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Wider pea (Pisum sativum L.) cultivation has great interest for European agriculture, owing 
to its favorable environmental impact and provision of high-protein feedstuff. This work 
aimed to investigate the extent of genotype × environment interaction (GEI), genetically 
based trade-offs and polygenic control for crude protein content and grain yield of pea 
targeted to Italian environments, and to assess the efficiency of genomic selection (GS) 
as an alternative to phenotypic selection (PS) to increase protein yield per unit area. Some 
306 genotypes belonging to three connected recombinant inbred line (RIL) populations 
derived from paired crosses between elite cultivars were genotyped through genotyping-
by-sequencing and phenotyped for grain yield and protein content on a dry matter basis 
in three autumn-sown environments of northern or central Italy. Line variation for mean 
protein content ranged from 21.7 to 26.6%. Purely genetic effects, compared with GEI 
effects, were over two-fold larger for protein content, and over 2-fold smaller for grain 
and protein yield per unit area. Grain yield and protein content exhibited no inverse genetic 
correlation. A genome-wide association study revealed a definite polygenic control not 
only for grain yield but also for protein content, with small amounts of trait variation 
accounted for by individual loci. On average, the GS predictive ability for individual RIL 
populations based on the rrBLUP model (which was selected out of four tested models) 
using by turns two environments for selection and one for validation was moderately high 
for protein content (0.53) and moderate for grain yield (0.40) and protein yield (0.41). 
These values were about halved for inter-environment, inter-population predictions using 
one RIL population for model construction to predict data of the other populations. The 
comparison between GS and PS for protein yield based on predicted gains per unit time 
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INTRODUCTION

Greater cultivation of grain and forage legumes is a priority 
for European agriculture to enhance its sustainability while 
reducing its huge deficit for high-protein feedstuff (Pilorgé 
and Muel, 2016). The positive impact of legume cultivation 
concerns energy and resource use efficiency, greenhouse gas 
emissions, nitrogen biogeochemical fluxes, and agricultural 
biodiversity (Nemecek et  al., 2008; Billen et  al., 2014; Foyer 
et  al., 2016). Grain legume cultivation has been promoted by 
the European Common Agricultural Policy through various 
supporting measures, but its expansion is hindered by substantial 
yield and profitability gap with respect to major cereal crops 
(Schreuder and De Visser, 2014).

Field pea (Pisum sativum L.), compared with other cool-
season grain legumes, tended to display greater yield potential 
in Western (Carrouée et  al., 2003) and Southern Europe 
(Annicchiarico, 2008) and moderately good rate of genetic 
yield progress (Annicchiarico, 2017). However, the grain protein 
content of commercial cultivars is only moderate (usually in 
the range 22–26% on a dry-matter basis), and increased protein 
content represents a major breeding objective (Duc et al., 2015). 
The reported range of variation for crude protein content 
among relatively large sets of breeding lines or modern cultivars 
was fairly inconsistent. It was around 3.5% in Tar’an et  al. 
(2004) and Burstin et  al. (2007), 8% in Cousin et  al. (1985), 
and close to 10% in Jha et  al. (2015) and Ferrari et  al. (2016). 
The range exceeded 10% in a recombinant inbred line (RIL) 
population issued by parents with contrasting protein content 
(Irzykowska and Wolko, 2004) and a world collection of ecotypes 
and old cultivars (Annicchiarico et  al., 2017), while exceeding 
16% in germplasm accessions from regional or global collections 
(Blixt, 1978) and material encompassing modern lines and 
wild relatives (Tzitzikas et  al., 2006).

Genotype × environment interaction (GEI) effects for grain 
protein content have not been thoroughly investigated. They 
were modest and/or nonsignificant in Matthews and Arthur 
(1985) and in Krajewski et  al. (2012), while being significant 
but with no estimation of their size (e.g., in terms of variance 
component relative to purely genetic effects or genetic correlation 
across test environments) in Burstin et  al. (2007). In contrast, 
outstanding GEI was repeatedly observed for grain yield, 
particularly across environments of southern Europe 
(Annicchiarico and Iannucci, 2008; Iglesias-García et  al., 2017; 
Pecetti et  al., 2019), where it was more affected by year-to-
year climatic variation than by geographical distance (e.g., 
within the Italian target region).

Since the selection for higher grain protein content is likely 
to be  performed concurrently with selection for higher crop 
yield, the genetic correlation between these characters has 
crucial importance for pea breeding. However, earlier studies 
assessed only phenotypic correlations, and their indications 
were inconsistent. An inverse correlation around 0.4 was found 
by Tar’an et  al. (2004) and by Krajewski et  al. (2012), whereas 
no correlation was reported by Cousin et al. (1985) and Bărbieru 
(2021). In a large study by Klein et  al. (2020), the phenotypic 
correlation between grain protein content and seed weight per 
plant was slightly negative overall (r = −0.11) but varied largely 
across populations and environments.

Several molecular studies reported quantitative trait loci 
(QTL) for pea grain protein content (Irzykowska and Wolko, 
2004; Tar’an et  al., 2004; Burstin et  al., 2007; Bourion et  al., 
2010; Krajewski et  al., 2012; Klein et  al., 2014, 2020; Jha et  al., 
2015; Gali et  al., 2018, 2019). Their results indicated modest 
trait variation accounted for by the vast majority of individual 
QTL, as well as fairly widespread inconsistency of QTL across 
test environments. The only moderate number of markers these 
studies were based upon (ranging from 106 to 680) limited 
a thorough investigation of QTL and trait genetic architecture. 
However, the polygenic control that they suggested challenged 
the adoption of marker-assisted selection (MAS) for protein 
content. Genomic selection (GS), by which breeding values 
for polygenic traits are predicted by a statistical model constructed 
from genome-wide marker information (Meuwissen et al., 2001), 
can be  more convenient than MAS in this situation (Bernardo 
and Yu, 2007). However, this selection strategy requires the 
availability of high numbers of molecular markers spread across 
the genome, as made possible for a reasonably low cost by a 
high-throughput genotyping technique such as genotyping-by-
sequencing (GBS; Elshire et al., 2011). In addition, high marker 
number increases the ability of genome-wide association studies 
(GWAS) to unveil the trait genetic architecture and to identify 
relevant genomic regions, especially for species with a sequenced 
genome such as pea (Kreplak et  al., 2019). Genome-enabled 
predictions proved sufficiently accurate to encourage GS as a 
partial substitute for PS for pea grain yield under moisture-
favorable (Annicchiarico et  al., 2019) and severely drought-
prone regions (Annicchiarico et  al., 2020), but no report is 
available on its potential value for improving pea protein content 
or pea protein yield per unit area.

An earlier study by Annicchiarico et  al. (2019) reported 
on GEI extent across Italian environments, genome-enabled 
predictions and GS predicted efficiency relative to phenotypic 
selection (PS) for grain yield of pea breeding lines belonging 

and similar evaluation costs indicated an advantage of GS for model construction including 
the target RIL population and, in case of multi-year PS, even for model training based on 
data of a non-target population. In conclusion, protein content is less challenging than 
grain yield for phenotypic or genome-enabled improvement, and GS is promising for the 
simultaneous improvement of both traits.

Keywords: crop quality, crude protein yield, genetic variation, genomic selection, genotype × environment 
interaction, grain yield, inter-population prediction, Pisum sativum
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to three RIL populations issued by connected crosses between 
elite parent cultivars. That work assessed not only intra-population 
genome-based predictions (where GS model training includes 
the RIL population targeted by selection) but also inter-population 
predictions (where other non-target, connected RIL populations 
were used for GS model training). This study, based on the 
same plant material and testing environments, added to results 
by Annicchiarico et  al. (2019) with the aim of assessing (a) 
the extent of GEI for grain crude protein content, (b) the 
genetic correlation between grain yield and protein content, 
(c) the extent of polygenic control for protein content and 
grain yield and major relevant genomic areas for these traits 
as suggested by GWAS, and (d) the predictive ability of GS 
for improving crude protein yield and its predicted efficiency 
relative to PS, envisaging both intra-population and inter-
population prediction scenarios.

MATERIALS AND METHODS

Plant Material
This study encompassed the same plant material and test 
environments described in Annicchiarico et  al. (2019) for the 
phenotyping of grain yield responses. In brief, it included 306 
genotypes belonging to three RIL populations issued from 
connected crosses between three cultivars, i.e., the European 
cultivars Attika and Isard, and the Australian cultivar Kaspa, 
which featured high and stable grain yield across Italian 
climatically contrasting environments in a previous assessment 
of a large number of modern cultivars (Annicchiarico, 2005; 
Annicchiarico and Iannucci, 2008). In particular, the number 
of lines per cross was 102 for Attika × Isard (hereafter A × I), 
100 for Kaspa × Attika (K × A), and 104 for Kaspa × Isard 
(K × I). Samples of DNA for genotyping were extracted from 
four F6 plants per line grown in a non-heated glasshouse, 
while phenotyping was carried out on individuals obtained 
after one additional generation of multiplication. Phenotyping 
experiments also included the parental cultivars and the 
cultivar Spacial, which was used as a control cultivar because 
of its high yielding ability across Italian environments 
(Pecetti et  al., 2019).

Phenotyping
The set of 310 genotypes was autumn-sown in three rain-fed 
test environments identified hereafter by the combination of 
location and growing season as Lodi 2013–2014, Lodi 2014–2015 
and Perugia 2013–2014. Lodi (45°19′N, 9°30′E) is located in 
northern Italy and is characterized by a subcontinental climate, 
whereas Perugia (43°06′N, 12°23′E) features the cool 
Mediterranean climate typical of central Italy and inland southern 
Italy (Supplementary Table  1). One test site (Lodi) included 
two cropping years, to widen the assessment of GEI, which, 
for pea in Italian environments, is mainly affected by year-
to-year variation (Annicchiarico and Iannucci, 2008; Pecetti 
et  al., 2019). Crop management contributed to widening the 
environment variation, since Lodi 2013–2014 and Perugia 
2013–2014 underwent an organic management, whereas Lodi 

2014–2015 was managed conventionally. Each experiment was 
designed as a randomized complete block with three replicates. 
Additional details regarding plot size, experiment set up and 
management, and grain yield assessment can be  found in 
Annicchiarico et al. (2019). Grain protein content was determined 
through near-infrared spectroscopy (NIRS). Before analysis, a 
random sample of 100 g of dry seeds for each plot was ground 
by a cutting mill (Pulverisette 19, Fritsch GmbH, Germany) 
equipped with a sieve of 1 mm mesh. Flour samples were 
analyzed in the 1,000–2,500 spectral range by employing a 
Nirflex 500 spectrometer (Büchi, Italy). An ad-hoc calibration 
using PLS Toolbox 8.9 (Eigenvector Research Inc.) was developed 
using the protein content of 262 flour samples determined via 
chemical analysis as reference measurements. These samples 
were selected from the whole experimental set according to 
a Kennard Stone multivariate design, while selecting 40 additional 
independent samples for validation. For chemical analysis, flour 
samples were further ground by a MM 400 mixer mill (Retsch 
Gmbh & Co., Germany), and total N was determined in 
duplicate by dry combustion (Dumas method) using a 
ThermoQuest NA1500 elemental analyzer (Carlo Erba, Milano, 
Italy) and atropine as a standard. A multivariate filtering 
(external parameter orthogonalization) was applied as 
pre-processing to the spectra to reduce the bias between years 
and locations. The developed calibration model for the prediction 
of N content showed a standard error of prediction (SEP) of 
0.16 g N/100 g (R2 = 0.94) that was comparable with the chemical 
analysis error of 0.15 g N/100 g. Seed protein content was 
calculated by multiplying the NIRS-estimated N content by 
6.25. Dry-weight crude protein yield per unit area was computed 
on a plot basis by multiplying dry grain yield by grain protein 
content plot values.

Statistical Analysis of Phenotypic Data
The following analyses concerned grain crude protein content, 
grain yield, and crude protein yield per unit area of the lines 
belonging to the RIL populations. An analysis of variance 
(ANOVA) including the random factors genotype and block 
was performed for each RIL population in each environment 
to assess the significance of the within-population variation 
and its extent as genetic coefficient of variation computed as:

 CV S mg G= ( )´/ 100

where SG is the square root of the genotype component of 
variance ( SG2 ), and m is the trait mean value. Here and in 
the following analyses, variance components were estimated 
by a restricted maximum likelihood method. An ANOVA 
including the fixed factor environment and the random factors 
genotype and block within environment aimed to test the 
significance of environmental, genotypic, and GEI effects, using 
the same model to estimate variance components relative to 
genotype ( SG2 ) and GEI ( SGE2 ). A further ANOVA included 
the fixed factor environment and the random factors RIL 
population, genotype within RIL population, and block within 
environment, according to the following model:

 
Y m R G R E B E R E G R E ekijr k i k j r j k j i k j kijr= + + ( ) + + ( ) + + ( ) +
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where Ykijr is the observed response of the genotype i belonging 
to the RIL population k in the block r of the environment j, 
m is the grand mean, and Rk, Gi, Ej, and Br correspond to RIL 
population, genotype, environment and block effects, respectively. 
This ANOVA model aimed to test the significance of relevant 
effects and to estimate variance components relative to RIL 
population ( SR2 ), genotype within population ( SG R( )

2 ), RIL 
population × environment interaction ( SRE2 ), and genotype 
within population × environment interaction (SG R E( )

2 ). RIL 
populations were compared for mean trait value in each 
environment by an ANOVA including population as fixed factor 
and genotype within population and block as random factors. 
The extent of GEI across pairs of environments represented by 
(a) different growing seasons in the same environment (2013–2014 
and 2014–2015  in Lodi) or (b) different locations in the same 
cropping season (Lodi and Perugia in 2013–2014) was assessed 
in terms of genetic correlation for genotype response according 
to the formula (Basford et  al., 2004):

 r r H Hg = ( )/ 1 2

where r is the phenotypic correlation for genotype values across 
the relevant pairs of environments, and H1 and H2 are the 
square root of the broad-sense heritability (H2) calculated on 
a genotype mean basis in each environment from variance 
components for genotype ( SG2 ) and experimental error ( Se2 ) 
and n experiment replications as:

 H S S S nG G e
2 2 2 2= +( )/ / .

Broad-sense heritability values were also used to calculate 
best linear unbiased predictions (BLUP) values according to 
DeLacy et  al. (1996) that served as phenotypic data for GS 
and GWAS analyses. The genetic correlation between grain 
yield and grain protein content was estimated for each 
environment according to Piepho and Mohring (2011). 
We assessed the impact on protein yield of each of its component 
traits (grain yield and grain protein content) in each environment 
by Pearson’s phenotypic correlation.

An ANOVA limited to the parent cultivars and the reference 
cultivar Spacial that held genotype as fixed factor and block 
as random factor was performed for each environment to 
compare the four cultivars. An additional ANOVA including 
all genotypes (lines and cultivars) that held genotype and 
environment as fixed factors and block as random factor was 
carried out to assess the number of inbred lines that outyielded 
the control variety Spacial and the top-performing parent 
cultivar for the trait of greatest practical interest, namely protein 
yield per unit area.

All statistical analyses were carried out using SAS/STAT® 
or R studio software.

DNA Isolation, GBS Library Construction, 
and Sequencing
Information on DNA isolation and GBS can be  found in 
Annicchiarico et  al. (2017). Raw reads for library construction 
were demultiplexed using axe demultiplexer (Murray and Borevitz, 
2018). Trimming for restriction enzyme remnants, alignment on 

reference genome and SNP calling were performed using 
the dDocent pipeline (Puritz et  al., 2014), employing the 
Pisum sativum L. reference genome version 1a (Kreplak et  al., 
2019)1. The SNP calling procedure differed from that used in 
the earlier study for grain yield, where it relied on a mock genome 
(Annicchiarico et  al., 2019). The final genotype matrix, in the 
form of a vcf file, was filtered for quality using the vcftool software 
(Danecek et  al., 2011) with parameters –minQ 30 –max-non-
ref-af 1 –non-ref-af 0.001. The resulting data set was filtered for 
increasing levels of allowed missing values, excluding markers 
showing a missing rate across genotypes greater than a fixed 
threshold of 5, 10, 15, 20, and 30%. Markers that were monomorphic 
or with minor allele frequency < 5% were removed. After marker 
filtering, samples were also filtered for growing missing rate levels, 
represented by thresholds of 10, 25, and 50%. Following Nazzicari 
et  al. (2016), we  estimated missing data by Random Forest 
imputation through the R package MissForest (Stekhoven and 
Bühlmann, 2012) with the configuration ntree = 100, maxiter = 10, 
defining genotypes as categorical data (factors).

Genomic Regression Models and Data 
Configurations
We assessed the intra-population, inter-environment prediction 
scenario by performing model training on genotype values of 
90% of the lines averaged across two environments and validation 
on the remaining 10% of lines in the third environment with 
10 repetitions of this 10-fold stratified cross-validation scheme, 
using by turns all possible combinations of training and validation 
environments. Each training and validation set contained an 
equal proportion of lines from each of the three RIL populations. 
Predictive ability (computed as Pearson’s correlation between the 
observed phenotypic values and those predicted by GS) was 
assessed separately for each RIL population, to avoid bias due 
to different population means. Results were averaged across 
repetitions, sets of training environments and RIL populations. 
This analysis was initially exploited to define the optimal thresholds 
of missing data per marker (mpm) and missing data per sample 
(mps) by employing the Ridge regression BLUP (rrBLUP) model 
(Meuwissen et  al., 2001), which combined high computation 
ability with good prediction ability in early studies (Annicchiarico 
et  al., 2019, 2020). We  envisaged intra-population, inter-
environment predictions according to four possible GS models, 
namely, rrBLUP, Bayesian C, Bayesian A, and Bayesian Lasso 
(Meuwissen et  al., 2001; Park and Casella, 2008). The rrBLUP 
model assumes that marker effects have a common variance, 
which makes it more suitable for traits controlled by a large 
number of QTL with a small effect, whereas Bayesian models 
assume relatively few markers with large effects and allow, therefore, 
markers to have different effects and variances (Wang et  al., 
2018). Because of its good predictive ability, rrBLUP was selected 
for assessing inter-population, inter-environment predictions. In 
this case, model training was performed on data averaged across 
two environments of a single RIL population, assessing the 
predictive ability on data of each of the other two RIL populations 

1 https://urgi.versailles.inra.fr/download/pea/
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in the remaining environment. All populations and pairs of 
environments were used by turns for model training, averaging 
the results across training sets. Regression models, cross-validation, 
and predictive ability estimations were all computed through 
the R package GROAN (Nazzicari and Biscarini, 2017).

Comparison of Genomic vs. Phenotypic 
Selection
The correlation of phenotypic data in one (validation) environment 
with either phenotypic data averaged across the other two (selection) 
environments or GS-based breeding values obtained from GS 
model training based on the same data, averaging the results 
across all possible environment combinations and RIL populations, 
provided a preliminary assessment of phenotypic vs. genomic 
predictions. This comparison aimed to assess the possible loss 
(or gain) of predictive ability derived from GS modelling of 
phenotypic data relative to that of phenotypic data themselves. 
In this case, all the genotypes were used for GS model construction.

A comparison of GS vs. PS in terms of selection efficiency 
for future selection activities taking account of possible differences 
in selection cycle duration and selection costs was carried out 
for crude protein yield per unit area, considered as the trait of 
greatest practical interest. As in earlier analyses, GS hypothesized 
two training environments (as reasonable in the presence of 
sizeable GEI) and one validation environment with all 
environments acting by turns as training or validation, envisaging 
the two scenarios of intra-population, inter-environment prediction 
and inter-population, inter-environment prediction. Predictive 
ability (rab) values averaged across RIL populations and all possible 
sets of training environments were used to estimate GS model 
accuracy (rAc) values according to Lorenz et  al. (2011) as: 
rAc = rab/H, where H is the square root of the broad-sense heritability 
on a genotype mean basis in the validation environment estimated 
as described earlier. The mean value of rAc across RIL populations 
and validation cycles was imputed in the following formula for 
estimation of the expected genetic gain per selection cycle from 
GS (Heffner et  al., 2010):

 DGG G Ac Ai r s=

where iG = standardized selection differential for GS, and 
sA = standard deviation of breeding values. We  computed the 
expected genetic gain per year as:

 DG i r s tG G Ac A G' = ( ) /

where tG = duration in years of one GS cycle, which was set 
to 0.5 under the hypothesis of two possible selection cycles 
per year for GS (one off-season and one ordinary).

The expected genetic gain per year from PS is (Falconer, 1989):
 DG i H s tP P A P' = ( ) /

where iP = standardized selection differential for PS, tP = duration 
in years of one PS cycle, and H = square root of the broad-
sense heritability on a genotype mean basis across the experiments 
hypothesized for selection, and sA corresponding to previous 
notation. We  hypothesized two selection experiments, each 
with three replications, accommodated either at two sites in 
the same year (implying tP = 1) or in two years at the same 

or different sites (implying tP = 2). For each RIL population, 
we  estimated the broad-sense heritability on a genotype mean 
basis across each of the three possible pairs of selection 
environments through the formula:

 
H S S S e S e nG G GE e
2 2 2 2 2= + +( )/ / /

where SG2 , SGE2 and Se2  are the genotypic, GEI and pooled 
experiment error components of variance, respectively, and e 
and n are numbers of environments and experiment replications, 
respectively.

From the formulae above, a comparison of GS vs. PS in 
terms of predicted genetic gain per year for same overall costs 
equates to comparing (iG rAc/tG) vs. (iP H/tP), considering the 
impact on iG and iP values of different evaluation cost per 
genotype of GS and PS. These costs were estimated equal to 
€ 220 for both the outlined PS scenarios, while amounting 
to approximately € 60 for GS. The hypothetical availability of 
a fixed budget would imply the possibility to evaluate 3.7 
times more genotypes by GS relative to PS. For a large number 
of lines, the ratio of iG to iP would be  (2.309/1.755) = 1.316 
for a selected fraction of 2.7% for GS and 10% for PS, and 
(2.023/1.400) = 1.445 for selected fractions of 5.5% for GS and 
20% for PS (Falconer, 1989). We decided to adopt an intermediate 
ratio, namely, iG  = 1.381 iP .

Genome-Wide Association Study
For grain yield and protein content we  performed a GWAS 
using the R package statgenGWAS (Van Rossum and Kruijer, 
2020). The genotype matrix was used to compute a square 
kinship matrix (Astle and Balding, 2009), which was employed 
as covariance matrix in a Generalized Least Squares model 
to estimate the marker effects and the corresponding values 
of p. The first 10 components of a principal component 
analysis were included in the GWAS, to account for population 
structure. The visual inspection of quantile-quantile plots 
comparing the distribution of trait-marker association scores 
with a normal distribution expected in case of no significant 
association (Supplementary Figure  2) confirmed for both 
traits a convenient accounting of population structure. Together 
with the values of p, we computed the percentage of explained 
phenotypic variance for each marker (Shim et  al., 2015). 
We envisaged two methods to assess the statistical significance 
at p < 0.05 of trait-marker associations, namely: (a) the 
Bonferroni correction method, which is known to be  overly 
conservative (Storey and Tibshirani, 2003; Kaler and Purcell, 
2019); and (b) the False Discovery Rate (Benjamini and 
Hochberg, 1995), which can provide a more balanced control 
of the combination of Type I  and Type II error rates (Brzyski 
et al., 2017; Kaler and Purcell, 2019). When the False Discovery 
Rate threshold was undefined, we  investigated the 
top-performing markers under the caveat of weaker evidence. 
For significant markers, we  computed linkage disequilibrium 
(LD) in the form of allelic correlation R2. Pairs of markers 
showing an R2 larger than 0.8 were considered as belonging 
to the same genetic locus.
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TABLE 2 | Mean value and genetic coefficient of variation of three traits measured in three test environments on pea lines of three RIL populations derived from 
connected crosses (A × I, 102 lines; K × A, 100 lines; K × I, 104 lines).

Trait Environment Mean valuea   CVg (%)b

A × I K × A K × I Standard error 
of meansc

A × I K × A K × I

Yield (t/ha) Lodi 2013–14 5.99a 6.33a 6.54a 0.14 10.1 17.5 18.2
Lodi 2014–15 5.80a 2.52b 5.78a 0.18 28.0 51.3 33.0
Perugia 2013–14 2.61b 2.77b 3.31a 0.08 24.8 20.7 14.8

Protein content 
(%)

Lodi 2013–14 24.72b 25.55a 25.69a 0.10 3.7 3.9 3.3
Lodi 2014–15 23.23a,b 23.03b 23.37a 0.10 3.9 3.6 3.9
Perugia 2013–14 23.29b 24.82a 24.68a 0.11 3.9 4.5 3.4

Protein yield (t/
ha)

Lodi 2013–14 1.48b 1.62a 1.68a 0.03 11.1 18.0 18.5
Lodi 2014–15 1.34a 0.58b 1.35a 0.04 30.6 53.5 34.0
Perugia 2013–14 0.61c 0.69b 0.82a 0.02 25.6 21.8 14.3

aRow means followed by different letter differ at p < 0.05.
bCVg = 2

GS  /m, where m = trait mean value. Relevant variance different from zero at p < 0.01.
cError degrees of freedom: 303.

RESULTS

Phenotypic Variation, Genotype × 
Environment Interaction and Trait 
Interrelationships
Grain yield results given in Annicchiarico et  al. (2019) are 
reported again in this study as a reference and to highlight 
major differences between grain yield and protein content for 
phenotypic variation patterns or ability of genome-enabled 
models to predict phenotypic variation. On average, the 
organically-managed environment of Lodi 2013–2014 featured 
higher grain yield, grain protein content and protein yield per 
unit area than the conventionally-managed environment of 
Lodi 2014–2015 (Table  1), along with more favorable climatic 
conditions as provided by a milder and wetter winter 
(Supplementary Table  1). Perugia showed intermediate grain 
protein content, but lowest protein yield caused by definitely 
lower grain yield than the other environments (Table  1). Its 
grain yield response, which could not be related to unfavorable 
climatic conditions (Supplementary Table  1), was probably 
due to strong weed competition (Annicchiarico et  al., 2019).

The range of variation for mean values of the 306 inbred 
lines across environments was 21.7–26.6% for protein content, 
1.79–7.77 t/ha for grain yield, and 0.46–1.95 t/ha for protein 
yield. Various lines outperformed the parent cultivars with the 
highest trait value for grain yield or grain protein content (for 

which the top-performing line was Kaspa with 25.5% mean 
protein content: Supplementary Table  2). The set of inbred 
lines included highly valuable germplasm for protein yield not 
only with respect to the parent lines but also compared with 
the elite commercial variety Spacial. Indeed, six inbred lines 
outperformed Spacial, and nine outperformed the top-performing 
parent cultivar (Isard), based on mean comparisons at p < 0.05 
for protein yield over environments.

The differences among RIL populations for grain protein content 
in each environment were moderate and mostly not significant 
(Table  2). There were environment-specific differences among 
populations for protein yield that reflected those for grain yield, 
leading for example the population K × A to be  lower yielding 
than K × I for grain and protein yield in Perugia 2013–2014 and 
Lodi 2014–2015 while performing comparably in Lodi 2013–2014. 
The ANOVAs indicated the occurrence of differences in RIL 
population mean value for most traits and environments (Table 2), 
as well as RIL population × environment interaction for all traits 
(p < 0.01; Table  3). The trend of the RIL population K × I towards 
top-performing response for grain yield and protein content across 
environments (Table  2) agreed with the trend of its parental 
lines Kaspa and Isard towards greater grain yield than the third 
parent line (Attika) and with the greater protein content of Kaspa 
relative to the other parent lines (Supplementary Table  2).

Genetic coefficients of variation (CVg) reported in Table  2 
provided information on within-population genetic variability. 
Significant variation was found for all traits in each environment. 
CVg values were definitely smaller for grain protein content than 
for grain or protein yield, with the latter two traits displaying 
similar values for specific RIL population-environment combinations 
(Table  2). As reported in Annicchiarico et  al. (2019), the greater 
within-population variation for grain and protein yield observed 
in Lodi 2014–2015 was due to variation in winter survival, which 
was enhanced in this environment by lower winter temperatures 
relative to the other environments (Supplementary Table 1). The 
assessment of variance components for pooled genotypes of the 
RIL populations revealed over two-fold larger purely genetic effects 
( SG2 )  relative to GEI effects ( SGE2 ) for grain protein content, 

TABLE 1 | Trait mean value in three test environments of 306 pea inbred lines 
belonging to three connected RIL populations.

Trait Lodi 
2013-14a

Lodi 
2014-15b

Perugia 
2013-14a

Standard error 
of meansb

Yield (t/ha)c 6.31a 4.59b 2.90c 0.35
Protein content (%) 25.32a 23.22c 24.26b 0.15
Protein yield (t/ha) 1.60a 1.07b 0.70c 0.09

Row means followed by different letter differ  at p < 0.05. Error degrees of freedom for 
standard error: 6.
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in contrast with the over two-fold larger GEI effects relative 
to purely genetic effects that was observed for grain and protein 
yield (Table  3). The estimation of variance components by 
the ANOVA model including also the RIL population factor 
highlighted for all traits the occurrence of much greater within-
population than among-population genetic variation across 
environments, whereas GEI was somewhat more affected by 
RIL population × environment interaction than by genotype 
within population × environment interaction (Table 3). Genetic 
correlations for line values of grain and protein yield across 
environments indicated much lower correlation, hence much 
greater GEI, across cropping years in Lodi than across locations 
in 2013–2014 (Table  4), thereby confirming the greater extent 
of genotype × year interaction over genotype × location interaction 
in this target region. GEI patterns for line values of grain 
yield were thoroughly investigated in an earlier study 
(Annicchiarico et  al., 2019). Albeit statistically significant, GEI 
effects for grain protein content did not imply marked 
inconsistency of genotype responses across years or locations 
on the ground of the fairly high genetic correlation values 
(rg ≥ 0.73; Table  4). The joint effect of genotypic and GEI 
variation led to much greater broad-sense heritability on a 
genotype mean basis, averaged over environments and RIL 
populations, for grain protein content (H2 = 0.82) than for grain 
and protein yield (H2 = 0.52 and H2 = 0.54, respectively).

Grain yield and protein content exhibited a slightly positive 
genetic correlation in all environments, which reached p < 0.05 
significance only in Lodi 2014–2015 (Table  5). Line protein 
yield was overwhelmingly affected by grain yield, on the ground 
of phenotypic correlations of protein yield with its two component 
traits (Table  5).

Assessment of Genomic Selection Models 
and Intra- and Inter-population Genomic 
Predictions
Next generation sequencing produced, on average, 551,210 reads 
per sample. The number of polymorphic SNP markers was 
severely affected by the allowed mpm and mps values 
(Supplementary Table  3). The first GS scenario, represented by 
intra-population, inter-environment prediction, was employed to 
determine the most convenient model and model configuration 
to adopt for both prediction scenarios. Thresholds of mpm below 
0.05 always implied too few polymorphic markers (<500; 
Supplementary Table 3). Therefore, we tested models with mpm 
values in the range 0.05–0.30 combined with mps thresholds 
between 0.10 and 0.50, which produced a number of polymorphic 
SNPs ranging from 2,297 to 30,464 (Supplementary Table  3). 
Just slight differences in predictive ability were reported for the 
three traits for these combinations of mpm and mps, observing 
a consistent trend across environments towards lower GS predictive 
ability only for the combination of mps = 0.1 and mpm = 0.3 for 
grain protein content (Supplementary Figure  1). We  selected 
for subsequent analyses the thresholds mpm = 0.2 and mps = 0.25, 
which ensured a good compromise between model predictive 
ability and number of samples in the dataset 
(Supplementary Figure  1 and Supplementary Table  3).

The four GS models tended to perform very similarly for 
intra-population, inter-environment predictive ability of the 
target traits averaged across validation environments and RIL 
populations, albeit with a very slight overall advantage of 
rrBLUP, which was selected for subsequent analyses (Table  6). 
Mean predictive ability in this scenario (which assumed two 
environments for model construction) was moderately high 

TABLE 3 | Components of variance relative to genotype ( 2
GS ), genotype × environment interaction ( 2

GES ), RIL population ( 2
RS ), genotype within RIL population ( ( )

2
G RS ), 

RIL population × environment interaction ( 2
RES ), and genotype within RIL population × environment interaction ( ( )

2
G R E

S ) for three traits in three test environments of 306 
pea lines belonging to three connected RIL populations.

Trait

Analysis without RIL population factor Analysis with RIL population factor

2
GS 2

GES /2 2
G GES S 2

RS 2
G(R)S 2

RES 2
G(R)ES

Yield (t/ha) 0.575** 1.435** 0.401** 0.080** 0.520** 1.121** 0.693**

Protein content (%) 0.724** 0.302** 2.393** 0.131** 0.637** 0.199** 0.167**

Protein yield (t/ha) 0.036** 0.085** 0.422** 0.003** 0.034** 0.068** 0.040**

**Relevant variance different from zero at p < 0.01.

TABLE 4 | Significance of genotype × environment interaction (GEI p value) and genetic correlation for line values across pairs of test environments (rg) for traits of 306 
pea lines belonging to three connected RIL populations.

Genetic correlation Lodi 2013–14 vs. Lodi 2014–15 Lodi 2013–14 vs. Perugia 2013–14

Trait GEI p value rg GEI p value rg

Yield (t/ha) ** 0.35** ** 0.79**

Protein content (%) ** 0.73** ** 0.92**

Protein yield (t/ha) ** 0.34** ** 0.80**

**p value of GEI significant at p < 0.01, or rg different from zero at p < 0.01.
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TABLE 7 | Intra-population and inter-population inter-environment predictive ability for three pea traits obtained by Ridge regression BLUP modelling using two 
environments for model training and one for validation and, for inter-population predictions, one RIL population for model training aimed to predictions for the other 
populations.

Trait

Intra-population inter-environmenta Inter-population inter-environment

Validation environment RIL population used for training

Lodi 2013–14 Lodi 2014–15 Perugia 2013–14 Mean A × I K × A K × I Mean

Yield (t/ha) 0.39 0.45 0.36 0.40 0.08 0.28 0.27 0.21
Protein content (%) 0.60 0.45 0.53 0.53 0.27 0.21 0.32 0.27
Protein yield (t/ha) 0.40 0.46 0.36 0.41 0.08 0.25 0.27 0.20

Results relative to three RIL populations derived from connected crosses (A × I, 102 lines; K × A, 100 lines; K × I, 104 lines) averaged across all possible validation environments. 
aAveraged across results for each of three RIL populations based on a 10-fold stratified cross-validation scheme with 10 repetitions.

for protein content (r = 0.53), and moderate for grain and 
protein yield (r = 0.40 and r = 0.41, respectively; Table 6). Intra-
population, inter-environment predictions for the single 
validation environments did not differ markedly depending 
on the pair of GS model training environments (Table  7). 
They indicated somewhat greater difficulty of predicting grain 
and protein yield in Perugia by GS model training based on 
data of two cropping seasons in Lodi, as well as somewhat 
greater difficulty of predicting grain protein content in Lodi 
2014–2015 based on model training in the other two 
environments (Table  7).

Adopting inter-population instead of intra-population, inter-
environment predictions implied an average decrease of predictive 

ability around 50% for all traits (Table  7). Model training on 
A × I led to distinctly inferior predictions for grain and protein 
yield (Table  7). Inter-population predictions for grain protein 
content were not only higher on average, but also less affected 
by the choice of the RIL population for GS model training 
compared with those for the other two traits (Table  7).

Comparison of Genomic vs. Phenotypic 
Selection
Based on correlation results in Table  8, the ability of line 
phenotypic data averaged across two environments to predict 
line phenotypic data in a third environment was similar to 
that of GS-modeled data trained in two environments for 
prediction in a third environment. In particular, a modest 
advantage was displayed by phenotypic data for protein content 
and by GS-modeled data for grain and protein yield.

The predicted efficiency of GS relative to PS was heavily 
influenced by the GS prediction scenario (intra- or inter-
population inter-environment prediction) and by the assumed 
type and cycle duration of PS (selection performed in two 
locations during the same year, or in the same or a different 
location across 2 years). The predicted advantage of GS relative 
to PS was particularly high (over 4-fold efficiency) when 
assuming intra-population prediction and a two-year PS cycle, 
was about nil when assuming inter-population predictions and 
a one-year PS cycle, and was sizeable (over two-fold efficiency) 
in the other cases (Table  9).

Genome-Wide Association Study
The results of the GWAS performed on stratified data of the 
three RIL populations for grain yield and protein content are 
summarized by the Manhattan plots in Figure  1, which report 
the association scores of the SNP markers with the two traits 
along the pea genome. For both traits, the plots indicated 
many regions in the genome featuring a slight association 
pattern, as expected for complex polygenic traits. Trait-marker 
association inspection according to the False Discovery Rate 
threshold detected no SNP marker significantly associated with 
grain yield, and three markers placed on chromosome 2 
significantly associated with grain protein content (Figure  1; 
Supplementary Table  4). However, none of these markers 

TABLE 5 | Genetic correlation between grain yield (GY) and grain protein 
content (GPC), and phenotypic correlation between protein yield per unit area 
(PY) and its two component traits (GY and GPC), for 306 pea lines belonging to 
three connected RIL populations.

Environment Genetic 
correlation ± SE

Phenotypic correlation

GY - GPC PY - GY PY - GPC

Lodi 2013–14 0.12 ± 0.08NS 0.98** 0.30**
Lodi 2014–15 0.18 ± 0.07* 0.99** 0.24**
Perugia 2013–14 0.14 ± 0.08NS 0.99** 0.29**

*p < 0.01; **p < 0.05.
NSNot significant (p > 0.05).

TABLE 6 | Predictive ability for three traits of four genomic selection models in 
the intra-population, inter-environment scenario obtained by using two 
environments for model training and one for validation.

Modela Grain yield Protein content Protein yield

Ridge regression BLUP 0.403 0.529 0.406
Bayesian C 0.395 0.530 0.397
Bayesian A 0.394 0.531 0.396
Bayesian Lasso 0.398 0.524 0.397

Results averaged across three connected RIL populations and all possible validation 

environments. 
aValues of individual analyses averaged across results of a 10-fold stratified cross-
validation scheme with 10 repetitions, relative to a total number of 306 lines.
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achieved the Bonferroni correction threshold of significance 
(Figure  1). The three markers featuring a possible association 
with protein content displayed linkage disequilibrium ranging 
from 0.20 to 0.67, suggesting that the actual number of QTL 
they refer to may be less than three. The phenotypic variance 
that they explained ranged from 5.5 to 6.1% 
(Supplementary Table 4), which further confirmed the definite 
polygenic control of protein content. The genes of known 
function immediately proximal to these markers encode a 
glycosyl hydrolase of family 9 (Psat2g183720) and a cytochrome 
C signature protein (Psat2g187160).

DISCUSSION

This study, which adds to results for grain yield and other 
traits of pea genotypes in Italian environments by Annicchiarico 
et  al. (2019), showed that grain protein content is less 
challenging than grain yield for phenotypic or genome-enabled 
selection. This conclusion descends from lower influence of 
GEI (Tables 3 and 4), which simplifies PS and reduces the 
need for multi-environment phenotyping aimed at GS model 
training, and greater GS predictive ability of this trait relative 
to grain yield. Another encouraging result for pea protein 
content improvement was the absence of genetically-based 
trade-offs between this trait and grain yield. This result was 
highlighted by genetic correlations for separate test 
environments and was confirmed by different genomic regions 
controlling these traits in the GWAS. As anticipated, the 
absence of a negative relationship between these traits was 
suggested by some earlier studies (Cousin et  al., 1985; Klein 
et  al., 2020; Bărbieru, 2021), but not by others (Tar’an et  al., 
2004; Krajewski et al., 2012) based on phenotypic correlations, 
while no earlier assessment of genetic correlation is 
apparently available.

The range of phenotypic variation for grain protein content, 
close to 5%, was intermediate relative to values reported for 
inbred lines or cultivars in earlier studies (Cousin et  al., 
1985; Tar’an et  al., 2004; Burstin et  al., 2007; Jha et  al., 
2015). It was much lower than that in Ferrari et  al. (2016) 
for material belonging to the same genetic base analyzed in 
just one test environment, a difference that may partly 
be  explained by the GEI tendency to decrease the range of 
variation of line values averaged across environments (as in 
the current study) compared to line variation in individual 
environments. The current RIL populations, obtained by 
crosses between elite varieties selected on the ground of 
grain yield rather than protein content, are likely to 
be  representative of much material generated by ordinary 
pea breeding programs. This view is supported by the high 
agronomic value for grain and protein yield exhibited by 
several breeding lines relative to a locally-elite commercial 
cultivar such as Spacial. The occurrence of much greater 
genetic variation within RIL populations than among RIL 
populations for all target traits according to estimated variance 
components emphasized the practical importance of within-
population selection, as currently focused by GS predictions, 
to increase the probability to select genotypes featuring rare 
recombination events among several favorable alleles.

Pea protein yield per unit area, which seemingly is the 
main target trait for crop use as a high-protein feedstuff, was 
affected by grain yield to a much greater extent than by grain 
protein content. Accordingly, the results for protein yield 
paralleled those for grain yield with respect to genetic variation 
(both as CVg value and relative extent of inter- and intra-
population variation: Tables 2 and 3), GEI extent and pattern 
(Tables 3 and 4), and quality of genome-enabled predictions 
(Tables 6 and 7). The indication of greater size of genotype × year 
interaction compared with genotype × location interaction that 
emerged for these traits in the target region suffered from the 
limited number of test years and locations but agreed with 
grain yield results from two studies based on a larger sample 
of environments (Annicchiarico and Iannucci, 2008; Pecetti 
et  al., 2019). These reports highlighted the relationship of 
genotype × year interaction for grain yield with year-to-year 
variation for extent of low winter temperatures, a relationship 
that held true also for this data set, as reported in detail in 
Annicchiarico et  al. (2019). This GEI pattern justified the 
selection for wide adaptation across northern and central Italy 
that was devised for assessing PS or GS strategies for protein 
yield and the consideration, in this context, also of a two-year 

TABLE 8 | Correlation of phenotypic data or genomic selection (GS)-modelled 
data based on two test environments with data in a third (validation) environment, 
averaging results for all pairs test environments.

Trait Phenotypic data Data predicted by GS

Yield (t/ha) 0.46 0.48
Protein content (%) 0.75 0.70
Protein yield (t/ha) 0.49 0.51

Values averaged across results for each of three connected RIL populations and all 
possible validation environments.

TABLE 9 | Ratio of genomic selection (GS) to phenotypic selection (PS) efficiency for protein yield based on predicted genetic gains per unit time for similar evaluation 
costs assuming two environments for PS and for generation of phenotyping data for intra-population and inter-population GS scenarios.

Trait HC GSArAc GSA/PS efficiency ratio GSBrAc GSB/PS efficiency ratio

tP = 1 tP = 2 tP = 1 tP = 2

Protein yield (t/ha) 0.676 0.511 2.192 4.383 0.252 1.084 2.167

HC is the square root of the broad-sense heritability on a genotype mean basis; rAc is the GS predictive accuracy for intra-population (GSA) or inter-population (GSB) prediction scenarios; 
tP is the duration of one cycle of PS (one or two years). Efficiency ratios averaged across separate analyses for all possible validation environments and three connected RIL populations.
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selection scenario for PS beside a one-year scenario. The 
increasing year-to-year climatic variability occurring in the 
target region as a consequence of climate change is enhancing 
the importance of GEI variance components relative the 
interaction of genotype with year relative to the 
genotype × location variance component in another autumn-
sown rainfed crop such as durum wheat (Annicchiarico, 2020).

GS results were produced by the rrBLUP model, but its 
predictive ability advantage over three Bayesian models was 
negligible. Accordingly, only slight differences in predictive 
ability among most tested genomic prediction models were 
reported in earlier pea studies for grain yield or other traits 
(Burstin et  al., 2015; Annicchiarico et  al., 2017, 2019). The 
similar correlation with phenotypic data in an independent 
environment exhibited by GS-modelled data compared to the 
phenotypic data they were based upon (Table 8) was reported 
as well in previous studies on pea (Tayeh et  al., 2015; 
Annicchiarico et  al., 2019). This result suggests that the 
disadvantage of partly unaccounted genetic variation by GS 
models may be counterbalanced by the ability of these models 
to reduce the noise of phenotypic data.

A major finding of this study is the moderately high 
genome-enabled intra-population, inter-environment predictive 
ability for grain protein content (r = 0.53) and the moderate 
predictive ability for crop protein yield (r = 0.41). The higher 
predictive ability reported here for grain yield relative to 
Annicchiarico et  al. (2019) was mainly due to the greater 
number of environments employed in this study for GS 
model training (two vs. one), without ruling out the effect 
of the different SNP calling procedure adopted by this study 

(pea genome-based) relative to the earlier one (mock genome-
based). The greater inter-environment predictive ability of 
protein content relative to grain or protein yield can 
be  attributed to its higher heritability over environments as 
determined by greater variance of purely genetic effects relative 
to GEI effects. Two environments (albeit not necessarily in 
different years) for GS model training, which were deemed 
necessary because of the possibly large GEI for grain and 
protein yield, produced GS predictions not only moderately 
accurate, but also limitedly affected by the specific pair of 
environments adopted for GS model training. Greater predictive 
ability for the target traits may have arisen from greater 
number of test environments used for GS model training. 
While possibly underestimating the ability of GS modelling 
to predict trait variation, our assumption of two test 
environments for model training reflected the need for breeding 
programs to limit the investment in phenotyping work for 
a cost-efficient application of GS, also considering that other 
phenotyping work on different training sets may be  needed 
for GS model definition targeted to completely unrelated 
breeding populations.

The decrease of genome-enabled predictive ability passing 
from the intra-population to the inter-population scenario for 
inter-environment predictions approached 50% for all traits, but 
its value varied remarkably for grain and protein yield depending 
on the RIL population used for GS model training. The distinctly 
inferior ability of A × I when used as a training set to predict 
grain and protein yield of the other RIL populations agreed 
with previous results for grain yield under severe drought and 
for onset of flowering reported for the same materials in an 

A B

FIGURE 1 | Manhattan plots showing the association score of SNP markers with grain yield (A) and grain protein content (B) along pea chromosomes in a GWAS 
based on 306 lines belonging to three connected RIL populations. The dashed line represents the Bonferroni correction threshold, while the solid line represents 
False Discovery Rate threshold in (A), and the threshold employed to select significantly associated markers in (B).
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earlier study by Annicchiarico et  al. (2017) that showed, in 
addition, higher number of polymorphic markers shared by 
K × A and K × I than by each of them and A × I. The poor 
ability of A × I as a training set for inter-population prediction 
of production traits may largely be  due to the fact that A × I 
excluded the genome of the Australian cultivar, whose genetic 
dissimilarity from either European cultivar was definitely greater 
than that between the two European cultivars according to Nei’s 
(1972) genetic distance values reported in Annicchiarico et  al. 
(2019). Hence, wider genetic diversity of the founding parents 
possibly assessed by ad-hoc work prior to selection of RIL 
populations for GS model training may enhance the predictive 
ability of a RIL population for other populations having one 
common parent. Results for grain protein content (where the 
A × I had intermediate predictive ability for the other RIL 
populations) indicated, however, that this is not necessarily 
the case.

The GWAS aimed mainly at deepening our knowledge 
of the genetic control of pea grain yield and protein content. 
Incidentally, this analysis allowed for greater statistical power 
for linkage detection relative to ordinary genetic linkage 
mapping analysis performed separately for each of the three 
RIL populations, when comparing the two methods according 
to Wang and Xu (2019) on the basis of their respective 
genotype sample sizes and a proportion of phenotypic 
variation explained by each QTL in the range 1–10% (data 
not reported). The results of the GWAS confirmed the 
definite polygenic control of the two traits, thereby supporting 
the interest of developing GS models for both of them and/
or protein yield rather than focusing on the search of 
associated markers for MAS. Our detection of putative QTL 
for grain protein content on chromosome 2 agrees with 
earlier findings from various reports (Burstin et  al., 2007; 
Bourion et  al., 2010; Klein et  al., 2014; Gali et  al., 2018). 
In particular, Klein et  al. (2014) reported three QTL in the 
same region of chromosome 2 containing the loci detected 
in this study. The first associated region found on chromosome 
2 includes the gene Psat2g185440, identified as a candidate 
transcription factor for the control of seed vicilin content 
in pea (Le Signor et al., 2017), as well as the gene Psat2g185800 
showing high sequence similarity with three M. truncatula 
genes (Medtr5g009160, Medtr8g096880, Medtr5g009160) 
involved in the synthesis of symbiosome membrane 
components (Santi et  al., 2017).

This study provided an unprecedented comparison of GS 
vs. PS for protein yield improvement in pea. Its results, 
based on predicted gains per unit time and similar evaluation 
costs, indicated an advantage of GS when model training 
included the target RIL population over all PS scenarios, as 
well as an advantage of GS when model training was based 
on a RIL population sharing one parent with the target 
population and PS stretched over two cropping years. Efficiency 
ratios of GS vs. PS were affected by our estimates of selection 
costs per trait and/or genotype, which were somewhat higher 
for GS than those in Annicchiarico et  al. (2019). However, 
our results are encouraging for GS, particularly when GS 
model training includes material of the RIL population targeted 

by selection and GS is envisaged as an alternative to multi-
year PS. GS model training using a two-year data set can 
be  recommended for Italy because of the GEI size across 
years for grain yield. A crucial confirmation of the advantage 
of GS over PS for pea protein yield improvement will 
be provided by future research work comparing these selection 
strategies in terms of actual yield gains.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and 
accession number(s) can be  found at: https://www.ncbi.nlm.
nih.gov/, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA727737/.

AUTHOR CONTRIBUTIONS

MC was responsible for the analysis of phenotyping data, wrote 
the paper, and contributed to the analysis of genotyping data. 
NN was responsible for the analysis of genotyping data. BF 
was responsible for DNA sampling and collection of protein 
content data. LP, LR, and MR were responsible for field trials 
and collection of grain yield data. GC developed NIRS predictions. 
DC contributed to the analysis of phenotyping data. AM supervised 
the work by MC, which was part of a Ph.D. thesis. PA was 
responsible for funding acquisition, devised the research work, 
and supervised the manuscript drafting. All authors contributed 
to the article and approved the submitted version.

FUNDING

This research was performed within the project “Genomic 
selection for yield, drought tolerance and protein content of 
grain and forage legumes (GENLEG)” funded by the Italian 
Ministry of Agricultural, Food and Forestry Policies (MiPAAF). 
Field experiments were performed within the project 
“Coordinating Organic Plant Breeding Activities for Diversity 
(COBRA)” also funded by MiPAAF.

ACKNOWLEDGMENTS

We are grateful to E. C. Brummer and Y. Wei for their 
contribution to generation of GBS data, P. Marino Gallina for 
contributing to chemical analyses of protein content, and 
S. Proietti, A. Passerini, P. Gaudenzi, F. Vecchietti and S. Vergoni 
for technical assistance.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpls.2021.718713/
full#supplementary-material

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA727737/
https://www.frontiersin.org/articles/10.3389/fpls.2021.718713/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2021.718713/full#supplementary-material


Crosta et al. Pea Grain Protein Content Improvement

Frontiers in Plant Science | www.frontiersin.org 12 January 2022 | Volume 12 | Article 718713

 

REFERENCES

Annicchiarico, P. (2005). Scelta varietale in pisello e favino rispetto all’ambiente 
e all’utilizzo. Inf. Agrar. 61, 47–52.

Annicchiarico, P. (2008). Adaptation of cool-season grain legume species across 
climatically-contrasting environments of southern Europe. Agron. J. 100, 
1647–1654. doi: 10.2134/agronj2008.0085

Annicchiarico, P. (2017). Feed legumes for truly sustainable crop animal systems. 
Ital. J. Agron. 12, 151–160. doi: 10.4081/ija.2017.880

Annicchiarico, P. (2020). “Advances in the definition of adaptation strategies 
and yield-stability targets in breeding programmes,” in Quantitative Genetics, 
Genomics and Plant Breeding. ed. M. S. Kang. 2nd ed (CAB International: 
Wallingford), 194–209.

Annicchiarico, P., and Iannucci, A. (2008). Adaptation strategy, germplasm type 
and adaptive traits for field pea improvement in Italy based on variety 
responses across climatically contrasting environments. Field Crop Res. 108, 
133–142. doi: 10.1016/j.fcr.2008.04.004

Annicchiarico, P., Nazzicari, N., Laouar, M., Thami-Alami, I., Romani, M., and 
Pecetti, L. (2020). Development and proof-of-concept application of genome-
enabled selection for pea grain yield under severe terminal drought. Int. J. 
Mol. Sci. 21, 2414. doi: 10.3390/ijms21072414

Annicchiarico, P., Nazzicari, N., Pecetti, L., Romani, M., Ferrari, B., Wei, Y., 
et al. (2017). GBS-based genomic selection for pea grain yield under severe 
terminal drought. Plant Genome 10, 2. doi: 10.3835/plantgenome2016.07.0072

Annicchiarico, P., Nazzicari, N., Pecetti, L., Romani, M., and Russi, L. (2019). 
Pea genomic selection for Italian environments. BMC Genomics 20, 603. 
doi: 10.1186/s12864-019-5920-x

Astle, W., and Balding, D. J. (2009). Population structure and cryptic relatedness 
in genetic association studies. Stat. Sci. 24, 451–471. doi: 10.1214/09-STS307

Bărbieru, A. (2021). Correlations between yield and several traits in a set of 
winter pea cultivars. Rom. Agric. Res. 38, 2021–2045.

Basford, K. E., Federer, W. T., and DeLacy, I. H. (2004). Mixed model formulation 
for multi-environment trials. Agron. J. 96, 143–147. doi: 10.2134/
agronj2004.1430

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: 
a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 
Met. 57, 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Bernardo, R., and Yu, J. (2007). Prospects for genome-wide selection for 
quantitative traits in maize. Crop Sci. 47, 1082–1090. doi: 10.2135/
cropsci2006.11.0690

Billen, G., Lassaletta, L., and Garnier, J. (2014). A biogeochemical view of the 
global agro-food system: nitrogen flows associated with protein production, 
consumption and trade. Glob. Food Secur. 3, 209–219. doi: 10.1016/j.
gfs.2014.08.003

Blixt, S. (1978). Problems relating to pea-breeding [Pisum]. Agr. Hortique Genet. 
36, 56–87.

Bourion, V., Rizvi, S. M. H., Fournier, S., de Larambergue, H., Galmiche, F., 
Marget, P., et al. (2010). Genetic dissection of nitrogen nutrition in pea 
through a QTL approach of root, nodule, and shoot variability. Theor. Appl. 
Genet. 121, 71–86. doi: 10.1007/s00122-010-1292-y

Brzyski, D., Peterson, C. B., Sobczyk, P., Candès, E. J., Bogdan, M., and Sabatti, C. 
(2017). Controlling the rate of GWAS false discoveries. Genetics 205, 61–75. 
doi: 10.1534/genetics.116.193987

Burstin, J., Marget, P., Huart, M., Moessner, A., Mangin, B., Duchene, C., et al. 
(2007). Developmental genes have pleiotropic effects on plant morphology 
and source capacity, eventually impacting on grain protein content and 
productivity in pea. Plant Physiol. 144, 768–781. doi: 10.1104/pp.107.096966

Burstin, J., Salloignon, P., Chabert-Martinello, M., Magnin-Robert, J.-B., Siol, M., 
Jacquin, F., et al. (2015). Genetic diversity and trait genomic prediction in 
a pea diversity panel. BMC Genomics 16:105. doi: 10.1186/s12864-015-1266-1

Carrouée, B., Crépon, K., and Peyronnet, C. (2003). Les protéagineux: intéret 
dans les systèmes de production fourragers francais et européens. Fourrages 
174, 163–182.

Cousin, R., Messager, A., and Vingère, A. (1985). “Breeding for yield in combining 
peas,” in The Pea Crop. eds. P. D. Hebblethwaite, M. C. Heath and T. C. 
K. Dawkins (London: Butterworths), 115–129.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., 
et al. (2011). 1000 genomes project analysis group. The variant call format 

and VCFtools. Bioinformatics 27, 2156–2158. doi: 10.1093/bioinformatics/
btr330

DeLacy, I. H., Basford, K. E., Cooper, M., Bull, I. K., and McLaren, C. G. 
(1996). “Analysis of multi-environment trials – An historical perspective,” 
in Plant Adaptation and Crop Improvement. eds. M. Cooper and G. L. 
Hammer (Wallingford, UK: CAB International), 39–124.

Duc, G., Agrama, H., Bao, S., Berger, J., Bourion, V., De Ron, A. M., et al. 
(2015). Breeding annual grain legumes for sustainable agriculture: new 
methods to approach complex traits and target new cultivar ideotypes. Crit. 
Rev. Plant Sci. 34, 381–411. doi: 10.1080/07352689.2014.898469

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., 
et al. (2011). A robust, simple genotyping-by-sequencing (GBS) approach 
for high diversity species. PLoS One 6:e19379. doi: 10.1371/journal.
pone.0019379

Falconer, D. S. (1989). Introduction to Quantitative Genetics. Harlow: Longman.
Ferrari, B., Romani, M., Aubert, G., Boucherot, K., Burstin, J., Pecetti, L., et al. 

(2016). Association of SNP markers with agronomic and quality traits of 
field pea in Italy. Czech J. Genet. Plant 52, 83–93. doi: 10.17221/22/2016-CJGPB

Foyer, C. H., Lam, H.-M., Nguyen, H. T., Siddique, K. H. M., Varshney, R. K., 
Colmer, T. D., et al. (2016). Neglecting legumes has compromised human 
health and sustainable food production. Nat. Plants 2:16112. doi: 10.1038/
nplants.2016.112

Gali, K. K., Liu, Y., Sindhu, A., Diapari, M., Shunmugam, A. S., Arganosa, G., 
et al. (2018). Construction of high-density linkage maps for mapping 
quantitative trait loci for multiple traits in field pea (Pisum sativum L.). 
BMC Plant Biol. 18:172. doi: 10.1186/s12870-018-1368-4

Gali, K. K., Sackville, A., Tafesse, E. G., Lachagari, V. B., McPhee, K., Hybl, M., 
et al. (2019). Genome-wide association mapping for agronomic and seed 
quality traits of field pea (Pisum sativum L.). Front. Plant Sci. 10:1538. doi: 
10.3389/fpls.2019.01538

Heffner, E. L., Lorenz, A. J., Jannink, J. L., and Sorrells, M. E. (2010). Plant 
breeding with genomic selection: gain per unit time and cost. Crop Sci. 
50, 1681–1690. doi: 10.2135/cropsci2009.11.0662

Iglesias-García, R., Prats, E., Flores, F., Amri, M., Mikić, A., and Rubiales, D. 
(2017). Assessment of field pea (Pisum sativum L.) grain yield, aerial biomass 
and flowering date stability in Mediterranean environments. Crop Pasture 
Sci. 68, 915–923. doi: 10.1071/CP16423

Irzykowska, L., and Wolko, B. (2004). Interval mapping of QTLs controlling 
yield-related traits and grain protein content in Pisum sativum. J. Appl. 
Genet. 45, 297–306.

Jha, A. B., Tar’an, B., Diapari, M., and Warkentin, T. D. (2015). SNP variation 
within genes associated with amylose, total starch and crude protein concentration 
in field pea. Euphytica 206, 459–471. doi: 10.1007/s10681-015-1510-4

Kaler, A. S., and Purcell, L. C. (2019). Estimation of a significance threshold 
for genome-wide association studies. BMC Genomics 20, 618. doi: 10.1186/
s12864-019-5992-7

Klein, A., Houtin, H., Rond, C., Marget, P., Jacquin, F., Boucherot, K., et al. (2014). 
QTLs analysis of frost damage in pea suggests different mechanisms involved 
in frost tolerance. Theor. Appl. Genet. 127, 1319–1330. doi: 10.1007/
s00122-014-2299-6

Klein, A., Houtin, H., Rond-Coissieux, C., Naudet-Huart, M., Touratier, M., 
Marget, P., et al. (2020). Meta-analysis of QTL reveals the genetic control 
of yield-related traits and seed protein content in pea. Sci. Rep. 127, 1319–1330. 
doi: 10.1007/s00122-014-2299-6

Krajewski, P., Bocianowski, J., Gawłowska, M., Kaczmarek, Z., Pniewski, T., 
Święcicki, W., et al. (2012). QTLS for yield components and protein content: 
a multienvironment study of two pea (Pisum sativum L.) populations. 
Euphytica 183, 323–336. doi: 10.1007/s10681-011-0472-4

Kreplak, J., Madoui, M. A., Cápal, P., Novák, P., Labadie, K., Aubert, G., et al. 
(2019). A reference genome for pea provides insight into legume genome 
evolution. Nat. Genet. 51, 1411–1422. doi: 10.1038/s41588-019-0480-1

Le Signor, C., Aimé, D., Bordat, A., Belghazi, M., Labas, V., Gouzy, J., et al. 
(2017). Genome-wide association studies with proteomics data reveal genes 
important for synthesis, transport and packaging of globulins in legume 
seeds. New Phytol. 214, 1597–1613. doi: 10.1111/nph.14500

Lorenz, A. J., Chao, S., Asoro, F. G., Heffner, E. L., Hayashi, T., Iwata, H., 
et al. (2011). Genomic selection in plant breeding. Knowledge and prospects. 
Adv. Agron. 110, 77–123. doi: 10.1016/B978-0-12-385531-2.00002-5

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.2134/agronj2008.0085
https://doi.org/10.4081/ija.2017.880
https://doi.org/10.1016/j.fcr.2008.04.004
https://doi.org/10.3390/ijms21072414
https://doi.org/10.3835/plantgenome2016.07.0072
https://doi.org/10.1186/s12864-019-5920-x
https://doi.org/10.1214/09-STS307
https://doi.org/10.2134/agronj2004.1430
https://doi.org/10.2134/agronj2004.1430
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.1016/j.gfs.2014.08.003
https://doi.org/10.1016/j.gfs.2014.08.003
https://doi.org/10.1007/s00122-010-1292-y
https://doi.org/10.1534/genetics.116.193987
https://doi.org/10.1104/pp.107.096966
https://doi.org/10.1186/s12864-015-1266-1
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1080/07352689.2014.898469
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.17221/22/2016-CJGPB
https://doi.org/10.1038/nplants.2016.112
https://doi.org/10.1038/nplants.2016.112
https://doi.org/10.1186/s12870-018-1368-4
https://doi.org/10.3389/fpls.2019.01538
https://doi.org/10.2135/cropsci2009.11.0662
https://doi.org/10.1071/CP16423
https://doi.org/10.1007/s10681-015-1510-4
https://doi.org/10.1186/s12864-019-5992-7
https://doi.org/10.1186/s12864-019-5992-7
https://doi.org/10.1007/s00122-014-2299-6
https://doi.org/10.1007/s00122-014-2299-6
https://doi.org/10.1007/s00122-014-2299-6
https://doi.org/10.1007/s10681-011-0472-4
https://doi.org/10.1038/s41588-019-0480-1
https://doi.org/10.1111/nph.14500
https://doi.org/10.1016/B978-0-12-385531-2.00002-5


Crosta et al. Pea Grain Protein Content Improvement

Frontiers in Plant Science | www.frontiersin.org 13 January 2022 | Volume 12 | Article 718713

Matthews, P., and Arthur, E. (1985). “Genetic and environmental components 
of variation in protein content of peas,” in The Pea Crop. eds. P. D. 
Hebblethwaite, M. C. Heath and T. C. K. Dawkins (London: Butterworths), 
369–381. doi: 10.1016/C2013-0-03974-6

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of 
total genetic value using genome-wide dense marker maps. Genetics 157, 
1819–1829. doi: 10.1093/genetics/157.4.1819

Murray, K. D., and Borevitz, J. O. (2018). Axe: rapid, competitive sequence 
read demultiplexing using a trie. Bioinformatics 34, 3924–3925. doi: 10.1093/
bioinformatics/bty432

Nazzicari, N., and Biscarini, F. (2017). GROAN: Genomic regression workbench 
(version 1.0.0). Available at: https://cran.r-project.org/package=GROAN. 
(Accessed April 16, 2021).

Nazzicari, N., Biscarini, F., Cozzi, P., Brummer, E. C., and Annicchiarico, P. 
(2016). Marker imputation efficiency for genotyping-by-sequencing data in 
rice (Oryza sativa) and alfalfa (Medicago sativa). Mol. Breeding 36:69. doi: 
10.1007/s11032-016-0490-y

Nei, M. (1972). Genetic distances between populations. Am. Nat. 106, 283–292. 
doi: 10.1086/282771

Nemecek, T., Von Richthofen, J. S., Dubois, G., Casta, P., Charles, R., and 
Pahl, H. (2008). Environmental impact of introducing grain legumes into 
European crop rotations. Eur. J. Agron. 28, 380–393. doi: 10.1016/j.
eja.2007.11.004

Park, T., and Casella, G. (2008). The Bayesian lasso. J. Am. Stat. Assoc. 103, 
681–686. doi: 10.1198/016214508000000337

Pecetti, L., Marcotrigiano, A. R., Russi, L., Romani, M., and Annicchiarico, P. 
(2019). Adaptation of field pea varieties to organic farming across different 
environments of Italy. Crop Pasture Sci. 70, 327–333. doi: 10.1071/CP18216

Piepho, H. P., and Mohring, J. (2011). On estimation of genotypic correlations 
and their standard errors by multivariate REML using the MIXED procedure 
of the SAS system. Crop Sci. 51, 2449–2454. doi: 10.2135/cropsci2011.02.0088

Pilorgé, E., and Muel, F. (2016). What vegetable oils and proteins for 2030? 
Would the protein fraction be  the future of oil and protein crops? OCL 
23:D402. doi: 10.1051/ocl/2016030

Puritz, J. B., Hollenbeck, C. M., and Gold, J. R. (2014). dDocent: a RADseq, 
variant-calling pipeline designed for population genomics of non-model 
organisms. PeerJ 2:e431. doi: 10.7717/peerj.431

Santi, C., Molesini, B., Guzzo, F., Pii, Y., Vitulo, N., and Pandolfini, T. (2017). 
Genome-wide transcriptional changes and lipid profile modifications induced 
by Medicago truncatula N5 overexpression at an early stage of the symbiotic 
interaction with Sinorhizobium meliloti. Genes 8:396. doi: 10.3390/genes8120396

Schreuder, R., and De Visser, C. (2014). Report EIP-AGRI Focus Group on 
Protein Crops. European Commission Brussel.

Shim, H., Chasman, D. I., Smith, J. D., Mora, S., Ridker, P. M., Nickerson, D. A., 
et al. (2015). A multivariate genome-wide association analysis of 10 LDL 

subfractions, and their response to statin treatment, in 1868 Caucasians. 
PLoS One 10:e0120758. doi: 10.1371/journal.pone.0120758

Stekhoven, D. J., and Bühlmann, P. (2012). MissForest—non-parametric missing 
value imputation for mixed-type data. Bioinformatics 28, 112–118. doi: 
10.1093/bioinformatics/btr597

Storey, J. D., and Tibshirani, R. (2003). Statistical significance for genomewide 
studies. Proc. Natl. Acad. Sci. U. S. A. 100, 9440–9445. doi: 10.1073/pnas.1530509100

Tar’an, B., Warkentin, T., Somers, D. J., Miranda, D., Vanderberg, A., Blade, S., 
et al. (2004). Identification of quantitative trait loci for grain yield, grain 
protein content and maturity in field pea (Pisum sativum L.). Euphytica 
136, 297–306. doi: 10.1023/B:EUPH.0000032721.03075.a0

Tayeh, N., Klein, A., Le Paslier, M.-C., Jacquin, F., Houtin, H., Rond, C., et al. 
(2015). Genomic prediction in pea: effect of marker density and training 
population size and composition on prediction accuracy. Front. Plant Sci. 
6:941. doi: 10.3389/fpls.2015.00941

Tzitzikas, E. N., Vincken, J. P., de Groot, J., Gruppen, H., and Visser, R. G. 
F. (2006). Genetic variation in pea seed globulin composition. J. Agr. Food 
Chem. 54, 425–433. doi: 10.1021/jf0519008

Van Rossum, B. J., and Kruijer, W. (2020). statgenGWAS: Genome Wide 
Association Studies (R package version 1.0.5). Available at: https://CRAN.R-
project.org/package=statgenGWAS (Accessed April 16, 2021).

Wang, M., and Xu, S. (2019). Statistical power in genome-wide association 
studies and quantitative trait locus mapping. Heredity 123, 287–306. doi: 
10.1038/s41437-019-0205-3

Wang, X., Xu, Y., Hu, Z., and Xu, C. (2018). Genomic selection methods for 
crop improvement: current status and prospects. Crop J. 6, 330–340. doi: 
10.1016/j.cj.2018.03.001

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2022 Crosta, Nazzicari, Ferrari, Pecetti, Russi, Romani, Cabassi, Cavalli, 
Marocco and Annicchiarico. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License (CC BY). The use, distribution 
or reproduction in other forums is permitted, provided the original author(s) and 
the copyright owner(s) are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1016/C2013-0-03974-6
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/bioinformatics/bty432
https://doi.org/10.1093/bioinformatics/bty432
https://cran.r-project.org/package=GROAN
https://doi.org/10.1007/s11032-016-0490-y
https://doi.org/10.1086/282771
https://doi.org/10.1016/j.eja.2007.11.004
https://doi.org/10.1016/j.eja.2007.11.004
https://doi.org/10.1198/016214508000000337
https://doi.org/10.1071/CP18216
https://doi.org/10.2135/cropsci2011.02.0088
https://doi.org/10.1051/ocl/2016030
https://doi.org/10.7717/peerj.431
https://doi.org/10.3390/genes8120396
https://doi.org/10.1371/journal.pone.0120758
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1023/B:EUPH.0000032721.03075.a0
https://doi.org/10.3389/fpls.2015.00941
https://doi.org/10.1021/jf0519008
https://CRAN.R-project.org/package=statgenGWAS
https://CRAN.R-project.org/package=statgenGWAS
https://doi.org/10.1038/s41437-019-0205-3
https://doi.org/10.1016/j.cj.2018.03.001
http://creativecommons.org/licenses/by/4.0/

	Pea Grain Protein Content Across Italian Environments: Genetic Relationship With Grain Yield, and Opportunities for Genome-Enabled Selection for Protein Yield
	Introduction
	Materials and Methods
	Plant Material
	Phenotyping
	Statistical Analysis of Phenotypic Data
	DNA Isolation, GBS Library Construction, and Sequencing
	Genomic Regression Models and Data Configurations
	Comparison of Genomic vs. Phenotypic Selection
	Genome-Wide Association Study

	Results
	Phenotypic Variation, Genotype × Environment Interaction and Trait Interrelationships
	Assessment of Genomic Selection Models and Intra- and Inter-population Genomic Predictions
	Comparison of Genomic vs. Phenotypic Selection
	Genome-Wide Association Study

	Discussion
	Data Availability Statement
	Author Contributions

	References

