
ORIGINAL RESEARCH
published: 08 October 2021

doi: 10.3389/fpls.2021.720123

Frontiers in Plant Science | www.frontiersin.org 1 October 2021 | Volume 12 | Article 720123

Edited by:

Valentin Wimmer,

KWS Saat, Germany

Reviewed by:

Pedro José Martínez-García,

Spanish National Research

Council, Spain

Mian Abdur Rehman Arif,

Nuclear Institute for Agriculture and

Biology, Pakistan

*Correspondence:

Vipin Tomar

viomics@gmail.com

Uttam Kumar

u.kumar@cgiar.org

†Present address:

Daljit Singh,

The Climate Corporation, Bayer Crop

Science, Creve Coeur, MO,

United States

Specialty section:

This article was submitted to

Plant Breeding,

a section of the journal

Frontiers in Plant Science

Received: 03 June 2021

Accepted: 03 September 2021

Published: 08 October 2021

Citation:

Tomar V, Singh D, Dhillon GS,

Chung YS, Poland J, Singh RP,

Joshi AK, Gautam Y, Tiwari BS and

Kumar U (2021) Increased Predictive

Accuracy of Multi-Environment

Genomic Prediction Model for Yield

and Related Traits in Spring Wheat

(Triticum aestivum L.).

Front. Plant Sci. 12:720123.

doi: 10.3389/fpls.2021.720123

Increased Predictive Accuracy of
Multi-Environment Genomic
Prediction Model for Yield and
Related Traits in Spring Wheat
(Triticum aestivum L.)
Vipin Tomar 1,2,3*, Daljit Singh 4†, Guriqbal Singh Dhillon 5, Yong Suk Chung 6, Jesse Poland 4,

Ravi Prakash Singh 7, Arun Kumar Joshi 1,3,7, Yogesh Gautam 1, Budhi Sagar Tiwari 2 and

Uttam Kumar 1,3,7*

1 Borlaug Institute for South Asia, Ludhiana, India, 2Department of Biological Sciences and Biotechnology, Institute of

Advanced Research, Gandhinagar, India, 3 International Maize and Wheat Improvement Center, New Delhi, India,
4Department of Plant Pathology, Kansas State University, Manhattan, KS, United States, 5Department of Biotechnology,

Thapar Institute of Engineering & Technology, Patiala, India, 6Department of Plant Resources and Environment, Jeju National

University, Jeju-si, South Korea, 7Global Wheat Program, International Maize and Wheat Improvement Center, Texcoco,

Mexico

Genomic selection (GS) has the potential to improve the selection gain for complex traits

in crop breeding programs from resource-poor countries. The GS model performance

in multi-environment (ME) trials was assessed for 141 advanced breeding lines under

four field environments via cross-predictions. We compared prediction accuracy (PA)

of two GS models with or without accounting for the environmental variation on four

quantitative traits of significant importance, i.e., grain yield (GRYLD), thousand-grain

weight, days to heading, and days to maturity, under North and Central Indian conditions.

For each trait, we generated PA using the following two different ME cross-validation

(CV) schemes representing actual breeding scenarios: (1) predicting untested lines in

tested environments through the ME model (ME_CV1) and (2) predicting tested lines

in untested environments through the ME model (ME_CV2). The ME predictions were

compared with the baseline single-environment (SE) GS model (SE_CV1) representing

a breeding scenario, where relationships and interactions are not leveraged across

environments. Our results suggested that the ME models provide a clear advantage

over SE models in terms of robust trait predictions. Both ME models provided 2–3

times higher prediction accuracies for all four traits across the four tested environments,

highlighting the importance of accounting environmental variance in GS models. While

the improvement in PA from SE to MEmodels was significant, the CV1 and CV2 schemes

did not show any clear differences within ME, indicating the MEmodel was able to predict

the untested environments and lines equally well. Overall, our results provide an important

insight into the impact of environmental variation on GS in smaller breeding programs

where these programs can potentially increase the rate of genetic gain by leveraging the

ME wheat breeding trials.

Keywords: single-environment, multi-environments, genotyping by sequencing, genomic selection (GS), genomics
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https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.720123
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.720123&domain=pdf&date_stamp=2021-10-08
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:viomics@gmail.com
mailto:u.kumar@cgiar.org
https://doi.org/10.3389/fpls.2021.720123
https://www.frontiersin.org/articles/10.3389/fpls.2021.720123/full


Tomar et al. Increased Predictive Accuracy of Multi-Environment Genomic Prediction

INTRODUCTION

Wheat (Triticum aestivum L.) is an essential cereal to secure
global food security (Curtis andHalford, 2014). Significant efforts
are needed to accelerate high-yielding varieties to fulfill future
global wheat demand by 2050 (Hellin et al., 2012). Hence, the
enhancement of grain yield (GRYLD) is a foremost target for
wheat breeders. GRYLD is a complex trait administered by many
small-effect loci with significant loci × loci interactions (Arzani
and Ashraf, 2017; Sehgal et al., 2017). Moreover, the GRYLD trait
is associated with strong genotype × environment interaction,
which makes its genetic enhancement a difficult work.

Genomic selection (GS) integrates genome-wide dense
markers and, as presented by Meuwissen et al. (2001), is a
different marker-assisted selection approach. GS proves to be a
powerful tool to improve the selection accuracy and prediction
for quantitative traits in crop breeding (Crossa et al., 2017). GS
utilizes a large set of, usually unidentified markers, spread over
the whole genome in the same way as every quantitative trait
locus (QTL) is in linkage disequilibrium (LD). GS is particularly
beneficial for traits that cannot be evaluated on a few plants and
for traits that are hard to estimate. It is still a vital issue for
plant breeders to upsurge the accuracy of genomic prediction for
selecting the advanced breeding lines.

The GS has been widely used in wheat breeding to
predict various traits, such as yield, disease resistance, grain
weight, heading, iron and zinc contents, end-use quality, and
physiological traits (Charmet et al., 2014; Velu et al., 2016;
Hayes et al., 2017; Juliana et al., 2017a,b; Norman et al., 2017;
Lozada et al., 2019; Tomar et al., 2021). As such, GS embraces
the prospects for the genomic enhancement of qualitative and
quantitative traits. Many available GS models have been tested
on various breeding and trait scenarios. Earlier numerous
comparative studies of the GSmodel predictions in wheat showed
that Random Forest and Reproducing Kernel Hilbert Space
models performed better for traits of interest. However, any
single GS model could not outperform other models (Pérez-
Rodríguez et al., 2012; Charmet et al., 2014). Earlier studies
have stated that many interconnected factors impact the overall
model performance (Jannink et al., 2010; Heslot et al., 2012),
such as heritability, population structure, statistical models, i.e.,
parametric and nonparametric models, cross-validation (CV)
approaches, the genetics of traits, training population size and
composition, marker density, and LD among markers and QTLs
(Jannink et al., 2010; Pérez-Rodríguez et al., 2012; Crossa et al.,
2017; Norman et al., 2018; Lozada et al., 2019).

The GS delivers the promise to accelerate genetic gain by

increasing precision in selecting and shortening the breeding

cycles. However, GS is a relatively new and advanced method for

smaller and low-resource South Asian wheat breeding programs.
Previously, substantial progress has been made in testing and
validating various models for GRYLD and related traits in wheat
in South Asia, albeit on larger breeding populations (De los
Campos et al., 2009; Crossa et al., 2010, 2011, 2016; Heffner
et al., 2011; Burgueño et al., 2012; Pérez-Rodríguez et al., 2012;
Rutkoski et al., 2015; Juliana et al., 2017a,b, 2019; González-
Camacho et al., 2018). These studies have highlighted the impact

of environment and genotype × environment on the GS model
performance. Therefore, to optimize the genetic gain from GS,
the group of field-testing environments can be leveraged.

In this study, high-yielding, advanced wheat breeding lines
from The International Maize and Wheat Improvement Center
(CIMMYT) were evaluated for two consecutive wheat seasons
(2017 and 2018) to adapt to the diverse environments of North
and Central India. To evaluate the performance of multi-
environment (ME) GS models on our specific set of selection
environments, we tested different GS CV schemes mimicking
the breeding schemes where untested lines and environmental
performance are highly valuable to achieve the desired selection
gains. This study is highly relevant particularly in the South Asian
context where trial sizes are relatively small and broadly adapted
wheat lines are sought after.

MATERIALS AND METHODS

Plant Material
A set of 141 South Asian spring wheat lines (T. aestivum L.)
were selected from the International Yield Trial of CIMMYT
International Nurseries (elite germplasm). These lines constitute
a diverse association panel. The seeds of 141 genotypes
were obtained from the Germplasm Resource Unit, CIMMYT
(Mexico). Detailed information with a pedigree for each genotype
is given in Supplementary Table 1.

Field Trials and Phenotypic Evaluation
The panel of selected lines was evaluated in field trials
at the Borlaug Institute for South Asia (India) at Jabalpur
(JBL) (23◦14′00.6N and 80◦04′40.7E) and Ludhiana (LDH)
(30◦59′28.74N and 75◦44′10.87E), locations during the crop
season for 2 years (2017 and 2018), genotypes were phenotyped
and evaluated across all trials for four traits [days to maturity
(DAYSMT), days to heading (DTHD), GRYLD, and thousand-
grain weight (TGW)] (Supplementary Table 2). The experiment
was conducted in two replications following the Randomized
Block Design (RBD). The normal agronomic practice was
followed for trial management. The row-to-row distance was
maintained at 20 cm.

Genotyping-by-Sequencing and SNP
Filtering
Genomic DNA was extracted from the fresh leaves of seedling
wheat using the modified cetyltrimethylammonium bromide
(CTAB) method (Dreisigacker et al., 2016). Genotyping-by-
sequencing (GBS) was performed in Illumina HiSeq 2500 using
a protocol suggested by Poland et al. (2012). Single nucleotide
polymorphism (SNP) calling was performed using TASSEL
version 5.2.43 (Bradbury et al., 2007) using the TASSEL-GBSv2
pipeline. Using Beagle version 4.1, the missing data were imputed
with default settings. After quality control (filter criteria: sample
call rate > 0.8, Minor allele frequency (MAF) ≥ 0.05, SNP call
rate > 0.7), 14,563 polymorphic SNPs and 141 genotypes were
selected for the follow-up analysis (Supplementary Table 3).
Among polymorphic SNP markers, 40.66, 50.66, and 8.68% were
from the A, B, and D genomes, respectively. With a genomic
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coverage of 13.9 GB and 14,563 markers across the genome, the
average marker density was one marker per 0.95Mb. The highest
marker density with one marker per 0.54Mb of chromosome 2B
and the lowest marker density with one marker per 6.854Mb at
chromosome 4D were observed.

Statistical Analysis of Phenotypes
Each location-year combination is treated as a distinct
environment for analysis purposes. Broad-sense heritability for
each trait/environment combination was estimated at the plot
level, and raw phenotypic values were adjusted to derive the best
linear unbiased predictions (BLUPs) (Supplementary Table 4)
for each trait at each environment using META-R (Alvarado
et al., 2020) by using the following formula:

Yik = µ + Repi + Genk + ǫik(within environments)

Yijk = µ + Envi + Repj (Envi) + Genk + Envi × Genk

+ ǫijk(across environments)

where Yik is the trait of interest, µ is the mean effect, Repi is the
effect of the ith replicate, Genk is the effect of the kth genotype,
ǫik is the error associated with the ith replication and the kth
genotype, which is assumed to be normally and independently
distributed, with mean 0 and homoscedastic variance. For across
environments, Yijk is the trait response and the ith environment,
Repj(Envi) is the effect of jth Rep in the ith environment, and
Envi × Genk is the environment × genotype interaction. The
resulting analysis produced the adjusted trait phenotypic values
in the form of BLUPs within and across environments. The
BLUPs model considers genotypes as random effects, minimizing
the effect of screening time and other environmental effects.

In addition, the components of the phenotypic variance of a
given trait at an individual environment and across environments
were also extracted to calculate the broad-sense heritability using
the formula as follows:

H2
=

σ 2
g

σ 2
g +

σ 2
e

nReps

(within environments)

H2
=

σ 2
g

σ 2
g +

σ 2
ge

nEnvs +
σ 2
e

(nEnvs × nReps)

(across environments)

where σ 2
g and σ 2

e are the genotype and error variance

components, respectively, σ 2
ge is genotype × environment

interaction variance, nEnvs is the number of environments, and
nReps is the number of replicates. All effects are considered
random for calculating the BLUPs (Supplementary Table 4) and
the broad-sense heritability. The BLUPs phenotypic distributions
of GRYLD and other traits at each environment were plotted
to check normality assumptions. Phenotypic and genetic
correlations were calculated for each trait and environment
combination in R software version 4.0.2. (R Core Team, 2019)
using FactoMineR version 2.4 (Lê et al., 2008) and factoextra
version 1.0.7 (Kassambara and Mundt, 2020).

Baseline Single-Environment (SE) Genomic
BLUP Model (GBLUP), CV Schemes, and
Predictive Ability
The baseline SE genomic prediction analysis was implemented
in the BWGS program (Charmet et al., 2020). BWGS performs a
GBLUP analysis using a marker-based relationship matrix. CV
delivers an unbiased evaluation for the performance of a GS
model; therefore, a 5-fold CV approach was implemented for
reducing the unwanted bias (Kohavi, 1995), where the genotypes
(for each trait separately) were randomly split into five equal-
sized folds. SE_CV1 model was fitted with missing phenotypic
values for the tested individuals. Prediction accuracy (PA) was
subsequently calculated as the correlation of predicted breeding
values with the observed phenotypic values for the missing
genotypes. This step was repeated for each environment and fold
separately. The genomic PA was then calculated by iteratively
assigning 1-fold as the validation set and the remaining folds as
the training set. This five-fold validation process was repeated 50
times to randomly shuffle the lines in each fold. The accuracy
of the genomic predictions was measured as the Pearson’s
correlation between the predicted and actual trait BLUPs.

A mixed model of the simplified form was fitted for genomic
predictions as follows:

y = Xb+ Zg+ e

where y is a vector of adjusted phenotypes, X is a design matrix
relating the fixed effects to each genotype, b is a vector of fixed
effects, Z is a design matrix connecting records to genetic values,
g is a vector of additive genetic effects for a genotype, and e is a
vector of random normal deviates with variance δ2e .

Advanced ME GBLUP Model, CV Schemes,
and Predictive Ability
The advanced ME genomic prediction analysis was implemented
in Solving Mixed Model Equations in the R (sommer) package
(Covarrubias-Pazaran, 2016). Two types of ME_CV schemes
representing actual breeding scenarios were implemented. The
first scenario represents a use case where some genotypes are
missing across all environments (ME_CV1). ME_CV1 was fitted
by masking the phenotypic values of genotypes belonging to
the test set across all environments. PA was calculated as the
correlation of predicted and observed phenotypic values for the
missing genotypes at each environment separately. In the second
scenario, the entire trial or all genotypes are missing at one of
the environments (ME_CV2). ME_CV2 was fitted by masking
the phenotypic values of all lines in an SE. The trained model
was then used to predict the breeding values of lines in the
missing environment. PA was calculated as the correlation of
predicted and observed phenotypic values of the tested lines. The
CV schemes are illustrated in Figure 1.

In ME genomic predictions, the SE model was rewritten and
implemented as follows:

yij = gj + Ei + gEij + eij

where yij represents response of jth line in the ith environment
(i = 1, 2,. . . . . . i, j = 1, 2,. . . . . . j; gj is the effect of jth line with
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FIGURE 1 | Prediction scheme for the single-environment (SE) and multi-environment (ME) genomic prediction models with two cross-validation schemes (CV1 and

CV2) used in this study. SE_CV1 model: the SE prediction model with CV scheme 1 where a trait [e.g., grain yield (GRYLD)] is predicted at a time; we used 80% of

individuals as the training set (phenotyped and genotyped, light green) and 20% of the individuals as the testing set (genotyped only, light gray with validation code for

the trait to be predicted, yield as an example here). ME_CV1 model: the ME prediction model with CV scheme 1 for new un-phenotyped individuals; we used 80% of

individuals as the training set (phenotyped for all traits and genotyped; light green) and 20% of the individuals as the validation set (genotyped but not phenotyped for

any trait; light gray with validation code for the trait to be predicted, GRYLD as an example here). ME_CV2 model: the ME prediction model with CV scheme 2 where

100% of the information from other traits are available for the individuals to be predicted; we used 80% of individuals as the training set (phenotyped for all traits and

genotyped; light green) and 20% of individuals as the validation set (phenotyped for associated traits but not for the targeted traits, and genotyped; light gray with

predication code for the trait to be predicted, yield as an example here). Rectangles represent genotypes, and colors represent whether the phenotypic information

was used (light green) or not (light gray with validation code for the trait to be predicted, GRYLD as an example) for the population. A similar scheme was applied for

predicting days to heading (DTHD), days to maturity (DAYSMT), and thousand-grain weight (TGW).

g = (g1........gj)T∼N(0, δ21Gg), δ21 is the genomic variance, Gg is

the genomic relationship matrix. Ei represents the effect of the

ith environment. gEij is the random term that takes into account

the interaction between the genomic effect of jth line and the

ith environment with gE= (g1 . . . . . . . . . gj)T∼N (0, δ22II⊗ G),
where δ22 is the interaction variance. Eij is a random residual effect

of the jth line in the ith environment [N (0, δ22)], where δ22 is the
residual variance.

RESULTS

Heritability, Correlations, and Trait
Characterization
A range of variation was detected for GRYLD and other
related traits across environments/years (LDH17 and LDH18
and JBL17 and JBL18). The highest averaged GRYLD over
environments/years was observed at JBL18 (9.4 ton/ha),
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TABLE 1 | Variability analysis of various yield-related agronomic traits for four environments at two locations.

Loc# Env Trait## H2 G Var R Var G Mean LSD CV G Sig

JBL JBL17 DTHD 0.84 10.98 4.04 81.96 3.65 2.45 0

DAYSMT 0.86 5.86 1.89 124.82 2.52 1.10 0

GRYLD 0.48 0.29 0.63 7.87 1.08 10.09 0.000151

TGW 0.86 26.59 8.92 54.66 5.47 5.47 0

JBL18 DTHD 0.78 12.79 7.30 79.26 4.71 3.41 0

DAYSMT 0.71 4.89 3.96 124.67 3.32 1.60 9.08E-13

GRYLD 0.47 0.15 0.34 8.76 0.79 6.67 0.000172

TGW 0.80 12.53 6.34 46.22 4.45 5.45 0

LDH LDH17 DTHD 0.96 12.61 1.19 94.85 2.11 1.15 0

DAYSMT 0.74 4.79 3.29 148.73 3.09 1.22 6.88E-15

GRYLD 0.74 0.21 0.15 7.06 0.66 5.55 2.73E-14

TGW 0.81 15.42 7.03 45.48 4.73 5.83 0

LDH18 DTHD 0.88 8.58 2.44 103.71 2.89 1.51 0

DAYSMT 0.88 8.18 2.25 144.52 2.80 1.04 0

GRYLD 0.62 0.16 0.20 7.26 0.69 6.11 1.92E-08

TGW 0.83 14.66 6.13 44.30 4.47 5.59 0

#Loc, location; Env, Environment; H2, heritability; G Var, genotypic variance; R Var, residual variance; LSD, least significant difference; CV, critical variance; G Sig, genotypic significance;

LDH, Ludhiana; JBL, Jabalpur.
##DTHD, days to heading; DAYSMT, days to maturity; GRYLD, grain yield; TGW, thousand-grain weight.

TABLE 2 | Variability analysis of various yield-related agronomic traits for four environments at two locations.

Traits H2 G Var G × E Var R Var G Mean LSD CV n Rep n Env G Sig G × E Sig

DTHD 0.90 8.94 2.29 3.74 89.94 2.69 2.15 2 4 8.93E-73 1.16E-18

DAYSMT 0.83 4.00 1.94 2.83 135.68 2.32 1.24 2 4 4.34E-44 2.01E-21

GRYLD 0.38 0.05 0.15 0.33 7.74 0.49 7.43 2 4 0.0003 3.69E-13

TGW 0.78 9.90 7.41 7.10 47.67 4.07 5.59 2 4 1.13E-33 4.23E-35

H2, heritability; G Var, genotypic variance; R Var, residual variance; LSD, least significant difference; CV, critical variance; G Sig, genotypic significance; DTHD, days to heading; DAYSMT,

days to maturity; GRYLD, grain yield; TGW, thousand-grain weight.

followed by JBL17 (8.7 ton/ha), LDH17 (8.2 ton/ha), and
LDH18 (7.9 ton/ha). Similarly, the TGW trait also showed
variation across environments. The highest averaged TGW over
environments/years was observed at JBL17 (69 g), followed
by JBL18 (59.5 g), LDH17 (58.4 g), and LDH18 (53.5 g). We
observed significant G × E interaction for the GRYLD and
DAYSMT in JBL18 and LDH17 (Tables 1, 2). For all traits, the
broad-sense heritability ranged from 0.47 to 0.96. The broad-
sense heritability of DTHD was the highest (0.96) in LDH17,
while GRYLD, the lowest (0.47) was in JBL18, and the highest
(0.74) was in LDH17. TGW had the highest stability and
relatively high heritability (0.80–0.86) across environments.

The phenological traits DTHD and DAYSMT displayed
the strongest positive correlation (0.88), followed by a weak
positive correlation TGW-GRYLD (0.15), while GRYLD and
DTHD (−0.73) demonstrated negative correlations. The lowest
correlation was observed between GRYLD andDAYSMT (−0.76)
traits. The principal component analysis (PCA) of multivariate
analysis enables the easier understanding of effects and networks

among different traits and elucidates genotypic difference
among a set of given traits, i.e., the first two PCs explained
92% of the total variation. The PC1 explained 70.3% of the
total variance and PC2 explained 21.7% of the total variance
(Figure 2).

Baseline SE Model: Performance of
Untested Lines in the Same Environment
A GS scenario representing SE breeding programs was tested.
In this model, the PAs of the GS models for each of the four
traits were separately generated for all four tested environments.
In other words, the environments were treated as independent.
Overall, the PA of the SE model was significantly lower among
the three tested GS scenarios (Table 4; Figure 3). PA was the
highest for TGW (0.34) and the lowest for GRYLD (0.18) traits.
A relatively low moderate PA ranging between 0.24 and 0.25
was observed for DAYSMT and DTHD traits. Among the tested
environments, JBL18 had the lowest overall PA (0.01–0.02)
compared to the rest of the three environments for DTHD and
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FIGURE 2 | The principal component analysis shows the correlation among GRYLD, TGW, DAYSMT, and DTHD in four environments (LDH17, LDH18, JBL17, and

JBL18).

DAYSMT (0.25–0.40). TGW was the only trait where a highly
consistent and moderate PA (0.32–0.35) across all environments
was observed. PA for GRYLD was the highest for LDH18 (0.32)
and the lowest for JBL17 (0.08).

Advanced ME Model: Performance of
Tested Lines in Untested Environments and
Untested Lines in Tested Environments
The inclusion of environmental information in ME models
significantly improved the PA over SE models across all traits
and environments (Figure 3). A very high and consistent PA

ranging from 0.69 to 0.85 was observed for all traits and

environments for both ME models (ME_CV1 and ME_CV2).

The most considerable improvement in PA due to ME was

observed for the GRYLD trait, where PA increased from 0.18
to 0.73 for SE and ME models (Table 4). Interestingly, identical

trait rankings were also observed for two ME models, where

the DTHD ranked the highest (0.85) and GRYLD ranked the
lowest (0.69–0.73) among all four traits. While the ME models

had identical trait rankings, the environments ranked slightly
differently for the two models for all traits. For instance, both
years (2017 and 2018) at the LDH location had higher overall PA
compared to JBL for all traits.

DISCUSSION

Crop breeders regularly evaluate the performance of genotypes

and collect multiple traits data in various environments. The

genotype-based selection on phenotypic and GBS marker
information using genomic prediction models is gradually
acquiring acceptance in breeding with the initiation of
economical next-generation sequencing (NGS) technologies
(Poland and Rife, 2012). Limited study has been conducted using
the multi-environment genomic prediction (ME-GP) methods
due to the complexity and higher computing requirements
(Oakey et al., 2016; Rincent et al., 2017; Montesinos-López et al.,
2018; Roorkiwal et al., 2018; Bhandari et al., 2019; Tolhurst et al.,
2019; Pandey et al., 2020).
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FIGURE 3 | Bar plots showing the prediction accuracy (PA) of DAYSMT, DTHD, GRYLD, and TGW using SE and ME models from individual experiments across

locations (LDH17, LDH18, JBL17, and JBL18). SE_CV1 predicting SE at a time, ME_CV1 predicting new lines with genotypic information only, and ME_CV2

predicting partially phenotyped lines by using genotypic and phenotypic information from all traits from individuals in the training set, and genotypic and correlated

phenotypic traits in the testing set.

TABLE 3 | Genetic and phenotypic correlations in agronomic important traits.

Genetic correlations Phenotypic correlations

Traits DTHD DAYSMT GRYLD Traits DTHD DAYSMT GRYLD

DAYSMT 0.94 DAYSMT 0.83

GRYLD −0.30 −0.29 GRYLD −0.22 −0.08

TGW −0.33 −0.26 0.22 TGW −0.29 −0.24 0.07

DTHD, days to heading; DAYSMT, days to maturity; GRYLD, grain yield; TGW, thousand-grain weight.

Trait Correlation and Characterization: A
Vital Factor for Improving Accuracy in
ME-GP
In this study, advanced breeding lines as part of the bread wheat
program of CIMMYT were evaluated under irrigated conditions
at two locations (JBL and LDH) for 2 years (2017 and 2018) (i.e.,

four environments). This study evaluated four traits (i.e., DTHD,

DAYSMT, GRYLD, and TGW) for use in an ME trait GP model.

GRYLD and related traits were positively correlated to each other
in two sets (i.e., 1: DAYSMT and DTHD; and 2: GRYLD and
TGW) (Figure 4). This positive correlation of GRYLDwith TGW
in this study points out that the GRYLD was mainly distinct by
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TABLE 4 | Genomic prediction accuracies averaged across four environments for

four traits and three modeling scenarios (a) single-environment CV1 (SE_CV1), (b)

multi-environment CV1 (ME_CV1), and (c) multi-environment CV2 (ME_CV2).

Traits Average prediction accuracy

SE_CV1 ME_CV1 ME_CV2

DAYSMT 0.24 0.78 0.78

DTHD 0.25 0.85 0.85

GRYLD 0.18 0.69 0.73

TGW 0.34 0.82 0.83

DTHD, days to heading; DAYSMT, days to maturity; GRYLD, grain yield; TGW, thousand-

grain weight.

the TGW factor. The negative relationship between GRYLD and
DTHD indicates that the early-headed genotypes play a vital role
in the stability of advanced breeding line yield during grain filling
and finally affecting the yield component (Sharma and Smith,
1986).

Yield and Related Trait Heritability
Difference Among Environments
Our results showed that the heritability of the traits ranged
from moderate (i.e., GRYLD) to high (i.e., DAYSMT, DTHD,
and TGW). Among the four traits, the phenological traits (i.e.,
DTHD and DAYSMT) and TGW particularly showed high
stable broad-sense heritability ranging from 0.71 to 0.96. It
suggests the high quality of the phenotypic measurements and
significant predictive potential of the traits. GRYLD, a highly
quantitative and environmentally sensitive trait (Maphosa et al.,
2014; Würschum et al., 2018), showed considerable fluctuation
across environments with JBL environment having relatively
lower heritability (0.47–0.48) compared to LDH (0.62–0.74). The
variance explained by agronomic traits was significant (Table 1)
and indicating a large G × E impact on GRYLD resulted in
a lower heritability compared to other traits. Hence, lower
heritability estimates for GRYLD were expected as numerous
genes govern it. The low heritability and yield variances also
could be the possible effect of the smaller plot size and lower
sowing density (Rode et al., 2011; Sallam et al., 2015; Thorwarth
et al., 2017; Bhatta et al., 2018) (Tables 1, 2). The climate in
these two environments is considerably different. While the
growing season length is relatively shorter in JBL due to the high
overall temperature, the LDH location has a moderately colder
climate and longer growing season (Mondal et al., 2016). On
the one hand, these highly variable environments do underscore
a highly challenging phenotypic landscape; it also presents a
significant opportunity to leverage the ME trial framework for
trait improvement (Lillemo et al., 2005; Braun et al., 2010). The
presence of significant genetic and environmental correlations
(i.e., positive correlation in TGW and GRYLD, and DAYSMT
and DTHD) in our experiments led us to hypothesize that
the correlated traits and environmental relationships can be
leveraged to improve the selection accuracy through marker-
based ME-GS models (Figure 4). Therefore, we proceeded with

applying the ME model to test this hypothesis on our selected set
of lines (Table 3).

SE and ME Genomic Prediction Across
Years and Sites and ME Model Utilities in
Crop Breeding
While weak predictive capability continues to be a major issue in
successfully applying GS (Crossa et al., 2013), numerous studies
have demonstrated that GS could be beneficial for quantitative
traits such as GRYLD with low heritability and also on how
GS can be utilized in a breeding program by using even low to
moderate GP in early generation selection (Belamkar et al., 2018;
Lado et al., 2018; Michel et al., 2018). There are several aspects
influencing the PA of GP models. Some of the crucial aspects
associated with this study of ME were the genetic relationship
between the testing and training sets, the size of the training set,
heritability and trait architecture, and correlations among traits
and environments (Asoro et al., 2011; Crossa et al., 2013; Heslot
et al., 2013; Sallam et al., 2015; Zhang et al., 2015; Duangjit et al.,
2016; Lado et al., 2016; Wang et al., 2016; Thorwarth et al., 2017;
Akdemir and Isidro-Sánchez, 2019; Olatoye et al., 2020). Even
though the size of the population was small in our study, the
GP using correlated traits in theME_CV1 andME_CV2 schemes
had higher PA, indicating that correlated traits up to some extent
could balance the impact on the sizes of small population.

Models that leverage E and G × E components have been
shown to improve the genomic prediction accuracies for highly
quantitative traits such as phenology and GRYLD (Burgueño
et al., 2012; Dias et al., 2018). To evaluate the potential of genomic
predictions in highly productive but variable environments of
JBL and LDH, we simulated three different genomic prediction
scenarios representing actual breeding programs. A comparison
of single and ME models showed a 2- to 3-fold improvement in
model performance for all traits (Table 4; Figure 3). Among the
four traits, GRYLD showed the highest (3.8X) absolute increase
in PA from SE to MEmodels, highlighting the significance of ME
modeling in GRYLD predictions. For the SE model, TGW had
the most consistent PA across four environments (0.32–0.34),
which was in agreement with the highly stable heritability and a
lower fraction of G× E observed for this trait (Table 2; Figure 3).
Interestingly, the PA of the two ME models (CV1 and CV2)
showed no significant change, suggesting that the ME model was
able to predict well the untested environments and lines equally.
A model can be highly predictive of untested environments in
scenarios where environments are highly correlated (Malosetti
et al., 2016; Jarquín et al., 2017), which seems to be the case
for our environments as reflected by the low G × E and
high heritability (Table 1; Figure 3). Similarly, a remarkable
improvement in the predictive performance of ME_CV1 can
be partially attributed to the fact that our sampled set of lines
came from the same breeding program and the sample size of
141 lines was relatively moderate. From the perspective of a
breeding program, the strong performance of the twoMEmodels
suggests that our breeding program can increase the overall
population size without losing any significant predictive power
through sparse testing at these two environments (Cullis et al.,
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FIGURE 4 | Distributions, scatter plots, and correlations between agronomic traits using best linear unbiased predictions from combining and four experiments

[Ludhiana (LDH)17, LDH18, Jabalpur (JBL)17, and JBL18]. The distribution of DTHD, DAYSMT, GRYLD, and TGW values is displayed on the diagonal with

environments indicated by colors. The top row represents the distribution of traits as boxplots. The upper right triangle shows pairwise correlation values as overall

correlation in black color while other colors are represented individually as explained earlier. The correlations among environments are displayed as scatter plots in the

lower triangular area and as the Pearson’s correlation coefficients in the upper triangular area. Numbers indicate a correlation that is significantly different from 0 at an

alpha level of 0.05. DTHD, DAYSM, GRYLD, and TGW. ## level of significance; ***p < 0.001, **p < 0.01, *p < 0.1, and p <0.15.

2020; Jarquin et al., 2020). A high population size from the sparse
testing framework here can deliver a high selection gain through
increased selection intensity.

CONCLUSION

Breeding for quantitative traits is challenging due to the
complex genetic architecture of traits that are highly affected
by the complex G × E interactions in field trials. A suitable
genomic prediction modeling strategy can potentially address

this challenge through ME genomic prediction models. In
this study, we evaluated genomic prediction accuracies of
advanced spring wheat lines under four diverse environments
in two wheat-growing regions in India. The ME-GS models
showed significant improvement over SE models in terms
of prediction accuracies. Our results suggest that ME can
be leveraged to improve the breeding selection efficiency
for major agronomic and phonological traits. Over the
years, CIMMYT has established an extensive network of
field-testing sites in South Asian countries including India,
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Pakistan, Bangladesh, and Nepal. Our results suggest that
the wheat breeding programs in these countries can greatly
benefit from GS through better modeling of environmental
variance and sparse testing of a larger cohort of breeding
lines. Future research efforts will be directed toward including
high-throughput phenotyping traits such as plant height,
Normalized Difference Vegetation Index (NDVI), and
senescence into the genomic prediction framework to improve
the selection efficiency of spring wheat in the South Asian
breeding programs.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

VT and DS drafted the manuscript. VT, DS, GD,
and YC analyzed the data. UK, JP, and RS designed
the field trials, conducted genotyping, and provided
breeding lines. VT and YG collected field data. UK,
BT, JP, RS, and AJ supervised the overall study. All
authors contributed to the article and approved the
submitted version.

FUNDING

This study was supported by the United States Agency
for International Development (USAID), Feed the Future
Innovation Lab for Applied Wheat Genomics (Cooperative
Agreement No. AID-OAA-A-13-00051), and CGIAR Research
Program on Wheat (CRP) Partner Grant to BISA (Grant Code:
A5017.09.64).

ACKNOWLEDGMENTS

We would like to thank the field staff at the field sites of the
Borlaug Institute of South Asia at Jabalpur and Ludhiana for their
assistance with the data collection.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
720123/full#supplementary-material

Supplementary Figure 1 | Weather information of LDH17 and LDH18.

Supplementary Figure 2 | Weather information of JBL17 and JBL18.

Supplementary Table 1 | List of 141 genotypes with pedigree information used

in this study.

Supplementary Table 2 | List of traits that were evaluated during this study in the

field trials.

Supplementary Table 3 | GBS HapMap data used in this study.

Supplementary Table 4 | Best linear unbiased predictions (BLUPs) data used in

this study.

REFERENCES

Akdemir, D., and Isidro-Sánchez, J. (2019). Design of training populations

for selective phenotyping in genomic prediction. Sci. Rep. 9, 1–15.

doi: 10.1038/s41598-018-38081-6

Alvarado, G., Rodríguez, F. M., Pacheco, A., Burgueño, J., Crossa, J., Vargas,

M., et al. (2020). META-R: a software to analyze data from multi-

environment plant breeding trials. Crop J. 8, 745–756. doi: 10.1016/j.cj.2020.

03.010

Arzani, A., and Ashraf, M. (2017). Cultivated ancient wheats (triticum spp.): a

potential source of health-beneficial food products. Compr. Rev. Food Sci. Food

Saf. 16, 477–488. doi: 10.1111/1541-4337.12262

Asoro, F. G., Newell, M. A., Beavis, W. D., Scott, M. P., and Jannink, J.

(2011). Accuracy and training population design for genomic selection

on quantitative traits in elite north american oats. Plant Genom. 4:007.

doi: 10.3835/plantgenome2011.02.0007

Belamkar, V., Guttieri, M. J., Hussain, W., Jarquín, D., El-basyoni, I., Poland,

J., et al. (2018). Genomic selection in preliminary yield trials in a

winter wheat breeding program. G3 Genes, Genomes, Genet. 8, 2735–2747.

doi: 10.1534/g3.118.200415

Bhandari, A., Bartholom,é, J., Cao-Hamadoun, T.-V., Kumari, N.,

Frouin, J., Kumar, A., et al. (2019). Selection of trait-specific markers

and multi-environment models improve genomic predictive ability

in rice. PLoS ONE 14:e0208871. doi: 10.1371/journal.pone.0208

871

Bhatta, M., Morgounov, A., Belamkar, V., and Baenziger, P. S. (2018).

Genome-Wide association study reveals novel genomic regions for

grain yield and yield-related traits in drought-stressed synthetic

hexaploid wheat. Int. J. Mol. Sci. 19:3011. doi: 10.3390/ijms191

03011

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y.,

and Buckler, E. S. (2007). TASSEL: software for association mapping

of complex traits in diverse samples. Bioinformatics 23, 2633–2635.

doi: 10.1093/bioinformatics/btm308

Braun, H. J., Atlin, G., and Payne, T. (2010). “Multi-location testing as a tool to

identify plant response to global climate change,” in Climate Change and Crop

Production, ed M. P. Reynolds (CABI International), 115–138.

Burgueño, J., Campos, G., de los, Weigel, K., and Crossa, J. (2012). Genomic

prediction of breeding values when modeling genotype × environment

interaction using pedigree and dense molecular markers. Crop Sci. 52, 707–719.

doi: 10.2135/cropsci2011.06.0299

Charmet, G., Storlie, E., Oury, F. X., Laurent, V., Beghin, D., Chevarin, L., et al.

(2014). Genome-wide prediction of three important traits in bread wheat.Mol.

Breed. 34, 1843–1852. doi: 10.1007/s11032-014-0143-y

Charmet, G., Tran, L.-G., Auzanneau, J., Rincent, R., and Bouchet,

S. (2020). BWGS: A R package for genomic selection and its

application to a wheat breeding programme. PLoS ONE 15:e0222733.

doi: 10.1371/journal.pone.0222733

Covarrubias-Pazaran, G. (2016). Genome-Assisted prediction of quantitative

traits using the R package sommer. PLoS ONE 11:e0156744.

doi: 10.1371/journal.pone.0156744

Crossa, J., Campos, G., de los, Pérez, P., Gianola, D., Burgueño, J., Araus,

J. L., et al. (2010). Prediction of genetic values of quantitative traits in

plant breeding using pedigree and molecular markers. Genetics 186, 713–724.

doi: 10.1534/genetics.110.118521

Crossa, J., Jarquín, D., Franco, J., Pérez-Rodríguez, P., Burgueño, J., Saint-Pierre,

C., et al. (2016). Genomic prediction of gene bank wheat landraces. G3

Genes|Genomes|Genetics 6:1819. doi: 10.1534/g3.116.029637

Crossa, J., Pérez, P., Campos, G., de los, Mahuku, G., Dreisigacker, S., and

Magorokosho, C. (2011). Genomic selection and prediction in plant

Frontiers in Plant Science | www.frontiersin.org 10 October 2021 | Volume 12 | Article 720123

https://www.frontiersin.org/articles/10.3389/fpls.2021.720123/full#supplementary-material
https://doi.org/10.1038/s41598-018-38081-6
https://doi.org/10.1016/j.cj.2020.03.010
https://doi.org/10.1111/1541-4337.12262
https://doi.org/10.3835/plantgenome2011.02.0007
https://doi.org/10.1534/g3.118.200415
https://doi.org/10.1371/journal.pone.0208871
https://doi.org/10.3390/ijms19103011
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.2135/cropsci2011.06.0299
https://doi.org/10.1007/s11032-014-0143-y
https://doi.org/10.1371/journal.pone.0222733
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1534/genetics.110.118521
https://doi.org/10.1534/g3.116.029637
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Tomar et al. Increased Predictive Accuracy of Multi-Environment Genomic Prediction

breeding. J. Crop Improv. 25, 239–261. doi: 10.1080/15427528.2011.

558767

Crossa, J., Pérez, P., Hickey, J., Burgueño, J., Ornella, L., Cerón-Rojas, J., et al.

(2013). Genomic prediction in CIMMYTmaize and wheat breeding programs.

Hered 112, 48–60. doi: 10.1038/hdy.2013.16

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín,

D., de los Campos, G., et al. (2017). Genomic selection in plant

breeding: methods, models, and perspectives. Trends Plant Sci. 22, 961–975.

doi: 10.1016/j.tplants.2017.08.011

Cullis, B. R., Smith, A. B., Cocks, N. A., and Butler, D. G. (2020). The design of

early-stage plant breeding trials using genetic relatedness. J. Agric. Biol. Environ.

Stat. 25, 553–578. doi: 10.1007/s13253-020-00403-5

Curtis, T., and Halford, N. G. (2014). Food security: the challenge of increasing

wheat yield and the importance of not compromising food safety. Ann. Appl.

Biol. 164, 354–372. doi: 10.1111/aab.12108

De los Campos, G., Naya, H., Gianola, D., Crossa, J., Legarra, A., Manfredi,

E., et al. (2009). Predicting quantitative traits with regression models

for dense molecular markers and pedigree. Genetics 182, 375–385.

doi: 10.1534/genetics.109.101501

Dias, K. O. D. G., Gezan, S. A., Guimarães, C. T., Nazarian, A., da Costa e Silva, L.,

Parentoni, S. N., et al. (2018). Improving accuracies of genomic predictions for

drought tolerance in maize by joint modeling of additive and dominance effects

inmulti-environment trials.Hered 121, 24–37. doi: 10.1038/s41437-018-0053-6

Dreisigacker, S., Deepmala, S., Jaimez, R. A., Luna-Garrid, B., Muñoz-Zavala, S.,

Núñez-Ríos, C., et al. (2016). CIMMYT Wheat Molecular Genetics: Laboratory

Protocols and Applications to Wheat Breeding.Mexico, DF: CIMMYT.

Duangjit, J., Causse, M., and Sauvage, C. (2016). Efficiency of genomic selection for

tomato fruit quality.Mol. Breed. 36, 1–16. doi: 10.1007/s11032-016-0453-3

González-Camacho, J. M., Ornella, L., Pérez-Rodríguez, P., Gianola, D.,

Dreisigacker, S., and Crossa, J. (2018). Applications of machine learning

methods to genomic selection in breeding wheat for rust resistance. Plant

Genome 11:170104. doi: 10.3835/plantgenome2017.11.0104

Hayes, B. J., Panozzo, J., Walker, C. K., Choy, A. L., Kant, S., Wong,

D., et al. (2017). Accelerating wheat breeding for end-use quality with

multi-trait genomic predictions incorporating near infrared and nuclear

magnetic resonance-derived phenotypes. Theor. Appl. Genet. 130, 2505–2519.

doi: 10.1007/s00122-017-2972-7

Heffner, E. L., Jannink, J.-L., Iwata, H., Souza, E., and Sorrells, M. E. (2011).

Genomic selection accuracy for grain quality traits in biparental wheat

populations. Crop Sci. 51, 2597–2606. doi: 10.2135/cropsci2011.05.0253

Hellin, J., Shiferaw, B., Cairns, J. E., Reynolds, M., Ortiz-Monasterio, I., Banziger,

M., et al. (2012). Climate change and food security in the developing world:

Potential of maize and wheat research to expand options for adaptation and

mitigation. J. Dev. Agric. Econ. 4, 311–321. doi: 10.5897/JDAE11.112

Heslot, N., Akdemir, D., Sorrells, M. E., and Jannink, J. L. (2013). Integrating

environmental covariates and crop modeling into the genomic selection

framework to predict genotype by environment interactions. Theor. Appl.

Genet. 127, 463–480. doi: 10.1007/s00122-013-2231-5

Heslot, N., Yang, H.-P., Sorrells, M. E., and Jannink, J.-L. (2012). Genomic

selection in plant breeding: a comparison of models. Crop Sci. 52, 146–160.

doi: 10.2135/cropsci2011.06.0297

Jannink, J.-L., Lorenz, A. J., and Iwata, H. (2010). Genomic selection in

plant breeding: from theory to practice. Brief. Funct. Genomics. 9, 166–177.

doi: 10.1093/bfgp/elq001

Jarquin, D., Howard, R., Crossa, J., Beyene, Y., Gowda, M., Martini, J. W. R., et al.

(2020). Genomic prediction enhanced sparse testing for multi-environment

trials. G3 Genes| Genomes|Genet. 10, 2725–2739. doi: 10.1534/g3.120.

401349

Jarquín, D., Silva, C. L., da, Gaynor, R. C., Poland, J., Fritz, A., Howard, R.,

et al. (2017). Increasing genomic-enabled prediction accuracy by modeling

genotype × environment interactions in kansas wheat. Plant Genome 10:0130.

doi: 10.3835/plantgenome2016.12.0130

Juliana, P., Montesinos-López, O. A., Crossa, J., Mondal, S., González Pérez, L.,

Poland, J., et al. (2019). Integrating genomic-enabled prediction and high-

throughput phenotyping in breeding for climate-resilient bread wheat. Theor.

Appl. Genet. 132, 177–194. doi: 10.1007/s00122-018-3206-3

Juliana, P., Singh, R. P., Singh, P. K., Crossa, J., Huerta-Espino, J., Lan,

C., et al. (2017a). Genomic and pedigree-based prediction for leaf, stem,

and stripe rust resistance in wheat. Theor. Appl. Genet. 130, 1415–1430.

doi: 10.1007/s00122-017-2897-1

Juliana, P., Singh, R. P., Singh, P. K., Crossa, J., Rutkoski, J. E., Poland, J. A.,

et al. (2017b). Comparison of models and whole-genome profiling approaches

for genomic-enabled prediction of Septoria Tritici Blotch, Stagonospora

Nodorum Blotch, and Tan Spot resistance in wheat. Plant Genome 10:0082.

doi: 10.3835/plantgenome2016.08.0082

Kassambara, A., andMundt, F. (2020). Factoextra: Extract and Visualize the Results

of Multivariate Data Analyses. Available online at: https://cran.r-project.org/

packagefactoextra (accessed May 05, 2020).

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy

estimation and model selection. Proceedings of IJCAI’95 2, 1137–1143.

Lado, B., Barrios, P. G., Quincke, M., Silva, P., and Gutiérrez, L. (2016).

Modeling genotype × environment interaction for genomic selection with

unbalanced data from a wheat breeding program. Crop Sci. 56, 2165–2179.

doi: 10.2135/cropsci2015.04.0207

Lado, B., Vázquez, D., Quincke, M., Silva, P., Aguilar, I., and Gutiérrez, L.

(2018). Resource allocation optimization with multi-trait genomic prediction

for bread wheat (Triticum aestivum L.) baking quality. Theor. Appl. Genet. 131,

2719–2731. doi: 10.1007/s,00122-018-3186-3

Lê, S., Josse, J., and Husson, F. (2008). FactoMineR: an R package for multivariate

analysis. J. Stat. Softw. 25, 1–18. doi: 10.18637/jss.v025.i01

Lillemo, M., Ginkel, M., van, Trethowan, R. M., Hernandez, E., and

Crossa, J. (2005). Differential adaptation of CIMMYT bread wheat

to global high temperature environments. Crop Sci. 45, 2443–2453.

doi: 10.2135/cropsci2004.0663

Lozada, D. N., Mason, R. E., Sarinelli, J. M., and Brown-Guedira, G. (2019).

Accuracy of genomic selection for grain yield and agronomic traits in soft red

winter wheat. BMC Genet. 20, 1–12. doi: 10.1186/s12863-019-0785-1

Malosetti, M., Bustos-Korts, D., Boer, M. P., and Eeuwijk, F. A., van

(2016). Predicting responses in multiple environments: issues in relation

to genotype × environment interactions. Crop Sci. 56, 2210–2222.

doi: 10.2135/cropsci2015.05.0311

Maphosa, L., Langridge, P., Taylor, H., Parent, B., Emebiri, L. C., Kuchel, H.,

et al. (2014). Genetic control of grain yield and grain physical characteristics

in a bread wheat population grown under a range of environmental

conditions. Theor. Appl. Genet. 7 127, 1607–1624. doi: 10.1007/s00122-014-

2322-y

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of

total genetic value using genome-wide dense marker maps. Genetics. 157.

4 1819–1829. doi: 10.1093/genetics/157.4.1819

Michel, S., Kummer, C., Gallee, M., Hellinger, J., Ametz, C., Akgöl, B., et al.

(2018). Improving the baking quality of bread wheat by genomic selection in

early generations. Theor. Appl. Genet. 131, 477–493. doi: 10.1007/s00122-017-

2998-x

Mondal, S., Singh, R. P., Mason, E. R., Huerta-Espino, J., Autrique, E., and Joshi,

A. K. (2016). Grain yield, adaptation and progress in breeding for early-

maturing and heat-tolerant wheat lines in South Asia. F. Crop. Res. 192, 78–85.

doi: 10.1016/j.fcr.2016.04.017

Montesinos-López, A., Montesinos-López, O. A., Gianola, D., Crossa, J.,

and Hernández-Suárez, C. M. (2018). Multi-environment genomic

prediction of plant traits using deep learners with dense architecture. G3

Genes|Genomes|Genet. 8, 3813–3828. doi: 10.1534/g3.118.200740

Norman, A., Taylor, J., Edwards, J., and Kuchel, H. (2018). Optimising genomic

selection in wheat: effect of marker density, population size and population

structure on prediction accuracy. G3 Genes|Genomes|Genetics 8, 2889–2899.

doi: 10.1534/g3.118.200311

Norman, A., Taylor, J., Tanaka, E., Telfer, P., Edwards, J., Martinant, J.-P.,

et al. (2017). Increased genomic prediction accuracy in wheat breeding

using a large Australian panel. Theor. Appl. Genet. 130, 2543–2555.

doi: 10.1007/s00122-017-2975-4

Oakey, H., Cullis, B., Thompson, R., Comadran, J., Halpin, C., and Waugh,

R. (2016). Genomic selection in multi-environment crop trials. G3

Genes|Genomes|Genet. 6, 1313–1326. doi: 10.1534/g3.116.027524

Olatoye, M. O., Clark, L. V., Labonte, N. R., Dong, H., Dwiyanti, M.

S., Anzoua, K. G., et al. (2020). Training population optimization for

genomic selection in miscanthus. G3 Genes|Genomes|Genet. 10, 2465–2476.

doi: 10.1534/g3.120.401402

Frontiers in Plant Science | www.frontiersin.org 11 October 2021 | Volume 12 | Article 720123

https://doi.org/10.1080/15427528.2011.558767
https://doi.org/10.1038/hdy.2013.16
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1007/s13253-020-00403-5
https://doi.org/10.1111/aab.12108
https://doi.org/10.1534/genetics.109.101501
https://doi.org/10.1038/s41437-018-0053-6
https://doi.org/10.1007/s11032-016-0453-3
https://doi.org/10.3835/plantgenome2017.11.0104
https://doi.org/10.1007/s00122-017-2972-7
https://doi.org/10.2135/cropsci2011.05.0253
https://doi.org/10.5897/JDAE11.112
https://doi.org/10.1007/s00122-013-2231-5
https://doi.org/10.2135/cropsci2011.06.0297
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.1534/g3.120.401349
https://doi.org/10.3835/plantgenome2016.12.0130
https://doi.org/10.1007/s00122-018-3206-3
https://doi.org/10.1007/s00122-017-2897-1
https://doi.org/10.3835/plantgenome2016.08.0082
https://cran.r-project.org/packagefactoextra
https://cran.r-project.org/packagefactoextra
https://doi.org/10.2135/cropsci2015.04.0207
https://doi.org/10.1007/s
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.2135/cropsci2004.0663
https://doi.org/10.1186/s12863-019-0785-1
https://doi.org/10.2135/cropsci2015.05.0311
https://doi.org/10.1007/s00122-014-2322-y
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1007/s00122-017-2998-x
https://doi.org/10.1016/j.fcr.2016.04.017
https://doi.org/10.1534/g3.118.200740
https://doi.org/10.1534/g3.118.200311
https://doi.org/10.1007/s00122-017-2975-4
https://doi.org/10.1534/g3.116.027524
https://doi.org/10.1534/g3.120.401402
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Tomar et al. Increased Predictive Accuracy of Multi-Environment Genomic Prediction

Pandey, M. K., Chaudhari, S., Jarquin, D., Janila, P., Crossa, J., Patil, S. C.,

et al. (2020). Genome-based trait prediction in multi- environment

breeding trials in groundnut. Theor. Appl. Genet. 133, 3101–3117.

doi: 10.1007/s00122-020-03658-1

Pérez-Rodríguez, P., Gianola, D., González-Camacho, J. M., Crossa, J., Manès,

Y., and Dreisigacker, S. (2012). Comparison between linear and non-

parametric regression models for genome-enabled prediction in wheat. G3

Genes|Genomes|Genetics 2, 1595–1605. doi: 10.1534/g3.112.003665

Poland, J. A., Brown, P. J., Sorrells, M. E., and Jannink, J.-L. (2012).

Development of high-density genetic maps for barley and wheat using a

novel two-enzyme Genotyping-by-Sequencing approach. PLoS ONE 7:e32253.

doi: 10.1371/journal.pone.0032253

Poland, J. A., and Rife, T.W. (2012). Genotyping-by-Sequencing for plant breeding

and genetics. Plant Genome 5:005. doi: 10.3835/plantgenome,2012.05.0005

R Core Team (2019). R: A Language and Environment for Statistical Computing. R

Found. Stat. Comput. Avaialble online at: https://www.R-project.org/

Rincent, R., Kuhn, E., Monod, H., Oury, F.-X., Rousset, M., Allard, V., et al. (2017).

Optimization of multi-environment trials for genomic selection based on

crop models. Theor. Appl. Genet. 130, 1735–1752. doi: 10.1007/s00122-017-29

22-4

Rode, J., Ahlemeyer, J., Friedt, W., and Ordon, F. (2011). Identification of marker-

trait associations in the German winter barley breeding gene pool (Hordeum

vulgare L.).Mol. Breed. 30, 831–843. doi: 10.1007/s11032-011-9667-6

Roorkiwal, M., Jarquin, D., Singh, M. K., Gaur, P. M., Bharadwaj, C., Rathore,

A., et al. (2018). Genomic-enabled prediction models using multi-

environment trials to estimate the effect of genotype × environment

interaction on prediction accuracy in chickpea. Sci. Rep. 8, 1–11.

doi: 10.1038/s41598-018-30027-2

Rutkoski, J., Singh, R. P., Huerta-Espino, J., Bhavani, S., Poland, J., Jannink,

J. L., et al. (2015). Genetic gain from phenotypic and genomic selection

for quantitative resistance to stem rust of wheat. Plant Genome 8:74.

doi: 10.3835/plantgenome2014.10.0074

Sallam, A. H., Endelman, J. B., Jannink, J.-L., and Smith, K. P. (2015).

Assessing genomic selection prediction accuracy in a dynamic barley breeding

population. Plant Genome 8:20. doi: 10.3835/plantgenome2014.05.0020

Sehgal, D., Autrique, E., Singh, R., Ellis, M., Singh, S., and Dreisigacker, S. (2017).

Identification of genomic regions for grain yield and yield stability and their

epistatic interactions. Sci. Rep. 7, 1–12. doi: 10.1038/srep41578

Sharma, R. C., and Smith, E. L. (1986). Selection for high and low harvest

index in three winter wheat populations1. Crop Sci. 26, 1147–1150.

doi: 10.2135/cropsci1986.0011183X002600060013x

Thorwarth, P., Ahlemeyer, J., Bochard, A.-M., Krumnacker, K., Blümel, H.,

Laubach, E., et al. (2017). Genomic prediction ability for yield-related traits

in German winter barley elite material. Theor. Appl. Genet. 130, 1669–1683.

doi: 10.1007/s00122-017-2917-1

Tolhurst, D. J., Mathews, K. L., Smith, A. B., and Cullis, B. R. (2019).

Genomic selection in multi-environment plant breeding trials using a

factor analytic linear mixed model. J. Anim. Breed. Genet. 136, 279–300.

doi: 10.1111/jbg.12404

Tomar, V., Dhillon, G. S., Singh, D., Singh, R. P., Poland, J., Chaudhary A. A., et al.

(2021). Evaluations of genomic prediction and identification of new loci for

resistance to stripe rust disease in wheat (Triticum aestivum L.) Front. Genet.

12:710485 (in press). doi: 10.3389/fgene.2021.710485

Velu, G., Crossa, J., Singh, R. P., Hao, Y., Dreisigacker, S., Perez-Rodriguez, P., et al.

(2016). Genomic prediction for grain zinc and iron concentrations in spring

wheat. Theor. Appl. Genet. 129, 1595–1605. doi: 10.1007/s00122-016-2726-y

Wang, X., Li, L., Yang, Z., Zheng, X., Yu, S., Xu, C., et al. (2016). Predicting rice

hybrid performance using univariate andmultivariate GBLUPmodels based on

North Carolinamating design II.Hered 118, 302–310. doi: 10.1038/hdy.2016.87

Würschum, T., Leiser, W. L., Langer, S. M., Tucker, M. R., and Longin, C. F. H.

(2018). Phenotypic and genetic analysis of spike and kernel characteristics in

wheat reveals long-term genetic trends of grain yield components. Theor. Appl.

Genet. 131, 2071–2084. doi: 10.1007/s00122-018-3133-3

Zhang, J., Song, Q., Cregan, P. B., and Jiang, G.-L. (2015). Genome-wide

association study, genomic prediction and marker-assisted selection for

seed weight in soybean (Glycine max). Theor. Appl. Genet. 129, 117–130.

doi: 10.1007/s00122-015-2614-x

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Tomar, Singh, Dhillon, Chung, Poland, Singh, Joshi, Gautam,

Tiwari and Kumar. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 12 October 2021 | Volume 12 | Article 720123

https://doi.org/10.1007/s00122-020-03658-1
https://doi.org/10.1534/g3.112.003665
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.3835/plantgenome
https://www.R-project.org/
https://doi.org/10.1007/s00122-017-2922-4
https://doi.org/10.1007/s11032-011-9667-6
https://doi.org/10.1038/s41598-018-30027-2
https://doi.org/10.3835/plantgenome2014.10.0074
https://doi.org/10.3835/plantgenome2014.05.0020
https://doi.org/10.1038/srep41578
https://doi.org/10.2135/cropsci1986.0011183X002600060013x
https://doi.org/10.1007/s00122-017-2917-1
https://doi.org/10.1111/jbg.12404
https://doi.org/10.3389/fgene.2021.710485
https://doi.org/10.1007/s00122-016-2726-y
https://doi.org/10.1038/hdy.2016.87
https://doi.org/10.1007/s00122-018-3133-3
https://doi.org/10.1007/s00122-015-2614-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Increased Predictive Accuracy of Multi-Environment Genomic Prediction Model for Yield and Related Traits in Spring Wheat (Triticum aestivum L.)
	Introduction
	Materials and Methods
	Plant Material
	Field Trials and Phenotypic Evaluation
	Genotyping-by-Sequencing and SNP Filtering
	Statistical Analysis of Phenotypes 
	Baseline Single-Environment (SE) Genomic BLUP Model (GBLUP), CV Schemes, and Predictive Ability
	Advanced ME GBLUP Model, CV Schemes, and Predictive Ability

	Results
	Heritability, Correlations, and Trait Characterization
	Baseline SE Model: Performance of Untested Lines in the Same Environment
	Advanced ME Model: Performance of Tested Lines in Untested Environments and Untested Lines in Tested Environments

	Discussion 
	Trait Correlation and Characterization: A Vital Factor for Improving Accuracy in ME-GP
	Yield and Related Trait Heritability Difference Among Environments 
	SE and ME Genomic Prediction Across Years and Sites and ME Model Utilities in Crop Breeding

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


