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Stalk rot caused by Colletotrichum graminicola is a disease of worldwide importance.
Stalk rot is difficult to detect at the early stages of infection because the fungus colonizes
the tissues inside the maize stem. Current diagnostic methods are time-consuming,
laborious, and destructive to the stem tissue. We utilized Raman spectroscopy to follow
the development of stalk rot in three different maize genotypes grown either in the field
or the greenhouse. We then used the acquired spectra to calibrate statistical models
to differentiate amongst the different disease timepoints and the genotypes themselves.
This non-invasive spectroscopic method enabled high-accuracy identification of stalk
rot based on both stalk and leaf spectra. We additionally found that leaf spectra were
favorable for identifying maize by genotype. Finally, we identified Raman bands that
showed correlation with the sizes of stalk rot-associated lesions in the stems. We
demonstrated that Raman spectroscopy is a viable tool for detection of stalk rot disease,
as well as potent for the differentiation of maize genotypes.

Keywords: anthracnose stalk rot, Colletotrichum graminicola, disease diagnostics, maize, Raman spectroscopy,
Zea mays

INTRODUCTION

Colletotrichum graminicola is one of the most economically disruptive fungi of corn and the
causative agent of a disease associated with 5–20% corn yield loss in the United States alone (Sukno
et al., 2008, 2014; Jackson-Ziems et al., 2014). This pathogen can infect and cause disease primarily
the leaves and stem of maize, where it leads to anthracnose leaf blight (ALB) and stalk rot diseases,
respectively. These are associated with development of sunken necrotic lesions starting 48–72 h
after initial infection (O’Connell et al., 1985). Resistance to anthracnose stalk rot (ASR) is correlated
with the production of specific plant hormones and metabolites. Specifically, Gorman and
coworkers found that reduced jasmonic acid (JA) and increased salicylic acid (SA) levels measured
in JA-deficient mutants of maize were associated with increased resistance to C. graminicola in
ASR (Gorman et al., 2020). SA is produced from compounds such as phenylalanine and cinnamic
acid. These are examples of phenylpropanoids, a family of organic compounds comprising many
essential components for defense against herbivores and pathogens. Furthermore, Vargas et al.
(2012) demonstrated that anthocyanins, hydroxycinnamic acid derivatives, and peroxides were
produced in response to ALB. As key defense molecules such as phenylpropanoids can be assigned
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to specific vibrational bands in Raman spectra, Raman
spectroscopy (RS) may prove ideal for detection of diverse
biochemical changes involved in plant defense against
diseases such as ASR.

Confirmatory diagnosis of stalk rot can be used to guide
application of fungicides allowing for efficient disease control
and maximization of crop yield (Farber et al., 2019a). There
are several molecular and imaging techniques that can be
used to detect stalk rot diseases (Raza et al., 2015). For
instance, polymerase chain reaction (PCR) and enzyme-
linked immunosorbent assay (ELISA) are commonly used for
confirmatory diagnostics of fungal diseases (Alvarez and Lou,
1985; Li et al., 2006; Lievens et al., 2006). However, these
molecular methods have their own limitations. ELISA, for
instance, including double and triple antibody ELISA, has
low sensitivity, photobleaching instability and poor specificity
to related pathogen strains (Lievens et al., 2006; Sankaran
et al., 2010). PCR has limited portability, high labor and cost
requirements, need of specific expertise, difficulty in screening
an entire field, and is essentially destructive to the analyzed
specimen (Wallner et al., 1993; Chitarra and Bulk, 2003; Sankaran
et al., 2010). Recently, several imaging techniques, such as
red–green–blue (RGB) and hyperspectral imaging, as well as
thermography, have been proposed as alternative non-invasive
approaches to molecular methods of analysis. These techniques
allow for fast imaging of broad field areas (Baena et al., 2017).
However, they suffer from poor specificity since the stress
detection is based on changes in plant color or temperature.
Such changes could also be caused by a variety of factors such
as seasonal variations in temperature, nutrient deficiencies, or
unrelated diseases. Additionally, despite quick imaging, data
analysis typically requires several weeks before conclusions can
be drawn (Mahlein et al., 2012). Accounting for the fast growth
of plants and rates of development of biotic and abiotic stresses,
such slow data analysis turnaround drastically decreases practical
applications of RGB, hyperspectral imaging, thermography, and
other imaging techniques (Farber et al., 2019a).

Raman spectroscopy is a label-free, non-invasive, non-
destructive spectroscopic technique that provides information
about the chemical structure of analyzed specimens (Cardona,
1975). The Raman effect is based on inelastic scattering of
photons by molecules that are being excited to higher vibrational
or rotational states (Kurouski et al., 2015). RS is commonly
used in food chemistry (Almeida et al., 2010), electrochemistry
(Zeng et al., 2016), forensics (Virkler and Lednev, 2009; López-
López et al., 2013) and materials science (Cantarero, 2015). It
is capable of monitoring changes in protein secondary structure
(Kurouski et al., 2012), elucidation of composition and origin
of body fluids (Virkler and Lednev, 2009) as well as gun-shot
residues (Bueno and Lednev, 2013). Although RS is generally
known to be a laboratory-based technique, the past decade has
seen several developments of portable Raman spectrometers,
which has enabled the utilization of RS directly in the field
(Yeturu et al., 2016; Sanchez et al., 2019a,b, 2020a). This
technological development sparked the interest of agronomists,
plant pathologists, and plant biologists in utilization of this
technology for analysis of the plant health status.

Our group discovered that (RS) can be used for non-
invasive, non-destructive, fast, chemical-free, and confirmatory
diagnostics of plant diseases (Farber et al., 2019a). We showed
that using RS, fungal diseases of maize, wheat, and sorghum
can be diagnosed with nearly 100% accuracy (Egging et al.,
2018). RS can also be used for detection of viral diseases of
wheat and rose, as well as the bacteria that cause Huanglongbing
(HLB or Citrus Greening) in citrus trees (Farber et al., 2019b;
Sanchez et al., 2019a,b). This diagnostic approach is based
on detection of pathogen-induced changes in structure and
composition of plant molecules. Such changes are unique for
each pathogenic species. For example, our group found that
the Raman spectra of maize kernels infected with different
fungi varied dramatically (Farber and Kurouski, 2018). Thus, RS
has species-level sensitivity in pathogen diagnostics. Moreover,
we have discovered that RS can be used to predict abiotic
stresses associated with nutrient deficiencies of citrus trees
(Sanchez et al., 2019b). Lastly, we showed that RS can be used
for the accurate identification of maize and peanut varieties
based on spectroscopic signatures of their leaves and seeds.
The accuracy of such non-invasive plant phenotyping ranges
from 80 to 95% (Krimmer et al., 2019; Farber et al., 2020).
These results demonstrate that RS can be used in field and
greenhouses settings for rapid phenotyping of plants including
prediction of nematode-resistance and nematode-susceptibility
of analyzed varieties. Moreover, RS allows for non-invasive
and non-destructive assessment of nutrient content of seeds
providing information about their carbohydrate, protein, fiber, as
well as oils and unsaturated fatty acids in peanut seeds (Krimmer
et al., 2019; Farber et al., 2020). These findings suggest that RS
can be used for both diagnostics of plant stresses and digital
phenotyping. This is critically important to enable digital sorting
of seeds with simultaneous prediction of their economic/nutrient
values. One can envision that RS can be used to assist breeding of
plants by revealing necessary qualities of germplasm much faster
than molecular methods of analyses.

Expanding upon these findings, in this study we investigated
the accuracy of RS in the identification of ASR disease
caused by C. graminicola in both greenhouse- and field-grown
maize. We collected spectra from both leaves and stalks of
three maize varieties that contrast in their resistance to ASR
(MP305 (resistant), lox4-7 (susceptible), and B73 (intermediately
susceptible) at day 4 (D4), 8 (D8), and 12 (D12) post-inoculation.
We also investigated whether RS could be used to identify
different maize varieties to determine whether Raman-based
stalk rot diagnostics should be developed in a variety-specific
approach. Lastly, we performed quantification of lesions and
correlated these data with spectroscopic signatures of leaves and
stalks of plants.

MATERIALS AND METHODS

Plant and Fungal Materials
As previously described, the mutant allele of lox4-7 was identified
by PCR screening for the Mutator-transposon insertional
resource at DuPont-Pioneer, Inc. (currently, Corteva) for
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insertions in this gene (Park, 2012; Christensen et al., 2013). The
lox4-7 allele is a confirmed exon-insertional mutant backcrossed
to BC7 stages in the B73 genetic background and confirmed
by PCR for homozygous mutant status. The maize inbred
MP305 was obtained from Dr. Paul Williams (Mississippi State
University). Seeds of these genotypes were planted with 4–6
seeds per pot in Metro Mix 360 RSi soil (Sun Gro Horticulture).
Seedlings were thinned to two seeds per pot within the next
2 weeks. Plants were watered every 3–4 days and 20 g of
Osmocote Blend 19-5-9 slow-release fertilizer (Everris NA Inc.)
were applied to each pot at about 2 and 6 weeks after planting.
For the field trial, seeds were sown in plots of 25 seeds per plot
with 4 reps per genotype in a randomized complete block design.
Colletotrichum graminicola (1.001 strain) was cultured from stock
plates from the lab of Dr. Young-Ki Jo (Texas A&M University)
on full strength potato dextrose agar for at least 14 days at 23–
25◦C. Spore suspensions were prepared as previously described
(Gao et al., 2007).

Infection of Stalks With C. graminicola
The point at which 50% of the plants of each genotype silked
(mid-silking) was determined and leaves above the ear and
surfaces of 2nd and 4th internodes underneath the leaf sheath
of plants were scanned with a handheld Raman spectrometer
10–13 days after mid-silking. The first viable (not dried out)
leaf above the 4th internode was also scanned at these same
timepoints. Ten plants per genotype were inoculated following
previously described methods (Thon et al., 2002; Gao et al.,
2007). Briefly, the bottom four internodes above the last node
with brace roots were wounded with an 18G hypodermic
needle inserted to 1/4 inch depth. Sterile cotton swabs were
used to apply either control treatment (0.01% Tween in sterile
distilled water) or a spore suspension of 1 × 106 spores/mL of
C. graminicola and wrapped in place on the wound site with
parafilm to create a humid chamber. Infections were allowed to
progress to selected time points of 4, 8, and 12 dpi. At each
data collection, 10 plants were randomly selected from each
genotype × treatment combination to be scanned at the four
most basal internodes above the brace roots and harvested to
be split and photographed. Proportion or percent infection was
determined by measuring lesion area in addition to internode
area and dividing lesion area by internode area. This accounts for
the possibility of smaller internodes being completely colonized
and the fungus thus not having more tissue to infect. The
ratios of infected areas were compared to each other using
JMP and subject to two-way analysis of variance (ANOVA)
to test for interaction and main fixed effects of the genotype
and days past inoculation. In both greenhouse and field trials
where the genotype × dpi interaction was significant, genotype
means were compared by Tukey’s HSD test at α = 0.05 at
each dpi separately.

Raman Spectroscopy
Raman spectra were collected with a hand-held Resolve Agilent
spectrometer equipped with an 830-nm laser source. The
following experimental parameters were used for all collected
spectra: 1 s integration time, 495 mW power, and baseline

spectral subtraction by device software. Previously reported
experimental results demonstrated absence of photodegradation
of plant material at these experimental conditions. We also
observed neither visual signs of laser-induced photodegradation
of rice leaves during spectral acquisition nor any noticeable
structural changes in plants in the control group of plants
(Sanchez et al., 2020b). Stalk scans were acquired while gently
pressing the device onto a flat side of the stalk to maximize the
contact between the device and stalk. This contact guarantees
that the stalk will be at the focal point of the laser and therefore
generate the most signal. Leaf scans were acquired by pressing
the instrument into the leaves in a similar way. These leaf
scans were taken from the first viable (not dead or dried out)
leaf above the 4th internode from points near the center, but
not along the central vein. At each timepoint, five plants from
each treatment group were selected for analysis. 10 spectra were
acquired from the stalks and six from the leaves of each plant.
Control plants were retained while treated plants were harvested
for lesion analysis.

Spectral Data Analysis
PLS_Toolbox (Eigenvector Research Inc.) was used for statistical
analyses of the collected Raman spectra. Before multivariate
analysis, spectra were preprocessed with combinations of
the following preprocessing steps to build the best model,
as informed by the model optimizer: area normalization,
standard normal variate scaling, mean centering, and first
derivative. Partial least squares discriminant analysis (PLS-
DA) was performed to determine the number of significant
components and identify spectral regions that best explained
separation between the classes. All models described in the paper
except the genotype identification models (Tables 1, 2) are binary
models constructed with spectra from mock-inoculated control
plants scanned the same day as the corresponding infected plants.
“Ctrl+D4 v D12” models are described in more detail in the
“Results and Discussion” section. All reported accuracy values
are the averages of the cross-validation true positive rate for all
classes in the model.

TABLE 1 | Accuracy of leaf-based identification of MP305, lox4-7, and B73 in the
greenhouse and field.

Genotype Greenhouse (%) Field (%)

MP305 82 77

lox4-7 55 90

B73 83 81

Average 73 82

TABLE 2 | Accuracy of stalk-based identification of MP305, lox4–7, and B73 in
the greenhouse and field.

Genotype Greenhouse (%) Field (%)

MP305 100 100

lox4-7 89 73

B73 89 71

Average 92 81
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Correlation Analysis
Correlations between averaged lesion size per internode scanned
and the associated Raman spectra of those internodes were
conducted using MATLAB. The MATLAB command corrcoef
was used to obtain the r and p values for each correlation.

RESULTS AND DISCUSSION

Plant Analysis
To investigate the ability of RS to differentiate between maize
varieties that contrast in their resistance or susceptibility levels
to ASR, we inoculated stalks of the susceptible lox4-7 mutant,
its near-isogenic wild type recurrent parent, (NIL-WT) B73
inbred, which displays intermediate susceptibility and MP305
inbred with C. graminicola. Maize lox4 mutants have previously
been shown to be significantly more susceptible to ASR due
to substantially lower levels of SA, the major defense hormone
against this hemibiotrophic pathogen (Damarwinasis, 2018).
Two-way ANOVA indicated there was a significant effect in
genotype (p < 0.0001) as well as in dpi (p < 0.0001). As ANOVA
additionally revealed a significant effect in genotype × dpi
(p = 0.0157), genotype means were only compared to each other
by Tukey’s HSD within the same time point. MP305 displayed
expected resistance to the pathogen as described previously,
showing a ratio of infected area of only 0.17 compared to 0.35
in lox4-7 and 0.29 for B73 (Figure 1; Jung et al., 1994).

To determine if this technique would perform equally under
field conditions, we planted B73, lox4-7 mutant, and MP305 in
a randomized complete block design in the field and inoculated
stalks with C. graminicola when plants were 10–14 days past
mid-silking. Two-way ANOVA indicated there was a significant
effect in genotype (p < 0.0001) as well as in dpi (p < 0.0001).
ANOVA again revealed a significant effect in genotype × dpi
(p = 0.0002) so genotype means were only compared to each
other by Tukey’s HSD within the same time point. MP305 was
consistently the most resistant at all three time points, while
the susceptible mutant lox4-7 initially showed significantly more
rapid disease progression compared to WT B73 at 4 dpi. By 12
dpi, however, B73 unexpectedly had significantly more infected
area compared to lox4-7 and MP305, most likely due to plant-to-
plant variation (Figure 2).

Spectroscopic Analysis
Raman spectra collected from leaves of all three corn
varieties exhibited vibrational bands that could be assigned
to pectin (747 cm−1), cellulose (520, 915, 1,047, and
1,115 cm−1), carotenoids (1,000, 1,155, 1,185, and 1,525 cm−1),
phenylpropanoids (1,601–1,630 cm−1), protein (1,678 cm−1),
and aliphatic vibrations (1,215, 1,286, 1,326, 1,385, and
1,440 cm−1) (Figure 3 and Table 3).

Spectroscopic analysis of plant stalks revealed that vibrational
signatures of phenylpropanoids (1,601–1,627 cm−1) dominate
the spectra (Figure 4). We also observed vibrational bands that

FIGURE 1 | Anthracnose stalk rot progression in wild type B73, lox4-7, and MP305 maize in greenhouse trial. lox4-7 was significantly more susceptible, as
expected, than WT B73 at 8 and 12 dpi, and MP305 displayed significant resistance to lesion development at all time points. Bars indicate ratios of surface areas of
Colletotrichum graminicola-infected lesions to areas of each respective internode at 4-, 8-, and 12-days post inoculation (Mean ± SE; different letters indicate
significant differences between means within the same time point, determined by Tukey’s HSD, p < 0.05).
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FIGURE 2 | Anthracnose stalk rot (ASR) disease progression in the three genotypes under field conditions. lox4-7 mutant showed a significantly more rapid
development of stalk rot at early time points compared to WT B73, although by 12 dpi, WT showed greater disease progression than lox4-7. MP305 was again
significantly resistant at each time point. Bars indicate the average ratios of areas of C. graminicola-infected lesions to surface areas of each respective internode
(cm2/cm2) in wild type B73 inbred, lox4-7 mutant, and MP305 inbred maize at 4-, 8-, and 12-days post inoculation (±SE; different letters indicate significant
differences between means within the same time point, determined by Tukey’s HSD, p < 0.05).

can be assigned to pectin (742 cm−1), cellulose (520, 915, 1,040,
1,093, and 1,121 cm−1), carotenoids (1,525 cm−1), carboxylic
acids (1,698 cm−1), and aliphatic vibrations (1,326, 1,335, 1,424,
and 1,460 cm−1) (Figure 4 and Table 3). These results point to
substantial differences in the structure of leaves and stalks. Next,
we constructed PLS-DA models using the pre-inoculation spectra
to investigate whether RS can be used to identify these plant
genotypes based on their spectroscopic signatures.

Our results showed that based on the spectroscopic signatures
of leaves, MP305, lox4-7, and B73 could be differentiated from
each other with average accuracies of 73 and 82% in the
greenhouse and field, respectively (Table 1). For instance, lox4-
7 and B73 could be correctly identified in the greenhouse
with 55 and 83% accuracy, respectively. In the models based
on field-collected data, the accuracy of identification of these
two genotypes was 90 and 81%, respectively. Since these two
genotypes are about 99.7% identical at the genome level, being
back-crosses at the seventh stage, such a high accuracy of their
identification reflects truly remarkable sensitivity of RS.

Utilization of spectroscopic signatures of stalks provides more
accurate identification of maize varieties in the greenhouse;
however, nearly identical accuracy of identification was
obtained in the field. Specifically, the three genotypes could
be differentiated with average accuracies of 92 and 81% in the
greenhouse and field, respectively (Table 2). We also observed
substantially higher accuracy of differentiation between lox4-7
and B73 in the greenhouse with 89% accuracy. In the field, the
accuracy of identification of these two genotypes was 73 and
71%, respectively. Based on these results, we can conclude that
spectral readings from stalks are better suited for identification
of plant varieties in the greenhouse, whereas both leaves and
stalks can be used for high accuracy of variety identification
in the field. These findings suggest that differences between
spectroscopic signatures of maize varieties likely originated from
inherent differences in their metabolism. These results confirm
our previously reported findings that highlighted high sensitivity
of RS to inherent plant metabolism, which is different between
plant species and their varieties. These results also suggest that
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FIGURE 3 | Raman spectra collected from leaves of non-inoculated control
plants from all three maize varieties.

Raman-based approach in stalk rot diagnostics likely will require
the development of variety-specific chemometric models.

Diagnostics of Stalk Rot in Greenhouse
and Field
Leaves
Considering inherent differences between MP305, lox4-7, and
B73, we developed chemometric models for each genotype that
enabled accurate prediction of stalk rot based on spectra collected
from leaves of plants grown in the greenhouse. We found
that at D4 (pre-symptomatic stage), RS enabled 88% accurate
identification of stalk rot in B73, 84 and 61% accurate disease
prediction in lox4-7 and MP305, respectively (Table 4). At
the middle stage of infection (D8), the accuracy of stalk rot
identification slightly decreased for B73 and lox4-7 and increased
for MP305. At the same time, at the late stage (symptomatic
plants), the accuracy of prediction was found to be 90% for
B73 and lox4-7, and 61% on MP305. These results suggest that
changes in plant biochemistry associated with the infection are
less prominent in MP305 compared to B73 and lox4-7. This
results in lower accuracy of disease diagnostics in MP305.

While the scope of this study did not include metabolome
profiling to shed light into the biochemical changes that may
explain the difference between B73 and MP305, we speculate
that the resistant MP305 responded more strongly and early to
infection that may have led hypersensitive response-like reaction
due to the existence of a major disease resistance gene, Rcg1, in
this germplasm and thus strong biochemical changes but only at
the early time points after infection (Frey et al., 2011). Regardless,
our results suggest that changes in the plant biochemistry
associated with the stalk rot are stronger at early stages of the
disease development (D4). This can be explained by activation
of defense mechanisms of the plant, which results in substantial
changes in plant metabolism at the early stages. Consequently,
this allows for highly accurate pre-symptomatic Raman-based
diagnostics of stalk rot diseases in maize. Our results also suggest

TABLE 3 | Spectral band assignments for leaves and stalks of corn.

Band Vibrational mode Assignment

375 Associated with cellulose
crystallinity

Cellulose (Agarwal et al.,
2010)

520 ν(C–O–C) Glycosidic Cellulose (Edwards et al.,
1997)

640 δ(C–C) Lignin (Larsen and
Barsberg, 2010)

742–747 γ(C–O–H) of COOH Pectin (Synytsya et al.,
2003)

804 δ ring vibration Terpenes (Schulz et al.,
2005b)

900–918 ν(C–O–C) In plane,
symmetric

Cellulose, lignin (Edwards
et al., 1997)

987 ν(CO)ring, ν(CC)ring, and
β(CCH)

Carbohydrates
(Wiercigroch et al., 2017)

1,000 In-plane CH3 rocking of
polyene aromatic ring of
phenylalanine

Carotenoids (Schulz et al.,
2005a); protein

1,040–1,047 ν(C–O) + ν(C–C) + δ(C–O–H) Cellulose, lignin (Edwards
et al., 1997)

1,093 ν(C-O) + ν(C-C) + δ(C-O-H) Carbohydrates (Almeida
et al., 2010)

1,115 Sym ν(C–O–C), C–O–H
bending

Cellulose (Edwards et al.,
1997)

1,121 ν(C–O) + ν(C–C) + δ(C–O–H) Carbohydrates (Almeida
et al., 2010)

1,155 C–C Stretching; v(C–O–C),
v(C–C) in glycosidic linkages,
asymmetric ring breathing

Carotenoids (Schulz et al.,
2005a), carbohydrates
(Wiercigroch et al., 2017)

1,170 C–OH Lignin (Blaschek et al.,
2020)

1,185–1,186 ν(C–O–H) Next to aromatic
ring+σ(CH)

Lignin (Mary et al., 2012;
Agarwal, 2014)

1,202 Aromatic ring modes of
phenylalanine and tyrosine

Proteins (Zheng et al.,
2004)

1,215 δ(C-C-H) Aliphatics (Yu et al., 2007),
xylan (Agarwal, 2014)

1,265–1,267 Guaiacyl ring breathing, C–O
stretching (aromatic); -C=C–

Lignin (Cao et al., 2006),
unsaturated fatty acids
(Jamieson et al., 2018)

1,286 δ(C–C–H) Aliphatics (Yu et al., 2007)

1,326 δCH2 bending Aliphatics, cellulose, and
lignin (Edwards et al., 1997)

1,335 δ(CH2) + δ(CH3) Aliphatics (Yu et al., 2007)

1,385 δCH2 bending Aliphatics (Yu et al., 2007)

1,424–1,460 δ(CH2) + δ(CH3) Aliphatics (Yu et al., 2007)

1,525 –C=C– (in plane) Carotenoids (Adar, 2017;
Devitt et al., 2018)

1,601–1,627 ν(C–C) Aromatic
ring + σ(CH)

Lignin (Agarwal, 2006;
Kang et al., 2016)

1678 C=O Stretching, amide I Proteins (β-sheet) (Devitt
et al., 2018)

1698 COOH Carboxylic acids

that intensity of changes in the plant metabolism decreases at
D8. Lastly, high accuracy of disease diagnostics at late stages
(D12) suggests that drastic changes in the plant metabolism occur
upon substantial progression of stalk rot, which ultimately lead
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FIGURE 4 | Raman spectra collected from stalks of non-inoculated control
plants from all three maize varieties.

to the death of the plant tissue. These findings demonstrate that
accuracy of stalk rot disease diagnostics in maize is 1) variety-
specific and 2) time-specific. Similar results have been obtained
for field-grown MP305, lox4-7, and B73 (Table 5).

As in the greenhouse-based experiment, MP305 exhibited
lower accuracy of diagnostics of stalk rot in the field than B73
and lox4-7 at all stages of disease development (Table 5). We
also found substantially lower accuracy of stalk rot diagnostics
at D4, D8, and D12 compared to the corresponding accuracies
observed in the greenhouse experiment. These results suggest
that other stresses that plants experience while in the field may
influence the prediction performance. These other stresses lower
the accuracy of determination of one specific (stalk rot) stress in
maize. Nevertheless, our results show that infection of B73 can
be detected with 79% accuracy on the early stage (D4), whereas

the accuracy of correct identification of stalk rot for lox4-7 and
MP305 were 59 and 50%, respectively. The accuracy of stalk
rot diagnostics slightly increased at D12 for both lox4-7 and
MP305 and became 67 and 61%, respectively. At the same time,
it decreased to 56% for B73.

We also found that an alternative approach can be used to
substantially improve the accuracy of stalk rot diagnosis in the
field. Instead of direct comparison of spectra collected from
control and infected plants at a single time point, we propose
to use D4 and D12 spectra, both control and infected, to predict
occurrence of stalk rot. This approach mitigates potential issues
from comparing plants across time points, where changes in
the plants could be due to either disease progression or simply
changes associated with growth. The idea is that we want to
simplify the system to determining whether plants are in the
early stages/uninfected or are in the later stages of infection.
Our findings show that if signatures of late (D12) or early-type
(Control and D4) infected plants are used to build PLS-DA
models, highly accurate diagnostics of early (D4) and late (D12)
stalk rot disease can be performed. Such models are based on
the identification of the relative degree of disease progression in
plants. We found that this approach enabled 69% accurate disease
identification in MP305, 63% accurate identification in lox4-7,
and 87% accurate identification in B73 (Table 5).

Stalks
We also explored the accuracy of stalk rot diagnostics by Raman-
based analysis of maize stalks. Our results show that at the
early stages (D4), spectroscopic analysis of stalks provides higher
accuracy of Raman-based diagnostics of stalk rot. Specifically,
we found that the disease can be correctly predicted with 69%
accuracy in MP305, 92% in lox4-7, and 93% in B73 (Table 6).
This can be explained by proximity of the pathogen to the stalk
tissue. As previously observed in the analysis of the leaves, we
found that the accuracy of diagnostics decreased for all three
genotypes at D8. This suggests that although proximity to the

TABLE 4 | True positive rates of identifying control and treated plants based on Raman spectra of leaves from greenhouse-grown maize.

Genotype B73 Lox4-7 MP305

Treatment Ctrl (%) Treat (%) Ctrl (%) Treat (%) Ctrl (%) Treat (%)

D4 95 82 85 84 55 68

D8 71 70 79 74 83 60

D12 95 86 100 80 68 55

TABLE 5 | True positive rates of identifying control or treated plants based on Raman spectra of leaves from field-grown maize.

Genotype B73 Lox4-7 MP305

Treatment Ctrl (%) Treat (%) Ctrl (%) Treat (%) Ctrl (%) Treat (%)

D4 83 76 65 53 45 55

D8 51 66 72 60 59 62

D12 89 23 70 65 62 60

Ctrl/D4 v D12* 86 88 74 52 79 59

*Ctrl is Ctrl/D4; D12 is Treat.
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TABLE 6 | True positive rates of identifying control and treated plants based on Raman spectra of stalks from greenhouse-grown maize.

Genotype B73 Lox4-7 MP305

Treatment Ctrl (%) Treat (%) Ctrl (%) Treat (%) Ctrl (%) Treat (%)

D4 98 89 92 93 65 73

D8 92 85 88 88 86 48

D12 97 82 98 98 56 89

TABLE 7 | True positive rates of identifying control and treated plants based on Raman spectra of stalks from field-grown maize.

Genotype B73 Lox4-7 MP305

Treatment Ctrl (%) Treat (%) Ctrl (%) Treat (%) Ctrl (%) Treat (%)

D4 72 81 69 58 69 46

D8 65 62 68 52 63 52

D12 91 86 55 72 54 58

Ctrl/D4 v D12* 87 77 63 79 69 70

*Ctrl is Ctrl/D4; D12 is Treat.

diseased tissue can increase the accuracy of disease detection,
stalk rot likely triggers plant systemic responses. At D12, accuracy
of stalk rot was found to be 71% for MP305, 98% for lox4-7,
and 89% for B73. Based on these results, one can conclude that
in terms of accuracy of prediction, analysis of stalks is more
advantageous compared to the analysis of leaves for detection of
ASR on lox4-7 and MP305 and less advantageous for B73. These
results also demonstrate that biochemical changes due to stalk rot
detected by RS are stronger in stalks than in leaves. Additionally,
the magnitude of changes in biochemical profiles is time- and
variety-dependent.

Accuracy of stalk rot diagnostics was found to be much lower
in the field experiment. We found that at D4, the disease can
be correctly predicted in MP305 with 57% accuracy, in lox4-7
with 63% accuracy, and for B73 with 76% accuracy (Table 7).
These results confirm previously discussed findings that accuracy
of pre-symptomatic stalk rot diagnostics is variety- and growth
conditions-specific. We observed a decrease in the accuracy
for stalk-based detection of the infection. Although detection
of symptomatic stage of stalk rot is low (D12), we found that
the approach described above for relative prediction of disease
progression using D4 and D12 spectra enables highly accurate
diagnosis of this disease in the field. Specifically, the model
that utilizes D4/D12 spectra, allows for detection of stalk rot
in the field with 82% for B73, 69% for MP305, and 71% for
lox4-7 (Table 7).

Digital Selection of Maize Varieties
Enabled by Raman-Based Prediction of
Stalk Rot Resistance
One may wonder whether RS can be used for prediction of stalk
rot resistance. Currently, resistance determination is achieved by
splitting open the stalks and evaluating lesion areas, which is
time-consuming and labor-intensive. The smaller the lesion size,
the stronger is plant resistance to the pathogen. In this study,
we questioned whether RS can be used to predict the lesion size
based on changes in the intensities of vibrational bands. We

analyzed lesion sizes of four internodes in the field-grown maize
at D4, D8, and D12 and changes in intensities of all vibrational
bands in the spectra collected from these stalks (Figure 2). We
found that lesion size in B73 is correlated with the intensities of
three vibrational bands: 986, 1,168, and 1,524 cm−1 (Tables 3, 8
and Figure 5). These vibrational bands originate from cellulose
(986 cm−1), lignin (1,168 cm−1), and carotenoids (1,524 cm−1).

Our results also demonstrate that lesion size in lox4-7 is
correlated with the intensities of the 1,135 cm−1 (cellulose) and
1,370 cm−1 (aliphatic) bands, whereas lesion size in MP305
is correlated with the intensities of the 522 cm−1 (cellulose),
986 cm−1 (terpenes), 1,168 cm−1 (lignin), 1,601 and 1,630 cm−1

bands (phenylpropanoids). These findings demonstrate that
progression of stalk rot is associated with a decrease in the
content of scaffold molecules (cellulose and lignin), as well as
molecules that are directly involved in plant defense (terpenes,
phenylpropanoids, and carotenoids). These results also show that
RS is a suitable non-invasive and non-destructive alternative
to the currently used approach for lesion size determination.
Consequently, RS can be used for in-field and greenhouse-based
screening for plant resistance to stalk rot.

TABLE 8 | Vibrational bands that can be used to determine sizes of lesions in the
field-grown B73, lox4-7, and MP305 with corresponding r and p values.

Genotype Vibrational band r p

B73 986 −0.4073 0.0389

1168 −0.4392 0.0248

1524 −0.6052 0.0011

lox4-7 1335 −0.412 0.0365

1370 −0.398 0.044

MP305 522 −0.4164 0.043

986 −0.4161 0.0431

1168 −0.4459 0.029

1601 −0.4294 0.0363

1630 −0.4351 0.0336
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FIGURE 5 | Scatter plots of intensity at selected peaks versus averaged lesion size for field-grown plants. B73: 986 (A), 1,168 (B), and 1,524 (C) cm−1; MP305:
522 (D), 986 (E), 1,168 (F), 1,601 (G), and 1,630 (H); lox4-7: 1,335 (I), and 1,370 (J) cm−1; r- and p-values for trendlines are reported in Table 8.

Limitations of Raman as a Diagnostic
Tool
While the present work has demonstrated the potential of RS as a
field diagnostic tool, many open questions remain to be addressed
before it can be widely applied. First, it is not yet known how
the spectra will vary from location to location when stresses are
involved. Our group has demonstrated that potatoes of the same
cultivar grown in different locations can be differentiated with
high accuracy using PLS-DA (Morey et al., 2020). Additionally, in
this study, the precise biochemical origins of the spectral changes
observed are not clear. HPLC-MS would be required to identify
the associated compounds. Future developments in RS should
address these sorts of issues.

Raman spectroscopy also has some practical limitations that
make such experiments difficult. First, ambient light must
be avoided to acquire good spectra. Scans in the field were
acquired at dusk and into the night to avoid ambient light while
greenhouse scans were acquired in a dark room attached to the
greenhouses. While shrouding with dark plastics or sheets may
be feasible, we found that these were inadequate for operation in
full light conditions outdoors or in the greenhouse. Instruments
with better light exclusion would be ideal for future experiments.
Additionally, modern portable instruments often come with
built-in software which greatly decrease the rate of scanning.
While the acquisition time reported here is 1 s, the actual

total duration of a scan was much longer. The CCD camera in
the instrument was exposed for 1 s but required steps in the
instrument software bloat the total scan time to over 40 s. Devices
with leaner software would be ideal for these sorts of analyses.

CONCLUSION

Our findings show that RS can be used for highly accurate
identification of stalk rot of maize at both early and late stages
of disease progression. These diagnostics could be achieved via
spectroscopic analysis of both leaves and stalks. In this study,
we also investigated the accuracy of disease diagnostics in three
varieties of corn grown both in a greenhouse and in field.
Our results suggest that accuracy of Raman-based approach is
variety-dependent.

On average, the accuracy was higher in the greenhouse
compared to the field. We also found that accuracy of correct
identification of stalk rot strongly depends on the time point
analyzed. It increased from D4 to D8, and from D8 to D12.
Since RS diagnostics is based on detection of changes in the
plant biochemistry, one can speculate that metabolic changes
associated with stalk rot are not linear in maize. Their magnitude
increases soon after inoculation which enables highly accurate
identification of early stages of stalk rot. However, the magnitude
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of these changes later decreases. This lowers the accuracy of stalk
rot identification at D8. Lastly, the magnitude of biochemical
changes increases again at D12, which allows for highly accurate
diagnostics of late stages of stalk rot.

Finally, our results show that RS can be used to predict
lesion size in stalks that develop after stalk inoculation.
Determination of the lesion sizes is used for prediction of
maize variety resistance to the pathogen. Our findings show
that a spectroscopic analysis of vibrational bands that originate
from scaffold molecules such as lignin and cellulose, as well
as molecules that are involved in plant signaling and stress
response (carotenoids), can be used to predict lesion size
in the plant. This discovery demonstrates that RS can be
used for digital selection of plant varieties. Considering the
portable nature of the spectrometer, non-invasive nature of this
innovative spectroscopic approach, and 1 s spectral integration
time required for data collection, one can expect that RS
will transform conventional approaches used for diagnostics of
biotic stresses.
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