stages of population improvement in the context of the standard
methodology applied in the CIMMYT Wheat Breeding Program
in Mexico. Here, we present the results of this initial experiment,
which is the first reported in wheat applying GS as early as the
F2 generation. Note that the genome-based models incorporating
G× E were not yet available during the time this experiment was
conducted, so were not applied in this study.

MATERIALS AND METHODS

Training and Prediction Sets
Composition of the Base Training Set
The training set was comprised of 1,334 entries from the 17th
and 18th Semi-Arid Wheat Yield Trials (17th and 18th SAWYT),
and International Bread Wheat and Semi-Arid Wheat Screening
Nurseries (29th and 30th SAWSN, 45th IBWSN; Figure 1 and
Supplementary Table 1).

Development of Populations to Validate Early
Generation Genomic Prediction
This study sought to incorporate genomic prediction for
increased yield in the early stages of population development
in the context of the standard breeding methodology applied
at CIMMYT in Mexico. This method used selected bulks
and two field generations per year alternating between the
CIMMYT Experimental Station in Toluca (Lat 19◦ N, Long
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FIGURE 1 | Overview of the development of populations to validate early generation genomic prediction. Con-BPs, conventional biparental populations; Gen-BPs,
genomic biparental populations; GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge Regression BLUP; SPLs, single plant-derived lines; GK, Gaussian
Kernel.

99◦ W Elevation 2,640 masl) and the Campo Experimental
Norman E. Borlaug (CENEB) station at Cd. Obregon (Lat
27◦ N, Long 110◦ W, Elevation 39 masl). The phenotypic
selection in segregating generations was for semidwarf plant
height, phenology equivalent to parents and checks and
disease resistance; notably stripe rust (Puccinia striiformis f. sp.
tritici), leaf rust (Puccinia triticina), and septoria tritici blotch
(Zymoseptoria tritici).

Thirty-eight biparental breeding populations were generated
from crosses between 21 parent lines selected from the training
set and advanced to F2 (Supplementary Table 2). Parents were
selected to limit segregation for height and phenology. From
these crosses, four sets of sub-populations were derived as follows
(Figure 1 and Supplementary Table 2).

Conventional Biparental Populations
Conventional biparental populations (Con-BPs) comprised lines
derived from a random sample of approximately 1,000 F2
seeds per cross. These Con-BP F2s were each sown in a
10 m × 1.6 m plot at the CENEB station in the 2011–
2012 season, and approximately 50 F2 plants with desirable
height, phenology, and disease reaction were selected to form
an F3 bulk. Approximately 1,000 seeds from each F3 bulk were
planted in 10 m × 1.6 m plots in Toluca in May 2012, and
50 plants with desirable plant type and disease reaction were
selected and harvested to form an F4 bulk. Again, 1,000 seeds
of each F4 bulk were planted in the same plot configuration,
50 plants per plot were selected for plant type and disease
reaction and each harvested individually to form F4:5 single

plant selections. These were increased in single 2 m double-row
beds over summer 2013 at the Toluca Station. We aimed to
select 20 lines from each cross based on uniformity, plant type,
and disease reaction. Selected rows were individually harvested
and threshed to generate the F4:6 lines that were planted in
field trials at the CENEB station in the 2013–2014 and 2014–
2015 seasons.

Genomic Biparental Populations
Genomic biparental populations (Gen-BPs) were formed from 50
F2 plants per cross that were space planted at the same time and
in the same field location with the Con-BP F2 subpopulations.
DNA was extracted from leaf tissue of F2 individuals for
genotyping-by-sequencing (GBS) and calculation of Genomic
Estimated Breeding Values (GEBVs). Individuals from each cross
were selected on the basis of GEBV, plant type, and disease
reaction. As GEBVs from the different prediction methods were
not highly correlated (see section “Results”), with no way to
know which was most predictive, F2s with the highest average
GEBV across the three prediction methods were selected. Selfed
seed from selected F2 plants within each cross was combined
to form F3 bulks. Gen-BPs were advanced from F3 bulk to
F4:6 line concurrently, with the same methods and in the
same field nurseries as the Con-BPs. In other words, selection
methodologies and intensities were identical for Gen-BPs and
Con-BPs from the F3 bulk stage. Similar numbers of lines were
derived from the Gen-BP and Con-BP subpopulations of most
crosses. Six crosses did not produce progeny with acceptable
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TABLE 1 | Training set experiments summary data.

Trial 17SAWYT 18SAWYT 29SAWSN 30SAWSN 45IBWSN

Season 2009 2010 2009 2010 2009 2010 2010 2010 2011 2011 2010 2011 2011

Experiment

Type Bed Flat Bed Bed Bed Bed Flat Bed Bed Flat Bed Flat Bed ZT

Entries 50 50 43 43 264 264 264 264 264 264 780 780 780

Reps 2 2 1 2 1 3 3 1 3 3 3 3 3

Mean DTH 84.7 83.6 80.5 81.5 80.1 85.1 – 84.6 91.0 87.4 88.6 91.9 95.1

Mean HT 112.0 93.3 102.3 100.0 99.1 109.8 – 104.7 113.0 100.0

Mean YLD 7.15 6.87 6.85 5.65 7.20 7.16 6.95 7.12 7.17 5.82 7.70 7.66 6.63

H2 YLD 0.67 0.45 0.58 0.70 0.63 0.83 0.81 0.64 0.72 0.78 0.88 0.89 0.68

CV YLD 7.76 11.98 7.72 7.40 6.90 9.84 12.05 8.91 7.61 12.43 8.07 10.00 10.46

Data for the training sets included wheat lines tested in several international trails (17–18 SAWYT, 20SAWSN, 30SAWSN, and 45IDWSN) during seasons 2009, 2010, and
2011 using two planting systems bed and flat. Heritability (H2) and coefficient of variation (CV) of grain yield (YLD, ton/ha) and an average of days to heading (DTH, days),
and height (HT, cm).

combinations of plant type and disease reaction for Gen-BP and
Con-BP subpopulations.

Rapid Cycle Intercross Populations
Rapid cycle intercross populations (RCIs) were generated by
crossing selected F2 individuals, those with the highest average
GEBVs across prediction methods, within and between Gen-BP
subpopulations. For intercrosses within a population, average
GEBV and genetic distance based on the kinship matrix
(VanRaden, 2008) among individuals were used to increase the
probability of combining distinct, favorable alleles. All plants
selected for crossing also produced enough selfed seed to
contribute approximately the same number to the Gen-BP F3
bulks as plants that were not selected for intercrossing. A total of
37 RCI populations were generated. RCI F1s were space planted
by cross at the Toluca Research Station in the summer of 2012
in the same field and under the same conditions as the Gen-BP
and Con-BP F3 bulks. Plants were selected based on plant type
and disease reaction. Selected plants were bulked by cross to form
RCIF2 bulks and were then advanced concurrently with the same
selection methods as for the Con-BP and Gen-BP subpopulations
to produce RCI F2:4 lines for field trials at the CENEB station in
the 2013–2014 and 2014–2015 seasons. The 37 RCI populations
were represented by a variable number of selections although a
total of 26 populations produced 16 or more selections and only 5
populations produced fewer than 10 selections. Overall, 622 lines
were derived from RCI populations.

Single Plant-Derived Lines
Single plant-derived lines (SPLs) were developed from a subset
of 240 F2 plants from across the Gen-BP subpopulations. The
selection of F2 plants was based on a visual assessment of
acceptable plant height, phenology, and agronomic type, without
consideration of disease reaction or GEBV. F3 seed from each
selected plant was sown in a single row at CIMMYTs El
Batan Research Station in May of 2012. Rows were sprayed
with a fungicide to control diseases and were assessed for
uniformity, height, and phenology. Rows were discarded only if
they expressed excessive height, slow phenological development,

or high levels of within-row variability. From the 240 rows, 213
F2:4 SPLs were selected for field testing to assess response to
selection for F2 GEBV using each of the three different GEBV
calculation methods. SPLs were obtained from 36 of the 38 Gen-
BP subpopulations and tested in field trials at CENEB in the
2012–2013 and 2013–2014 seasons.

Field Trials and Phenotyping
Training Set
Phenotypic data for the training set of 1,334 lines were generated
in field trials at CENEB, Cd. Obregon over the 2008–2009,
2009–2010, and 2010–2011 growing cycles under irrigated
conditions with management to achieve high yield according to
local best practice. Summary data for these trials are outlined
in Table 1.

Testing Set
Field trials of the developed populations were conducted at
CENEB across three growing cycles (2012–2013, 2013–2014,
and 2014–2015) with equivalent management to that applied
to the training set. Plots were of 4.8 m2 (3 m × 1.6 m).
Each trial was conducted in two consecutive seasons. Trials in
each growing season were planted in late November or early
December and harvested in early May. Data were collected for
grain yield, plant height, and heading date. Details specific to
the trials related to each of the following components of our
research are provided in the following sections and summarized
in Table 2.

Validation of Genomic Predictions for
Wheat Grain Yield
Experiment 1 – Conventional Biparental, Genomic
Biparental, and Rapid Cycle Intercross Populations
Phenotypic data for the Con-BP, Gen-BP, and RCI-derived
lines (591, 630, and 622 lines, respectively) were generated
in field trials at CENEB, Cd. Obregon over the 2013–2014
and 2014–2015 crop cycles (Table 3). Entries were randomly
assigned to 1 of 10 different sub-experiment blocks with
each sub-experiment being a two-rep row-column design.
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TABLE 2 | Summary field trial data for Experiments 1 and 2.

Trial Experiment 1 Con-BP Experiment 2 SPL

vs. Gen-BP and RCI F2 GEBV validation

Season 2013–2014 2014–2015 2012–2013 2013–2014

Experiment

Type Bed Bed Bed Bed

Design Row-column Row-column Row-column Row-column

Entries 2,000 2,000 240 240

Reps 2 2 2 2

Mean DTHa 76 72.6 80.5 78.4

H2 DTHa 0.88 0.74 0.95 0.94

CV% DTHa 1.82 2.17 3.5 3.7

Mean HTb 99.6 105.1 104.2 101.3

H2 HTb 0.48 0.72 0.66 0.65

CV% HTb 5.08 3.21 4.1 4.2

Mean YLDc 5.98 4.72 7.12 5.98

H2 YLDc 0.60 0.41 0.73 0.82

CV% YLDc 9.63 13.41 9.27 6.95

Experiment 1 compares prediction accuracy of genomic bi-parental (Gen-BP), with
conventional bi-parental (Con-BP), and rapid cycling intercross population (RCI)
populations in cycles 2013–2014 and 2014–2015. Experiment 2 has single plant-
derived lines (SPL) F2:4 validation.
aDays to heading from sowing.
bHeight in cm to tip of ear.
cGrain yield in tons per hectare.

TABLE 3 | Experiment 1: Least significant difference (LSD), mean yield
comparison of different breeding populations and checks evaluated at Cd.
Obregon during 2013–2014 (Year-1) and 2014–2015 (Year-2) growing seasons.

Class N Mean (ton/ha) Tukey grouping

YEAR-1 [LSD (0.05) = 0.1341]

Checks 80 6.212 A

Con-BP 1,182 6.048 B

Gen-BP 1,260 5.990 B C

Parents 190 5.988 B C

RCI 1,288 5.902 C

YEAR-2 [LSD (0.05) = 0.1288]

Checks 80 4.916 A

Parents 190 4.800 A B

Gen-BP 1,260 4.741 C B

Con-BP 1,182 4.741 C B

RCI 1,288 4.664 C

Combined [LSD (0.05) = 0.093]

Checks 160 5.564 A

Con-BP 2,364 5.394 B

Parents 380 5.394 B

Gen-BP 2,520 5.366 B C

RCI 2,576 5.283 C

Breeding populations included the genomic bi-parental (Gen-BP), conventional bi-
parental (Con-BP), and rapid cycling intercross population (RCI) and parents.

All sub-experiments included common checks. Parents of the
populations were included in the experiments and assigned
randomly across sub experiments. Grain yield data of the
different population types were compared, and differences
were determined using the least significant difference (LSD

at 5% significance). The expected response to selection was
derived by multiplying the narrow sense heritability by the
selection differential (H2

× S). The latter was calculated by
dividing the mean of the selected lines by the mean of the
full population.

Experiment 2 – Validation of F2 Grain Yield Genomic
Estimated Breeding Values in Single Plant-Derived
F2:4 Lines
Single plant-derived lines were tested in field trials at CENEB,
Cd. Obregon in the 2012–2013 and 2013–2014 crop seasons.
Experiments were two replicate row-column designs. Grain yield
data for the F2:4 lines were examined for correlation to GEBVs of
their respective, individual F2 progenitor plant.

Genotyping
The wheat genotypes included in the training set and F2
plants, indexed by their genotypic identification number
(GID), were characterized using GBS following the same
procedure as described in Poland et al. (2012). Briefly,
genomic DNA was extracted from seedling leaf tissue using
the procedure described in Dreisigacker et al. (2016). Two
enzymes PstI (CTGCAG) and MspI (CCGG) were used to
digest genomic DNA. Individual samples were ligated with
barcoded adapters and pooled by plate into a single library.
Each library was sequenced on a single lane of Illumina
HiSeq2000. A total of 45,818 single nucleotide polymorphisms
(SNPs) markers were initially obtained. The filtering consisted
of removing markers whose minor allele frequency (MAF)
was less than 5% or had more than 80% missing values.
After initial filtering, 29,999 markers were available for
further analysis.

Statistical Models and Methods
The Base-Line Phenotype Model for the Training
Populations
This part of the analysis was performed on the six field trials that
included the 1,334 entries in the training set which are outlined
in Table 1. Best Linear Unbiased Estimates (BLUEs) for grain
yield across trials were generated using the following linear mixed
model:

Yijkl = µ+ gi + Yearj + Rk(j) + Bl(kj)
(
g × L

)
ij + eijkl

where Yijkl is the phenotype of wheat line i-th at location j-th in
replicate k-th within the block l-th, µ is the overall mean, Yearj
is the fixed effect of the year j-th, Rk(j) is the fixed effect of the
k-th replicate within year j-th, Bl(kj) is the random effect of the
incomplete block l-th within replicate k-th and year j-th assumed
to be independently and identically normal distributed (iid) with
mean zero and variance σ2

b, gi is the fixed effect of genotype i-th,(
g × L

)
ij is the fixed effect of the genotype × year interaction,

and eijkl is the random error assumed to be iid normal with mean
zero and variance σ2

e . Broad sense heritability (H2) was computed
on an entry-mean basis according to Bernardo (2010) as:

H2
=

σ2
g

σ2
g +

σ2
gy
y +

σ2
e

y × r
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where σ2
g is the genotypic variance, σ2

gy is the genotype × year
interaction variance, σ2

e is the estimated of the error variance, y
is the number of years, and r is the number of replicates. Note
that different trials had different numbers of testing years, 17–18
SAWYT data had trials in years 2009 and 2010, whereas the other
three trials had 3 years of testing (Table 1).

Genomic-Enabled Prediction Models
Meuwissen et al. (2001) were the first to propose whole-
genome regression methods (GS) by jointly fitting hundreds
of thousands of markers with major and small effects. In the
whole-genome regression methods, the number of markers (p)
greatly exceeds the number of data-points (n) available; thus,
implementing regression methods poses important statistical
and computational challenges. However, new developments
in the area of shrinkage estimation procedures allows the
implementation of whole-genome regression methods.

We considered three different models: GBLUP using additive
genomic relationships (VanRaden, 2008), the GK or RKHS
regression (Gianola et al., 2006) which is equivalent to a GBLUP
but with a non-linear kernel, and the rrGBLUP_imp where
missing markers were imputed (Endelman, 2011). The GBLUP
and RKHS models were fitted using routines kindly provided by
de los Campos (personal communication). Nowadays, GBLUP,
RKHS, and many other models can be fitted in the BGLR package
(Pérez-Rodríguez and de los Campos, 2014), which is available on
the CRAN website. This software was not available at the time our
study was conducted.

The Genomic Best Linear Unbiased Prediction Model
The regression model for wheat lines (i = 1, 2,. . ., n) is given by:

y = µ1+ u+ ε (1)

where y is the response vector of n phenotypic observations, µ

is the overall mean, and the random vectors of the genetic values
u and the errors ε are independent variables with u ∼ N(0, σ2

uK)
and ε ∼ N(0,σ2

ε I), respectively, where σ2
u is the variance of u, I is

the identity matrix, and K is a symmetric semi-positive definite
matrix representing the covariance of the genetic values, and
ε is the vector of random errors with normal distribution and
common variance, σ2

ε . The p bi-allelic centered and standardized
molecular markers are represented in incidence matrix X of order
n × p such that K = G = XX

′

p is a linear kernel. Model (1) is
known as GBLUP (VanRaden, 2007, 2008).

Under the conditions given above, model (1) estimates the
genomic relationship by means of its linear kernel XX

′

/p, where
p is the number of markers. However, a nonlinear kernel,
such as the GK, can also be used (Cuevas et al., 2016). The
model represented by Eq. 1 is computationally very efficient and
convenient when n >> p (de los Campos et al., 2012).

Gaussian Kernel or Reproducing Kernel Hilbert Space
Regressions
In general, the parametric genomic linear regression function
has a rigid structure comprising a set of assumptions, which
may not be met in GS problems. Thus, departures from
linearity can be addressed by semi-parametric approaches,

such as the GK or RKHS regressions (Kimeldorf and Wahba,
1971; Gianola and Van Kaam, 2008; Gianola, 2013). The GK
regression for semi-parametric, genomic-enabled prediction,
such as kernel regression, is necessary to reduce the dimension
of the parametric space and maybe able to capture complex
cryptic interaction among markers (Gianola et al., 2006, 2014).
Morota and Gianola (2014) pointed out that most studies carried
out so far suggest that whole-genome prediction coupled with
combinations of kernels may capture non-additive variation
(Gianola et al., 2014).

The basic idea underlying the GK approach to GS (Kimeldorf
and Wahba, 1971; Gianola, 2013) is to use the matrix of markers
X to build a covariance structure among genetic values u.
Therefore, u ∼ N(0,σ2

gKh) is independent of ε (Crossa et al.,
2010; de los Campos et al., 2010), Kh is a symmetric positive
semi-definite matrix of order n × n, known as the reproducing
kernel (RK) matrix, which depends on the markers and the
bandwidth parameter h > 0, σ2

g > 0, and ε is an n × 1 vector
of homoscedastic and independent normal errors.

This general approach requires choosing an RK, for example,
a GK function

Kh
(
xi, xj

)
= exp

(
−hd2

ij/q0.05

)
, (2)

where xi and xj are the marker vectors for the i-th and j-th
individuals, and q0.05 is the fifth percentile of the squared
Euclidean distance d2

ij (González-Camacho et al., 2012).

Ridge Regression Best Linear Unbiased Prediction With
Imputed Marker Data
The marker-based, additive relationship matrix was calculated
with the function A.mat in R package rrGBLUP, version 4.1
(Endelman, 2011), which centers (but does not standardize)
each marker by the population mean (VanRaden, 2008). The
relationship matrix was additionally calculated with the imputed
markers. Missing data were imputed with the “EM” option in
A.mat, which implements a multivariate normal expectation-
maximization (EM) algorithm (Poland and Rife, 2012).

A Fivefold Cross-Validation
A fivefold cross-validation was performed to evaluate the
prediction performance of the models on the training set. The
full dataset was randomly divided into five mutually exclusive
subsets, four of which formed the training set for fitting
the model, and the fifth was used as a test set. Predictive
abilities were calculated as the Pearson’s correlation coefficient
between the predicted values and the observed phenotypic values
of the test set.

RESULTS

Validation of Genomic Prediction Models
Predictions with GBLUP, rrGBLUP_imp, and GK in the
training population had similar levels of predictive ability
for a yield of 0.42–0.43 as determined by a fivefold cross-
validation (Table 4). The GEBVs produced by the three
methods showed high correlations of between 0.93 and 0.97
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TABLE 4 | Predictive power of GEBVs in a training population of 1,334 inbreds
and correlation between GEBV predictions for grain yield by three different
calculation methods (GBLUP, rrGBLUP_imp, and GK) among inbreds in the
training set and in a target population of 1,924 F2s.

Prediction model Yield (fivefold
cross validation)

GBLUP rrGBLUP_imp

Training/F2 Training/F2

GBLUP 0.43 – –

rrGBLUP_imp 0.42 0.96/0.44 –

GK 0.42 0.97/0.37 0.93/0.13

GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge Regression
BLUP; GK, Gaussian Kernel.

FIGURE 2 | Experiment 2. Distribution of F2-predicted breeding values (grain
yield) of 213 randomly selected individuals estimated using GK (top, A),
GBLUP (Middle, B), and rrGBLUP (low, C) with imputed markers.

in the training set. In contrast, the models produced divergent
predictions in F2 populations. The shapes of the distribution
of GEBVs from each prediction method also differed with
GBLUP having a wide distribution from 5 to 11 ton/ha while
rrGBLUP_imp values were more narrowly grouped between
6.5 and 8.1 ton/ha (Figures 2A–C). The lack of correlation
and different distributions of values caused uncertainty about
which was the most appropriate method to use in the selection
of F2 plants to generate genomically selected bulks and to
intercross in a rapid cycle intercross strategy. As the GEBVs
were uncorrelated, not negatively correlated, individuals with
the highest GEBVs averaged across the prediction methods were
selected for selfing to form F3 bulks and for intercrossing to
form the RCI populations. Phenotypic selection was also applied
for plant height, phenology, and disease reaction in the same
way as for the Con-BP populations. For the RCI populations,
the additional criteria of maximizing genetic differences between
F2 individuals, if selected from the same biparental cross, were
applied in planning intercrosses.

Because populations were advanced through a selected bulk
method to develop the material tested in Experiment 1, this
experiment could not address the question of whether one
method was superior to another in F2 GEBV calculation.
Therefore, a random subsample of F2 plants was chosen to
develop single F2 plant-derived lines so a correlation between the
yield of a derived line and GEBV of an F2 could be measured.
This set of lines was the basis for Experiment 2.

Experiment 1 – Conventional Biparental,
Genomic Biparental, and Rapid Cycle
Intercross Populations
A total of 1,857 lines were derived from conventional,
phenotypically selected biparental (Con-BP), Gen-BP, and RCI
breeding methods with roughly similar numbers from each
(Supplementary Table 2). All methods used phenotypic selection

FIGURE 3 | Experiment 1. Box-plots comparing grain yield distribution of all
the lines for Genomic Bi-parental (Gen-BP), Conventional Bi-parental
(Con-BP), and Rapid Cycle Intercross population (RCI) populations (blue
box-plots) and their corresponding top 10% entries (red box-plots).
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TABLE 5 | Experiment 1: Comparing the expected response to selection under 5
and 10% selection intensity for different selection schemes for average grain yield
(AV_YLD ton/ha) derived from trials performed at the CENEB station in seasons
2013–2014 and 2014–2015.

TOP5% TOP10%

Class N AV_YLD AV_YLD S R AV_YLD S R

Gen-BP 630 5.366 6.326 0.960 0.576 6.189 0.823 0.494

Con-BP 591 5.394 6.347 0.953 0.572 6.216 0.822 0.493

RCI 635 5.286 6.312 1.026 0.615 6.177 0.891 0.534

Con-BPs, conventional biparental populations; Gen-BPs, genomic biparental
populations; RCI, rapid cycling intercross.
S = Selection differential (selected mean − population mean).
R = Expected response to selection = H2

× S.
Expected selection response (H2 = 0.6).

to progress material through selected bulk stages, while the Gen-
BP method used GEBVs of F2 plants to add a single cycle of GS
and RCI used the F2 GEBVs to select plants for intercrossing to
produce new populations that were subsequently passed through
the same phenotypic selection methodologies.

Field testing showed that Con-BP lines yielded an average
of 2% more than RCI lines (P < 0.001), Gen-BP lines yielded
an average of 1.5% more than RCI lines (P < 0.01), and there
was no significant difference between Gen-BP and Con-BP
(Table 3) populations. Similar comparisons of yield focusing
on the top 10% highest yielding lines in each population type
showed similar patterns with Con-BP having the highest yield,
significantly greater than GS-BP and RCI (Figure 3 and Table 5).
Although differences were statistically significant, they were only
approximately 1%. Gen-BP subpopulations in the top 10% were
not significantly different in yield to the top 10% of RCI lines.
Response to selection in the RCI populations was marginally
greater than for Con-BP and Gen-BP, but the difference was
small and likely reflects the lower mean yield and distribution
of grain yield in the RCI populations compared to the other
population types (Table 3 and Figure 4).

Experiment 2 – Validation of F2 Grain
Yield Genomic Estimated Breeding
Values in Single Plant-Derived F2:4 Lines
In Experiment 2, we compared the predictive ability of the
different GEBV calculation methods in F2 in a set of 213 single
plant-derived F2:4 lines from randomly selected F2 plants. Trials
of the F2:4 SPLs showed a significant positive correlation with F2
GEBVs from GK and GBLUP (Table 6 and Figure 5). Individuals
with the highest 10 and 20% GEBVs predicted by GK, produced
F2:4 progeny lines with realized grain yield gains of 4.7 and 4.2%,
respectively; significantly higher than the mean of 50 random
samples from across the full set of F2s (Table 7). The top 10 and
20% of F2s predicted by the GBLUP method showed realized
gains of 3.68 and 2.60%, respectively, in their F2:4 progenies;
significantly higher than the mean of 50 random samples of
the same proportions (Table 7). Contrarily, selecting the top
10 and 20% of F2 GEBVs estimated with rrGBLUP_imp did

FIGURE 4 | Experiment 1: Distribution of observed grain yield across 2 years
under different selection strategies: (A) Gen-BP, (B) Con-BP, and (C) RCI.
Con-BPs, conventional biparental populations; Gen-BPs, genomic biparental
populations; RCI, rapid cycling intercross.

TABLE 6 | Experiment 2: Correlations between F2:4 GEBVs from three prediction
methods (GBLUP, GK, and rrGBLUP_imp) from grain yield of 213 derived F2:4
lines across two seasons.

F2:4 observed yield

F2:4 predicted YLD Correlation P-Value

GBLUP 0.2870 0.000024

GK 0.3020 0.000009

rrGBLUP_imp −0.0733 0.290000

GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge
Regression BLUP.

not produce F2:4 progenies with a higher mean performance
compared to random samples.
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FIGURE 5 | Experiment 2: Scatter plot showing the correlation between F2
predicted yield, estimated with different prediction models GK (top, A),
GBLUP (middle, B), and rrGBLUP_imp (low, C), with an observed yield of 213
derived F2:4 lines. GBLUP, genomic best linear unbiased prediction; rrGBLUP,
Ridge Regression BLUP; GK, Gaussian Kernel.

Within the subset of 213 F2s which were randomly sampled
to produce F2:4 bulks for yield testing, the correlations between
prediction methods were also low (Table 4 and Figure 6).
Figures 5A–C shows scatterplots of F2 single plant GEBVs vs.
realized yields of derived F2:4 lines (GEBVs on Y-axis, yields
on X-axis). From these, it is clear that correlations between F2
GEBVs and F2:4 yield for GK and GBLUP are not strong but
are not driven by outliers with high leverage. In both cases, the
selection of F2s with the highest GEBVs would avoid the selection
of the lowest yielding F2:4 lines.

DISCUSSION

The proof-of-concept Experiment 2 reported here demonstrates
the potential of early generation genomic prediction to increase
genetic gain over conventional selection methods by allowing

the ability to increase the number of crossing cycles per year.
In Experiment 2 of our study, F2 GEBVs generated by GK
and GBLUP methods showed significant positive correlations
with the yield of derived lines. The highest 10 and 20% of
GEBVs from the GK method showed 4.7 and 4.2% increases,
respectively, and the top 10 and 20% of F2s GEBVs predicted
by GBLUP showed realized gains of 3.68 and 2.60% over a 50×
random sample of the same proportion of lines from the same
populations. In contrast, a similar analysis of F2 GEBVs from the
rrGBLUP_imp method showed no difference from the mean of
the 50× random sampling.

Each of the three prediction methods used in this study
produced highly correlated GEBVs in inbreds and the same
levels of predictability of inbred performance based on cross
validation in a training set of elite CIMMYT inbreds. In contrast,
predictions in F2s derived from crosses between inbreds that
were part of the training set for the model showed little to no
correlation and differing levels of predictive ability compared
with a realized yield of F2 SPLs. These differences are likely due
to the different abilities of the prediction methods to handle
heterozygosity, which is generally not accurately characterized
with a GBS genotyping platform and the importance of non-
additive variation in wheat. This may be reflected in the much
narrower distribution of GEBVs from rrGBLUP_imp compared
to GBLUP and particularly GK. The difference in the distribution
of the GEBVs between the GBLUP and GK methods is likely due
to the different shrinkage applied in each method. On the other
hand, differences between GBLUP and rrGBLUP_imp are likely
due to the imputation method used.

In Experiment 1, we attempted to incorporate F2 genomic
prediction into a selected bulk breeding methodology closely
mirroring the typical breeding methodology in the CIMMYT
spring bread wheat program. The three different prediction
methods generated F2 GEBVs that showed little correlation with
one another. It should be noted that the low correlations between
the rrGBLUP_imp with GBLUP and GK were considered as
a rare result, especially knowing the equivalence between the
GBLUP and the rrGBLUP_imp. The reasons for the failure
of the rrGBLUP_imp in generating similar predictions to
GBLUP are unknown but may be attributable to different
factors. For example the nature of the imputation algorithm
or convergence issues with the Expectation-Maximization
algorithm in rrGBLUP_imp. Since the three methods had
similar ability to predict yield of inbreds and predictions were
correlated, it was difficult to discard one of the models based
on observed phenotypes and we decided to use an average
of the methods. If we had conducted additional research to
confirm that GK was the most predictive method or that
GBLUP also showed a useful level of predictability, we would
likely have made better selections of F2 individuals to form
selected bulks and to make early generation intercrosses. Given
that our selections were probably no better than random
and the number of F2s selected was less than in parallel
conventionally selected populations, it is hardly surprising
that a lower level of genetic variance (presumed by planting
only 5% of the number of F2s in Gen-BP vs. Con-BP) did
not result in a yield advantage in the genomically selected
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TABLE 7 | Yield of F2:4 lines based on selection of the top 10 and 20% of GEBVs from different methods (GBLUP, GK, and rrGBLUP_imp) compared to a random
sample of 10 and 20% of all F2:4 lines, with 50× sampling (the top 10 and 20% t-test: Two-Sample Assuming Unequal Variances.

Sample Best 20% F2:4-predicted lines Sample Best 10% F2:4-predicted lines

20% GK GBLUP rrGBLUP_imp 10% GK GBLUP rrGBLUP_imp

Mean yield (ton/ha) 6.52 6.76 6.69 6.49 6.52 6.83 6.80 6.47

Variance 0.0036 0.1536 0.1081 0.0808 0.0077 0.1107 0.1334 0.0989

Observations (n) 50 42 42 43 50 21 20 21

Mean difference (D) 0.24 0.17 −0.03 0.31 0.28 −0.05

% Mean difference 3.68 2.61 −0.46 4.75 4.29 −0.77

Degree of freedom 43 43 45 21 20 21

t-Value 3.9823 3.3382 −0.6783 4.2767 3.3561 −0.7761

P (t < = t) one-tail 0.0001 0.0009 0.2505 0.0002 0.0016 0.2232

t critical one-tail 1.6811 1.6811 1.6794 1.7207 1.7247 1.7207

P (t < = t) two-tail 0.0003 0.0017 0.5011 0.0003 0.0031 0.4463

t critical two-tail 2.0167 2.0167 2.0141 2.0796 2.086 2.0796

GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge Regression BLUP; GK, Gaussian Kernel.

FIGURE 6 | Experiment 2: Relationship between genomic-enabled predictive values of 213 F2 which were later advanced to F4 (F2:4) using models GK, GBLUP,
and rrGBLUP_imp. GBLUP, genomic best linear unbiased prediction; rrGBLUP, Ridge Regression BLUP; GK, Gaussian Kernel.

biparental-derived inbreds (Gen-BP) and the early generation
intercross derived (RCI) inbred populations; both on average
and in the highest yielding 20% of lines from each of the
population types.

When comparing genome-based predictions, we should also
emphasize that in this study the accuracy of the three methods
(GBLUP, GK, and rrGBLUP_imp) for predicting F2 plants
was measured at the F2:4. Therefore, any attempt to make
a precise estimate of errors among the three methods and

benchmarking results from genome-based methods with those
under conventional breeding methods in terms of biases and
errors are complex and out of the scope of this research. It
would be worthwhile to investigate further methods to optimize
prediction power in early generation wheat populations. If a
robust method can be determined, there are useful increases in
genetic gain from early generation genomic prediction in wheat,
particularly, in populations that are not varying for some of the
obvious drivers of yield that are easily selected phenotypically,
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such as height or flowering time. Considering there are roughly
one million F2 plants generated per year in the CIMMYT spring
bread wheat program, early generation genomic prediction will
likely be best targeted to certain types of populations that provide
the greatest probability of higher response to selection or where
there is little obvious variation amenable to phenotypic selection.

These evaluations give the first indications of genetic gains
from early generation GS for a highly complex trait in a practical
wheat breeding program.
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