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Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to

measure the grain quality of different cereals. However, the feasibility for determining

the critical biochemicals, related to the classifications for food, feed, and fuel products

are not adequately investigated. Fourier-transform (FT) NIR was applied in this study to

determine the eight biochemicals in four types of sorghum samples: hulled grain flours,

hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum

grains were selected from the two locations in China. Followed by FT-NIR spectral

and wet-chemically measured biochemical data, partial least squares regression (PLSR)

was used to construct the prediction models. The results showed that sorghum grain

morphology and sample format affected the prediction of biochemicals. Using NIR data

of grain flours generally improved the prediction compared with the use of NIR data

of whole grains. In addition, using the spectra of whole grains enabled comparable

predictions, which are recommended when a non-destructive and rapid analysis is

required. Compared with the hulled grain flours, hull-less grain flours allowed for improved

predictions for tannin, cellulose, and hemicellulose using NIR data. This study aimed to

provide a reference for the evaluation of sorghum grain biochemicals for food, feed, and

fuel without destruction and complex chemical analysis.

Keywords: FT-NIR, sorghum grains, biochemical composition, food, feed, fuel, PLSR

INTRODUCTION

Sorghum (Sorghum bicolor L.) is the fifth most commanding cereal crop in the world and
its grain production has reached up to 57.50 million tons in 2020 (de Morais Cardoso
et al., 2017; Food and Agriculture Organization of the United Nations, 2020; Stamenković
et al., 2020). Sorghum grain is known for its nutritional quality and there is a worldwide
growing market of sorghum grain for use as human food and consumed in the preparation
of many foods (Ratnavathi and Patil, 2014; Bader Ul Ain et al., 2019; Sihono et al., 2019;
Palacios et al., 2021). It is an excellent feed for animals and its feeding value is generally
considered more than 95% of the feeding value of yellow dent maize (Waniska et al., 2016). In
addition, it is a unique energy crop that can be used through numerous production routes—for
instance, converting starch into ethanol, lignocelluloses into bio-oil, biochar, and biohydrogen,
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and fat into biodiesel (Mirfakhar et al., 2020; Stamenković et al.,
2020). Sorghum cultivars can be classified into four classes:
sorghum, white sorghum, tannin sorghum, and mixed sorghum
according to the US Grain Standards (Waniska et al., 2016). The
grains from different cultivars differ in the presence or absence
of thick outer-covering/pericarp called hulled or hull-less grains
(Waniska and Rooney, 2000; Guindo et al., 2016). Sorghum for
food must have lower fat but higher starch and protein for good
digestibility, whereas for feed, it must have higher protein content
but lower concentrations of tannin and insoluble dietary fibers
especially hemicellulose (Waniska et al., 2016). The insoluble
dietary fibers are desirable by many biofuel industries due to its
property of making a low viscous solution (Fuller et al., 2016;
Qiu et al., 2017; Stamenković et al., 2020). Therefore, a precise
classification of sorghum grains requires the determination of
various chemical components.

Sorghum grain hulls comprise of condensed tannins that
have cross-linkages with starch, protein, and lignocellulosic
components (Evers and Millar, 2002; Siwela et al., 2007; Barros
et al., 2012; Gyori, 2017). Cellulose, hemicellulose, and lignin are
important soluble and insoluble dietary fibers that have complex
structural polymerization and are difficult to be determined
directly. Unlike other cereal grains, cellulose, hemicellulose, and
lignin in sorghum grains are washed out with other sugars
during their extraction process (Jin et al., 2017; Li et al., 2017;
Krasznai et al., 2018). To cope with this problem, acid hydrolysis
has to be done several times, which, however, is not desirable
due to specialized laboratory facilities (Ricardo Soccol et al.,
2011; Heredia-Olea et al., 2012). In addition, these wet-chemical
methods are strenuous, time consuming, and expensive for large
samples, making it infeasible for real-time sorting of grains
(Orman and Schumann, 1991; Guindo et al., 2016; Yang et al.,
2016; Caporaso et al., 2018; Srivastava et al., 2018). Therefore,
inexpensive and immediate quantification methods are needed
to sort out sorghum grains for food, feed, and fuel.

Near-infrared (NIR) spectroscopy is a non-destructive, rapid,
and low-cost method to estimate the biochemicals of cereal grains
and differentiate them based on their chemical composition
(Font et al., 2006; Hell et al., 2016; Caporaso et al., 2018). It
is a feasible alternative to the time-inefficient and resource-
intensive conventional methods of analysis, such as the Kjeldahl
or high-performance liquid chromatography (HPLC) (Beć et al.,
2021). A recent trend is to miniaturize NIR instruments that
reduce the weight and cost (Wiedemair et al., 2019). However,
Benchtop Fourier-Transform (FT) NIRS operates over the entire
wavelength region with a high spectral resolution, and a good
signal-to-noise ratio for yielding fast and accurate measurements
(Beć et al., 2021). The NIR-based prediction models have been
developed to estimate the chemical composition in grains of
various crops (Pohl and Senn, 2011; Ferreira et al., 2015; Li
et al., 2015; Kamboj et al., 2017). Previously reported NIR model
calibrations using the whole grain spectra produce different
results from using flour spectra and had moderate accuracy
(De Alencar Figueiredo et al., 2006). Improved predictions
are achievable by using the spectra of whole grains, when
compared with the use of spectra collected from the flour samples
(Beloshapka et al., 2016; Hu et al., 2021). It is also reported that

the influence of grain hulls on the prediction of grain chemical
content varies for different cultivars, and that milled grain
flours might improve the prediction for grain chemical content
(Wiedemair et al., 2019). However, due to the variation of hulls
presence or absence in sorghum grains, the influence of hulls
on the spectroscopic determination of cellulose, hemicellulose,
lignin, and other components in sorghum grains is still unclear.
The previous studies on how to effectively estimate chemical
composition in different sorghum grain types are insufficient.

Thus, the objectives of this research were: (1) to evaluate the
feasibility of using FT-NIR spectroscopy to determine a variety
of chemical components, especially cellulose, hemicellulose, and
lignin in sorghum grains; and (2) to evaluate the influence of four
sample types (whole grains, flours, hulled grain flours, and hull-
less grain flours) on the prediction of chemical components to
improve the grain sorting efficiency for human food, animal feed,
and biofuel.

MATERIALS AND METHODS

Sampling and Measurements
A total of 20 hybrids of sorghum were grown at the experimental
stations of China Agricultural University in Zhuozhou (Hebei
province) and Jiexiu (Shanxi province), China, in 2017. In total
98 samples were collected from both the experimental stations
(Supplementary Table 1). All the samples were first oven-dried
at 45◦C for 10 days to constant weight and then scanned as whole
grains to acquire absorbance spectra using Thermo Antaris II FT-
NIR spectrometer (Thermo Scientific Inc., Madison, WI, USA).
Subsequently, the sorghum grain samples were milled to flours
using a grinder, sifted through a 40–80 mesh screen, and scanned
again as hulled or hull-less grain flours. The flours were stored at
4◦C for chemical analysis. Starch, protein, fat, tannin, cellulose,
hemicellulose, lignin, and ash contents were determined using
these flour samples (Table 1).

Determination of Chemical Components
and Sample Classification
Starch content in sorghum grains was determined by the
Anthrone colorimetric method and assayed using a UV-visible
(UV-VIS) spectrometer (TU-1901, Beijing Purkinje Instruments
Co., Ltd., Beijing, China) (Li et al., 2014). Crude protein was
determined by Kjeldahl method through the measurement of
total nitrogen. The content of crude fat was determined by
ether extraction (Padmore, 1990). Tannin was extracted with
dimethyl amide solution and tannic acid was used as a standard
to determine the content of sorghum grain tannin (ISO, 1988).
Cellulose, hemicellulose, and lignin were determined according
to themodifiedNational Renewable Energy Laboratory standards
(NREL/TP-510-42618, Revised August 2012). Acid hydrolysis
was done using the sulfuric acid (H2SO4). Acid insoluble lignin
in the acid hydrolysis solution was determined to calculate the
content of cellulose, hemicellulose, and lignin according to the
following Equations (1–3), respectively.

Cellulose (g kg−1) = Glucose (g kg−1)×0.9 (correction rate)(1)
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TABLE 1 | Descriptive statistics [minimum (min), maximum (max), mean, SD, and coefficient of variation (CV)] of laboratory analytical data comprising starch, protein, fat, tannin, cellulose, hemicellulose, lignin, and ash

contents of distinct types of sorghum grains (whole grains, whole grain flours, hulled grain flours, and hull-less grain flours), used as reference data for calibration (C) and validation (V) subsets to construct PLSR models.

Dataset No. of samples Statistics Starch (g kg−1) Protein (g kg−1) Fat (g kg−1) Tannin (g kg−1) Cellulose (g kg−1) Hemicellulose (g kg−1) Lignin (g kg−1) Ash (g kg−1)

Whole grains C 73 Min. 298.67 104.97 13.99 1.32 62.64 26.03 27.10 16.17

Max. 784.79 185.01 58.99 19.92 216.86 90.43 87.68 36.37

Mean ± SD 589.24 ± 98.25 136.21 ± 14.84 36.83 ± 8.95 12.99 ± 3.93 116.17 ± 30.27 56.04 ± 17.10 56.78 ± 16.17 23.44 ± 4.44

CV (%) 16.67 10.89 24.32 30.27 26.06 30.52 28.48 18.94

V 25 Min. 442.75 113.14 28.65 12.21 88.37 32.27 39.11 17.73

Max. 762.90 160.67 49.05 17.06 134.26 87.89 77.39 32.33

Mean ± SD 579.90 ± 75.10 136.50 ± 13.18 37.63 ± 5.67 14.95 ± 1.35 109.44 ± 13.86 64.55 ± 13.83 63.09 ± 12.06 25.17 ± 3.52

CV (%) 12.95 9.66 15.07 9.08 12.66 21.42 19.12 14.00

Whole grain flours C 73 Min. 298.67 104.97 13.99 1.32 62.64 26.03 27.10 16.17

Max. 784.79 185.01 58.99 19.92 216.86 90.43 87.68 36.37

Mean ± SD 589.24 ± 98.25 136.21 ± 14.84 36.83 ± 8.95 12.99 ± 3.93 116.17 ± 30.27 56.04 ± 17.10 56.78 ± 16.17 23.44 ± 4.44

CV (%) 16.67 10.89 24.32 30.27 26.06 30.52 28.48 18.94

V 25 Min. 442.75 113.14 28.65 12.21 88.37 32.27 39.11 17.73

Max. 762.90 160.67 49.05 17.06 134.26 87.89 77.39 32.33

Mean ± SD 579.90 ± 75.10 136.50 ± 13.18 37.63 ± 5.67 14.95 ± 1.35 109.44 ± 13.86 64.55 ± 13.83 63.09 ± 12.06 25.17 ± 3.52

CV (%) 12.95 9.66 15.07 9.08 12.66 21.42 19.12 14.00

Hulled grain flours C 45 Min. 376.98 104.97 13.99 11.01 75.84 26.03 31.39 22.11

Max. 744.38 185.01 58.99 21.06 181.85 90.43 87.68 36.37

Mean ± SD 546.95 ± 71.57 137.99 ± 17.13 36.41 ± 9.64 15.18 ± 2.33 113.30 ± 19.96 66.28 ± 13.10 67.90 ± 10.95 26.89 ± 3.51

CV (%) 13.08 12.41 26.48 15.37 17.62 19.77 16.13 13.08

V 16 Min. 433.30 120.96 26.55 12.56 88.37 51.72 57.68 22.17

Max. 685.36 165.23 47.51 16.61 128.54 87.96 75.54 31.71

Mean ± SD 563.41 ± 63.84 138.10 ± 12.86 35.38 ± 5.96 14.78 ± 1.09 109.02 ± 14.05 64.31 ± 9.38 66.80 ± 5.49 24.79 ± 2.22

CV (%) 11.33 9.31 16.86 7.43 12.89 14.59 8.22 8.97

Hull-less grain flours C 27 Min. 519.91 113.99 21.97 1.32 62.64 19.70 22.03 16.17

Max. 784.79 156.99 53.18 19.75 216.86 49.37 57.03 25.83

Mean ± SD 645.06 ± 77.75 134.08 ± 12.35 37.81 ± 7.55 11.10 ± 4.33 120.07 ± 38.30 35.30 ± 7.85 39.40 ± 7.44 20.12 ± 2.70

CV (%) 12.05 9.21 19.97 39.03 31.89 22.25 18.90 13.44

V 10 Min. 554.73 123.34 34.88 4.16 101.43 28.23 33.47 17.44

Max. 735.26 146.47 49.05 15.62 174.50 46.44 41.43 23.11

Mean ± SD 654.80 ± 64.49 133.47 ± 7.37 41.42 ± 5.15 12.34 ± 3.87 136.38 ± 25.16 35.44 ± 5.44 38.56 ± 2.64 19.75 ± 1.74

CV (%) 9.85 5.52 12.44 31.36 18.45 15.35 6.86 8.82
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Hemicellulose (g kg−1) = (Xylose) (g kg−1)+ Arabinose (g kg−1)

× 0.88 (correction rate) (2)

Lignin(g kg−1) = Acid soluble lignin(g kg−1)+ Acid insoluble lignin(g kg−1) (3)

Additionally, we used perchloric acid as sorghum grains had a
greater amount of starch and lignocellulosic components that
were difficult to determine without using perchloric acid for
acidification. After acidification, NREL standard methods were
followed to determine cellulose, hemicellulose, and lignin content
in sorghum grains (Sluiter et al., 2012). The ash content was
determined by using a muffle furnace (VULCAN 3-550, Dentsply
International Inc., York, PA, USA).

The samples were classified into three categories as food,
feed, and fuel based on the available chemical content in the
grains. The samples (n = 98) with equal or more than 15 g
kg−1 (1.5%) tannin and 50 g kg−1 (5%) hemicellulose content
were categorized as fuel samples (Waniska et al., 2016) (Table 1).
The food and feed samples contained tannin and hemicellulose
content < 15 and 50 g kg−1, respectively. The samples having
starch < 650 g kg−1 (65%) were classified as feed and ≥ 650 g
kg−1 (65%) were classified as food samples (Pontieri et al.,
2010; Waniska et al., 2016; Beloshapka et al., 2016). Following
the chemical properties, 14 samples were classified for food, 21
samples for feed, 38 samples for fuel, and 25 samples classified
for both feed and fuel. The sample classification is shown in
Supplementary Table 1.

FT-NIR Spectroscopy and Data Processing
The FT-NIR spectra were scanned using the Thermo Antaris
II FT-NIR spectrometer (Thermo Scientific Inc., Madison, WI,
USA) prepared with an absorbance accessory. The grain and
flour samples were put in a special Petri dish (black sides and
transparent glass bottom) and fitted in the FT-NIR machine.
Technical Quality (TQ) Analyst-pro software (Thermo Scientific
Inc., Madison, WI, USA) was used to run the machine.
Each spectrum had 64 scans at 4 cm−1 resolutions with the
wavenumber range among 4,000–10,000 cm−1, including 1,557
spectral variables.

All obtained absorption spectra were analyzed using
ChemDataSolution Version 3.1.0 (Dalian Chem. Data Solution
Technology Co. Ltd., Dalian, China) (Figure 1). The raw
spectra with the whole spectral range were preprocessed to
remove random noise and small peaks by the combination
of pretreatments: Multiplicative scatter correction (MSC)
(Geladi and Macdougall, 1985) and standard normal variate
(SNV) transformation (Brown et al., 2000) were used to
remove the variations caused by instrument settings, sample,
and environmental conditions. Norris derivative by means of
Savitzky Golay (SG) method with 52 smoothing points (Brown
and Wentzell, 2000) were used to resolve the spectra peak
overlap and evacuate linear baseline drift with the selection of
whole wavelength region (4,000–10,000 cm−1). The purpose
of the pretreatments was to remove multiplicative and additive
effects due to the machine settings and variations caused by
the sample and environmental conditions. Based on different
pretreatment combinations and performance, the models
were cross-validated and the partial least square (PLS) factors

were identified in the models for cross-validation (Geladi and
Macdougall, 1985) (Table 3). To select the optimal number
of PLS factors, the “leave-one-out” cross-validation method
was used for developing PLS models to avoid over-fitting
(Vehtari et al., 2017). Following the preprocessing treatments,
the sample choice for the calibration and validation was carried
out by the Kennard–Stone (KS) algorithm and Sample-set
partitioning based on joint X–Y distances (SPXY) with the
ratio of 3:1 (calibration:validation), respectively (Kennard and
Stone, 1969) (Table 2). While KS algorithm only concerns the
similarity between independent variables of the two subsets,
SPXY combines independent and dependent variables (Galvão
et al., 2005). All the spectral data were mean-centered before
calibration and the competitive adaptive reweighted sampling
(CARS) method was used to select the wavelength (Li et al., 2009;
Wang et al., 2015). The regression coefficients of PLS models
were used as an index for evaluating the importance of each
wavelength (Li et al., 2009). The PLS regression was used to
construct the calibration models for the biochemical evaluation
of grains (Figure 1).

First, all the values of each biochemical were built-in the
model to gain an understanding of the initial standard error and
their correlation coefficients. Outliers were detected from the first
calibrated model by calculating the CI (95%) of the first two
principal components (PCs) from principal component analysis
(PCA) plots in Moli Software (Dalian Chem. Data Solution
Technology Co. Ltd., Dalian, China) and the samples out of
this interval were removed individually from the sample set of
each relevant model. The models were recalibrated by following
the above spectra preprocessing methods to lower the number
of PCs.

Performance Index of Partial Least
Squares Regression Models
The performance of multivariate calibrations was evaluated
according to the determination coefficient (R2), root mean
square error of calibration (RMSEc), root mean square error
of validation (RMSEv), and the ratio of prediction to deviation
(RPD) for the calibration and validation subsets. These
parameters were used to determine the potential of the partial
least squares regression (PLSR) models for the determination
of biochemical components in sorghum grains (Wu et al.,
2015; Yang et al., 2016) (Table 3). In model development and
applications, R2 > 0.95 and RPD > 4 indicates that the model
could predict efficiently, 0.95 > R2 > 0.9 and 4 > RPD > 3
regarded as successful calibration, 0.9> R2 > 0.8 and 3> RPD>

2.25 considered satisfactory, and 0.8 > R2 > 0.7 and 2.25 > RPD
> 1.75 is regarded good for preliminary screenings (Malley et al.,
2004; Arana et al., 2005) (Table 3).

RESULTS

Chemical Properties and Grain Grading
The minimum contents of tannin and high starch in food
grains were 11.66 and 695.57 g kg−1, respectively found in
622A×J7645Z hybrid (Table 1; Supplementary Table 1). The
minimum hemicellulose content in the food samples was 29.92 g
kg−1 in 622A×J7645Z (Table 1; Supplementary Table 1).
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TABLE 2 | The PLSR followed by mathematical treatments of spectra to remove random noise and to construct FT-NIR models for biochemical components (starch,

protein, fat, tannin, cellulose, hemicellulose, lignin, and ash) of whole grains, whole grain flours, hulled, and hull-less grain flours of sorghum.

Dataset Biochemical component Mathematical treatments of spectraa

Pretreatment Smoothing Derivative Variable selection Sample selection

Whole grains Starch MSC SG52 Second CARS SPXY

Protein MSC SG52 Second CARS SPXY

Fat SNV SG52 Second CARS SPXY

Tannin SNV SG52 Second CARS SPXY

Cellulose SNV SG52 Second CARS SPXY

Hemicellulose MSC SG52 Second CARS SPXY

Lignin SNV SG52 First CARS KS

Ash MSC SG52 Second CARS SPXY

Whole grain flours Starch SNV SG52 Second CARS KS

Protein MSC SG52 Second CARS SPXY

Fat MSC SG52 Second CARS KS

Tannin SNV SG52 Second CARS KS

Cellulose SNV SG52 Second CARS SPXY

Hemicellulose SNV SG52 Second CARS SPXY

Lignin MSC SG52 Second CARS SPXY

Ash MSC SG52 Second CARS SPXY

Hulled grain flours Starch MSC SG52 Second CARS SPXY

Protein SNV SG52 Second CARS SPXY

Fat SNV SG52 Second CARS KS

Tannin MSC SG52 Second CARS SPXY

Cellulose MSC SG52 Second CARS KS

Hemicellulose SNV SG52 Second CARS SPXY

Lignin SNV SG52 Second CARS SPXY

Ash MSC SG52 Second CARS SPXY

Hull-less grain flours Starch MSC SG52 First CARS SPXY

Protein SNV SG52 First CARS SPXY

Fat SNV SG52 Second CARS SPXY

Tannin SNV SG52 First CARS SPXY

Cellulose MSC SG52 Second CARS KS

Hemicellulose SNV SG52 Second CARS SPXY

Lignin MSC SG52 Second CARS SPXY

Ash MSC SG52 First CARS SPXY

aMSC, Multiplicative scatter correction; SNV, Standard normal variate; SG, Savitzky Golay; CARS, Competitive adaptive reweight sampling method; SPXY, Sample set partitioning based

on joint x–y distances; KS, Kennard–stone algorithm; methods to separate samples for calibration and validation.

The Awanlek hybrid contains minimum tannin and starch
content of 6.44 and 597.11 g kg−1, respectively, useful
for feed (Table 1; Supplementary Table 1). Fuel samples
contain maximum cellulose and hemicellulose content (125.86
and 80.35 g kg−1, respectively) (X098 and NW3) (Table 1;
Supplementary Table 1). J7645Z hybrid contains maximum
starch content that is useful for fuel samples (730.68 g kg−1)
(Table 1; Supplementary Table 1). The maximum content of
protein, fat, lignin, and ash in fuel samples were 169.44, 44.91,
75.99, and 30.59 g kg−1, respectively. The samples used for both
feed and fuel, contain low tannin and starch (useful for feed)
but high cellulose, hemicellulose, and lignin content (useful for
fuel). The minimum starch and tannin content in combined
feed/fuel samples were 498.65 and 13.85 g kg−1, respectively

(AMP450×NW3) (Table 1; Supplementary Table 1). Moreover,
the average chemical properties for different morphological
types of sorghum grains revealed that hull-less grain flours
had high levels of starch content (647.4 g kg−1) compared with
the whole grains/flours (585.6 g kg−1) and hulled grain flours
(548.1 g kg−1) (Table 1; Supplementary Table 1). By contrast,
the content of protein and fat were not significantly different for
all types of datasets. Tannin content was found higher in hulled
flours (15.0 g kg−1) and lower in hull-less flours (11.1 g kg−1)
compared to whole grains/flours samples (13.6 g kg−1) (Table 1).
The average cellulose content was the highest in hull-less flours
(124.3 g kg−1) and the least in hulled flours (116.6 g kg−1) while
on the contrary, average hemicellulose content was the highest in
hulled flours (66.4 g kg−1) and the least in hull-less flours (35.3 g
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TABLE 3 | Statistics of PLSR models constructed using FT-NIR spectroscopy to determine starch, protein, fat, tannin, cellulose, hemicellulose, lignin, and ash in distinct

types of sorghum grains (whole grains, whole grain flours, hulled, and hull-less grain flours) used for calibration, validation, and cross-validation subsets.

Dataset Biochemical component PC Calibration Cross-validation Validation

R2 RMSEc SD R2 RMSEcv RPD R2 RMSEv RPD SD

Whole grains Starch 8 0.98 10.90 98.25 0.92 26.29 3.73 0.88 24.94 3.01 75.10

Protein 8 0.97 2.12 14.84 0.90 4.65 3.18 0.89 4.23 3.11 13.18

Fat 8 0.98 1.06 8.95 0.91 2.56 3.48 0.91 1.76 3.21 5.67

Tannin 7 0.98 0.04 0.39 0.93 0.09 3.96 0.72 0.06 1.94 0.13

Cellulose 8 0.99 1.45 27.03 0.96 4.89 5.52 0.88 4.68 2.96 13.86

Hemicellulose 9 0.99 0.47 17.10 0.98 1.96 8.69 0.97 2.23 6.18 13.83

Lignin 7 0.97 2.55 16.17 0.94 3.75 4.31 0.93 3.07 3.91 12.06

Ash 6 0.98 0.54 4.44 0.94 1.00 4.43 0.93 0.88 3.96 3.52

Whole grain flours Starch 6 0.96 16.83 96.32 0.91 28.60 3.36 0.90 23.01 3.05 70.37

Protein 5 0.98 2.05 15.09 0.96 2.88 5.23 0.96 2.37 5.35 12.73

Fat 9 0.97 1.22 8.00 0.84 3.14 2.54 0.90 2.68 3.17 8.53

Tannin 7 0.96 0.07 0.38 0.91 0.86 2.73 0.91 0.09 3.27 0.30

Cellulose 7 0.99 2.04 25.83 0.94 6.14 4.20 0.92 5.91 3.58 21.20

Hemicellulose 8 0.99 1.29 16.88 0.97 2.70 6.23 0.99 2.44 6.89 16.84

Lignin 8 0.99 0.76 16.08 0.98 1.91 8.39 0.97 1.97 6.92 13.65

Ash 5 0.98 2.05 15.09 0.96 2.88 5.23 0.96 2.37 5.35 12.73

Hulled grain flours Starch 6 0.99 6.75 71.57 0.96 13.29 5.38 0.92 18.61 3.42 63.84

Protein 8 0.99 1.09 17.13 0.98 2.14 7.97 0.98 1.79 7.17 12.86

Fat 6 0.98 0.10 0.96 0.92 0.27 3.48 0.93 0.16 3.62 0.59

Tannin 8 0.99 0.01 0.23 0.94 0.05 4.32 0.90 0.04 2.74 0.10

Cellulose 9 0.99 1.54 19.96 0.93 4.91 4.05 0.90 4.25 3.30 14.05

Hemicellulose 9 0.99 0.73 11.71 0.96 2.24 5.21 0.93 2.75 3.40 9.38

Lignin 7 0.99 0.87 9.54 0.94 2.22 4.28 0.95 1.40 3.91 5.49

Ash 7 0.99 0.31 3.51 0.96 0.66 5.33 0.97 0.40 5.56 2.22

Hull-less grain flours Starch 5 0.97 1.24 7.90 0.88 2.62 3.01 0.93 1.57 3.92 6.19

Protein 6 0.99 1.11 12.35 0.97 2.06 5.98 0.94 1.85 3.97 7.37

Fat 9 0.99 0.01 0.75 0.97 0.11 6.48 0.97 0.08 6.28 0.51

Tannin 8 0.97 0.06 0.44 0.90 0.13 3.36 0.99 0.04 8.46 0.38

Cellulose 9 0.99 1.04 38.30 0.97 5.79 6.61 0.97 4.11 6.11 25.16

Hemicellulose 9 0.99 0.17 7.85 0.98 1.08 7.26 0.97 0.92 5.86 5.44

Lignin 7 0.99 0.31 7.44 0.98 1.08 6.87 0.97 0.47 5.55 2.64

Ash 6 0.98 0.32 2.70 0.93 0.68 3.94 0.88 0.60 2.88 1.74

PC, number of principal components; R2, the co-efficient of determination; RMSEc, root mean square error of calibration; RMSEv, root mean square error of validation; RMSEcv, root

mean square error of cross-validation; SD, standard deviation; RPD, ratio of prediction to deviation.

kg−1) compared with whole grains/flours. Similarly, the average
lignin and ash content were also high in hulled flours (68.2 and
26.3 g kg−1, respectively) (Table 1).

The coefficient of variation (CV) for the biochemical
components in different sorghum morphological types (grains,
flours, hulled flours, and hull-less flours) used as reference data
for calibration and validation subsets are shown in Table 1.
Biochemical data used in the whole grains and flours model
showed that hemicellulose and lignin have the highest CVs
for both the calibrations (30.52 and 28.48%, respectively) and
validation subsets (21.42 and 19.12%, respectively). Tannin
has CV for both calibration and validation (30.27 and
9.08%, respectively), followed by cellulose (26.06 and 12.66%,
respectively), fat (24.32 and 15.07%, respectively), ash (18.94
and 14.0%, respectively), starch (16.67 and 12.95%, respectively),

and the smallest by protein (10.89 and 9.66%, respectively). The
biochemical data used in the hulled and hull-less grain flour
models showed similar ranges of CV (Table 1).

Spectral Pretreatment and Models
Performance
The mean, minimum, and maximum absorbance of sorghum
grain samples are shown in Figures 2, 3. The minimum
absorption was found between 10,000 and 9,000 cm−1

wavelength regions. The maximum absorption peaks were
found in the 9,000–4,000 cm−1 wavelength regions and showed
a common phenomenon in whole grains, whole grain flours,
hulled, and hull-less flours. The absorbance of whole-grain flours
was the least among all types of samples. Whole grain flours
absorbed at around 10,000 cm−1, with values ranging from 0.25
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FIGURE 1 | The morphological classification of sorghum grains by means of hulled and hull-less grains, also used as whole grains and flours by means of Fourier

Transform near-infrared spectroscopy (FT-NIR) spectral data collection followed by reference analysis. The spectra were processed by combination of pre-treatments,

cross-validated, calculation of principal components (PCs) by principal component analysis (PCA), divided into calibration and validation subsets and ultimately, partial

least square regression (PLSR) models were built using FT-NIR spectral and reference data.

to 0.4 (Figure 2) that was adjacent to the absorption of hull-less
and hulled grain flour which were absorbed between 0.4 and
0.43, respectively (Figure 3).

The development of PLS regression models for each
biochemical component of sorghum grains were performed to
minimize the effect of the change in the baseline drift. Most of
the models performed best in a combination of second derivative
SG52, CARS, and SPXY methods, except for lignin in whole
grains and starch, protein, tannin, and ash in hull-less grain
flours that performed best with first derivative and KS sample
selection method. All the models were constructed by critically
evaluating different spectral pretreatments that gave the higher
R2c (≥0.96), R2v (≥0.72), R2cv (≥0.84), RPDv (≥1.9), and
RPDcv (≥2.5) (Table 3). A T-test was applied to determine the
prediction accuracy of the models for different sample formats
(Supplementary Figures 1, 2).

Comparison of the Models of Whole Grains
and Flours
Table 3 shows model statistics for all biochemical components
in the models of whole grains and flours. In the whole grain
models, the R2c for all the chemical components were≥0.97, R2v
were ≥0.72 and R2cv were ≥0.90, while RPDc were ≥1.94 and
RPDcv were ≥3.18. Based on the highest R2c (0.99) and RPDc
(6.18), hemicellulose model was considered best among the other
chemical components in whole grain models (Table 3). In flours
models, the R2c for all the chemical components were≥0.96, R2v
were ≥0.90, and R2cv were ≥0.84, while RPDc were ≥3.05 and
RPDcv were ≥2.54. Hemicellulose and lignin were considered

best among the other chemical components in flours models
based on the highest R2c (0.99 for both) and RPDc (6.89 and 6.92,
respectively) (Table 3). Overall, the model validation for flours
was better than the whole grains. Figures 4, 5 show the scatter
plots for predicted and measured values of different biochemical
components in the whole grains and flours, respectively.

Comparison of the Models of Hulled and
Hull-Less Flours
The statistics for all the biochemical components in the models of
hulled and hull-less grain flours are shown in Table 3. In hulled
grain flours models, the R2c for all the chemical components
were ≥0.98, R2v were ≥0.90, and R2cv were ≥0.92, while RPDc
were ≥2.74 and RPDcv were ≥3.48. Based on the highest R2c
(0.99) and RPDc (7.17), protein model was considered the best
among other chemical components in hulled grain flours models
(Table 3). In hull-less grain flours models, the R2c for all the
chemical components were ≥0.97, R2v were ≥0.93 and R2cv
were ≥0.88, while RPDc were ≥2.88 and RPDcv were ≥ 3.01.
Fat, tannin, and cellulose were considered the best among other
chemical components in flours models based on the highest
R2c (0.99, 0.97, and 0.99, respectively) and RPDc (6.28, 8.46,
and 6.1, respectively) (Table 3). Figures 6, 7 show the scatter
plots for predicted and measured values of different biochemical
components in the hulled and hull-less and flours, respectively.
The hulled grain flours allowed for the best prediction for protein,
whereas the hull-less grain flours allowed for the best prediction
for tannin, cellulose, and hemicellulose (Figures 6, 7).
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FIGURE 2 | Summary of spectral absorbance and characteristic wavelengths distribution measurements for sorghum whole grains vs. flours sample set (n = 98). The

range of coefficient variation (CV, blue line), mean absorbance (black line), minimum/maximum (green dotted line) spectral absorbance, total range of absorbance

measurements (red line) for each wavelength (cm−1), and SD+/– SD between sample sets were calculated.

FIGURE 3 | Summary of spectral absorbance and characteristic wavelengths distribution measurements for sorghum hulled (n = 61) vs. hull-less grain flours sample

set (n = 37). The CV, coefficient of variation (blue line) (SD/mean), mean absorbance (black line), minimum/maximum (green dotted line) spectral absorbance, total

range of absorbance measurements (red line) for each wavelength (cm−1), and +/– SD between sample sets were calculated.

DISCUSSION

Chemical Properties and Food, Feed, and
Fuel Grading
In this study, sorghum grains were graded based on their

respective chemical content for food, feed, and fuel. Out of
the 20 hybrids of sorghum grains used in this study, hull-

less hybrids which include 622A×Awanlek, 622A×J7645Z, and
624A×J7645Z contained high starch and cellulose while low
tannin and hemicellulose content and were considered suitable
for food. The protein content was high in the food samples
compared with the feed samples. Hull-less hybrids (Awanlek,

624A×Awanlek, AMP450×Awanlek, and AMP450×J7645Z)
having low tannin, starch, cellulose, and hemicellulose content
were used for feed. Similar to previous studies, the content of
fat, lignin, and ash in both food and feed samples (hull-less) was
nearly in the same range (Pontieri et al., 2010; Waniska et al.,
2016; Beloshapka et al., 2016). Due to the non-digestible nature of
hemicellulose and the bitter taste of tannin, these components are
not desirable for food and feed, which leads to conclude that hull-
less samples can be used as food (Table 1). The overall content of
lignocelluloses in feed was higher than the food but significantly
lower than the fuel grain samples. Based on required chemical
components, whole grains/flours can be used as animal feed.
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FIGURE 4 | Comparison of scatter plots of measured vs. predicted values (g kg−1) of the whole grains for starch, protein, fat, tannin, cellulose, hemicellulose, lignin,

and ash of sorghum grains for the external validation subsets based on PLSR models. The black and gray lines in plot showed mean, maximum, and minimum values

while dotted lines showed average chemical composition between calibration and validation sample set.

FIGURE 5 | Comparison of scatter plots of measured vs. predicted values (g kg−1) of the whole grain flours for starch, protein, fat, tannin, cellulose, hemicellulose,

lignin, and ash of sorghum grains for the external validation subsets based on PLSR models. The black and gray lines in plot showed mean, maximum, and minimum

values while dotted lines showed average chemical composition between calibration and validation sample set.
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FIGURE 6 | Comparison of scatter plots of measured vs. predicted values (g kg−1) of the hulled grain flours for starch, protein, fat, tannin, cellulose, hemicellulose,

lignin, and ash of sorghum grains for the external validation subsets based on PLSR models. The black and gray lines in plot showed mean, maximum, and minimum

values while dotted lines showed average chemical composition between calibration and validation sample set.

FIGURE 7 | Comparison of scatter plots of measured vs. predicted values (g kg−1) of the hull-less grain flours for starch, protein, fat, tannin, cellulose, hemicellulose,

lignin, and ash of sorghum grains for the external validation subsets based on PLSR models. The black and gray lines in plot showed mean, maximum, and minimum

values while dotted lines showed average chemical composition between calibration and validation sample set.
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Moreover, owing to the high content of tannin,
lignocelluloses, and ash, hulled grain hybrids (NW2, NW3, X098,
624A×NW2, AMP450×NW2, 624A×X098, and 622A×NW3)
were used as fuel. However, 622A×NW2, 622A×X098,
AMP450×X098, 624A×NW3, and AMP450×NW3 hybrids
were used for both feed and fuel due to desirable chemical
content for feed and fuel (low tannin and high hemicellulose).
The insoluble dietary fibers especially hemicelluloses are not
seen as desirable as food (Fuller et al., 2016; Qiu et al., 2017;
Stamenković et al., 2020). According to the previous studies, the
hulled grains with an increasing tannin, cellulose, hemicellulose,
lignin, and ash were used as an ideal additive for biofuel
production (Table 1) (Eggum et al., 1983; Corredor et al., 2005;
Stamenković et al., 2020). In this study, insoluble dietary fibers
were found higher in the hulled grains with increasing content of
starch, tannin, and ash and proposed as a supreme stabilizer for
biofuel. Similar to the previous studies, hulled grains contained
less starch while high fibers content (hemicellulose and lignin),
tannin and ash compared with hull-less grains (Eggum et al.,
1983).

A large CV in the sample datasets for starch, protein, fat,
tannin, cellulose, hemicellulose, lignin, and ash was observed in
this study. The previous studies found that the CV of starch,
protein, fat, tannin, cellulose, hemicellulose, lignin, and ash in
sorghum grains for bulk number of samples were 5.32, 13.2, 16.3,
9.09, 32, 30, 19, and 9.41%, respectively (De Alencar Figueiredo
et al., 2006; Hill et al., 2012; Li et al., 2014; Wang et al., 2020).
Compared with the previous studies, the higher CVs in this study
indicate a wide variation among the sorghum grain samples and
a large potential of model robustness when more samples from
more hybrids and from more regions to be included.

PLSR Model Performance
For each chemical component and morphological type (whole
grains, whole grain flours, hulled grain flours, and hull-less
grain flours) of sorghum grain samples, spectral preprocessing
yielded different results in the PLSR models. The predicted and
reference values of whole grains, whole grain flours, hulled grain
flours, and hull-less grain flours were consistent (Figures 4–
7, respectively). Several physical phenomena contribute to
the additive and multiplicative scatter effects, caused by the
differences in the grain surface structure, i.e., hulled or hull-
less grains. The spectral data were preprocessed to eliminate
the influence of light scattering from the non-homogeneity of
the sample particle distribution (Pohl and Senn, 2011). MSC
can be considered as a suitable method when working with the
samples constituted by particle size because it varies according
to the grain hardness and uniformity to random noise (Sampaio
et al., 2018). MSC has a tendency to produce outliers, while SNV
induce curved structures derived from the treated spectra (Fearn
et al., 2009). Both MSC and SNV methods assisted in getting
models performance with different combinations of treatments
for different chemicals.

The variations within and across the calibration and validation
processes were maximized and repeated several times using
the SPXY and KS sample selection methods (Vehtari et al.,
2017). To demonstrate the effect of SPXY and KS optimization

on the partitioning of calibration and validation subsets, PCA
was applied and results indicate that the SPXY and KS
methods could efficiently optimize NIRS results as well as
the analytical properties of both the calibration and validation
subsets (Table 3). These distributions and optimizations led to
the good performance of FT-NIR models.

Lignin in whole grain flours showed reasonably accurate
results using the first derivative and KS sample selection method
while all other chemical components in whole grains showed
precise results with a combination of the second derivative
and SPXY sample selection method. Likewise, starch, protein,
tannin, and ash in hull-less flours showed good results using
the first derivative while all other morphological types of grains
showed accurate results using the second derivative. Starch,
fat, and tannin in whole grain flours, fat, and cellulose in
hulled grain flours, and cellulose in hull-less grain flours showed
reasonably precise results using KS sample selection method,
compared with other chemicals in all the morphological types
of sorghum grains (Table 2). Similar to the previous studies,
spectral pretreatment especially derivative and spectra smoothing
improved the models’ performance and quality (Wolfrum et al.,
2013).

The values of R2 and RPD for all the models were high
enough to use them for future predictions (Malley et al., 2004).
In contrary to the previous studies, the prediction accuracy
(paired t-test between themeasured and predicted values) of both
the models of whole grains and flours was not different (Flinn
et al., 1998; Garnsworthy et al., 2000; De Alencar Figueiredo
et al., 2006) (Table 3; Figures 4, 5). However, it is suggested
that the whole grains can be used instead of grinding because
the goodness of fit of both grains and flours models showed.
Moreover, the stiff texture of the hulls has a significant effect
on the performance of calibration of biochemical components,
indicating that the hulls may distort spectral information (De
Alencar Figueiredo et al., 2006; Guindo et al., 2016) (Table 3;
Figures 6, 7). To determine the prediction accuracy of the
models, t-test was applied between the morphological types
of sorghum grains, i.e., grains vs. flours, hulls vs. hull-less.
It showed that the flour models were significantly better for
prediction of protein, tannin, and ash while the hull-less models
were significantly better for prediction of fat, hemicellulose, and
lignin (Supplementary Figures 1, 2). However, the performance
index of all the models demonstrated that these models
performed well in the sample set and could be used for
the estimation of future screenings and predictions, efficiently
(Table 3).

The previous research showed the potential for analysis for
the major chemical components and forms of grains according
to their needs and interest. Nevertheless, models determining
the content of the chemical components especially cellulose,
hemicellulose, and lignin in sorghum grain flours are rarely
investigated, nor systematically compared for different grain
types. FT-NIR spectroscopy for grading grains based on grain
quality parameters is preferable because it is non-destructive and
non-hazardous. RPD and RPDcv showed that all the models
could successfully predict the biochemicals, suggesting that
the FT-NIR spectroscopy is a promising tool for predictions
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of sorghum grain biochemicals used for food, feed, and fuel
(Table 3). The models presented in this paper can be applied
to the industry level for producers to select grains with
outstanding potential for food, feed, and fuel productions.
This is a high throughput method with high accuracy as
compared with the wet chemical determination methods to
determine the desired chemical components for human food,
animal feed, and biofuel. To improve model performance, it is
necessary to extend the sample size over years so that prediction
could be improved because the environmental factors induce
high influence on the properties and chemical components of
sorghum grains.

CONCLUSION

Biochemical components of sorghumwere successfully predicted
for enhancing grain sorting efficiency for food, feed, and
fuel using FT-NIR spectroscopy. The PLS regression models
allowed to screen and predict chemical components especially
lignocellulose (cellulose, hemicellulose, and lignin) predictions
that were rarely reported. Cellulose, and hemicellulose and
lignin concentrations could be predicted using NIR data
measured on whole grains, with high accuracy (R2 > 0.88);
thus, whole grains are recommended instead of flours to
save grinding time and labor. NIR-based PLS models for
varied compositions of hulled and hull-less grain flours
compared to the wet chemical procedures are desirable.
The established PLSR models could enable food, feed, and
fuel producers to efficiently evaluate a large number of
samples by predicting the required biochemical components in
sorghum grains.
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