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Hemicellulose is entangled with cellulose through hydrogen bonds and meanwhile acts 
as a bridge for the deposition of lignin monomer in the secondary wall. Therefore, 
hemicellulose plays a vital role in the utilization of cell wall biomass. Many advances in 
hemicellulose research have recently been made, and a large number of genes and 
their functions have been identified and verified. However, due to the diversity and 
complexity of hemicellulose, the biosynthesis and regulatory mechanisms are yet 
unknown. In this review, we summarized the types of plant hemicellulose, hemicellulose-
specific nucleotide sugar substrates, key transporters, and biosynthesis pathways. This 
review will contribute to a better understanding of substrate-level regulation of 
hemicellulose synthesis.
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INTRODUCTION

The plant cell wall, primarily composed of cellulose, hemicellulose, pectin, and lignin, serves 
a variety of functions, including protection, support, material transport, and information exchange 
(Pauly and Keegstra, 2008). The plant cell wall is composed of into three layers: the middle 
lamella, the primary wall, and the secondary wall (Pauly and Keegstra, 2008). Middle lamella 
makes first thin layer mainly rich with pectin and is formed to connect two adjacent cells. 
The plant subsequently produces nucleosides and their metabolites via photosynthesis and 
adds them to the middle lamella, forming a flexible and elastic the primary cell wall. After 
cell growth ceases, the cell wall thickens in the inside and accumulate cellulose, hemicellulose, 
and lignin to form secondary cell wall.

Hemicellulose, a broad term for a group of complex glycans, is a major component of 
plant cell walls and one of the most essential modern chemical raw materials for fuel. 
Hemicellulose widely used in variety of other fields, including as food additives in food 
industry and as plasticizer, drug delivery agent in medicinal industry (Qaseem et  al., 2021). 
Hemicelluloses have various distinct structures, primarily xylan, xyloglucan, mannan, β-(1 → 3, 
1  → 4)-glucan, and their derivatives, and their content and detailed structure vary greatly 
depending on plant species and growth phases (Scheller and Ulvskov, 2010; Figure  1). Xylan 
is the most abundant type of hemicelluloses in broad-leaved woods, cereals, and dicotyledonous 
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herbs. Mannan is mainly found in gymnosperms, and xyloglucan 
is a minor hemicellulose component of all terrestrial plants, 
including mosses (Scheller and Ulvskov, 2010). β-(1 → 3, 

1 → 4)-glucans are less abundant in many plants than other 
hemicelluloses, but are abundant in grasses and have received 
less attention.

FIGURE 1 | Schematic illustration of hemicelluloses. UDP-Glc, Uridine diphosphate glucose; UDP-GlcA, UDP-glucuronic acid; UDP-Xyl, UDP-xylose; UDP-Gal, UDP- 
galactose; UDP-GalA, UDP-galacturonic acid; UDP-Ara, UDP-arabinose; UDP-Rha, UDP-rhamnose; GDP-Man, guanosine diphosphate-mannose; and GDP-Fuc, GDP-fucose.
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Hemicelluloses are a general term for heteropolysaccharides 
composed of two or more free monosaccharides linked in 
various ways, such as xylose, glucose, mannose, and galactose. 
Xylose is the main hemicellulose monosaccharide in grasses 
and hardwood, whereas arabinose, galactose, and mannose are 
the principal hemicellulose monosaccharides in softwood, plant 
seeds, endosperms, and fruits (Gibeaut et  al., 2005; Schadel 
et  al., 2010). Hemicellulose is composed of several different 
types of five-carbon sugars [β-D-xylose (Xyl), α-l-arabinose 
(Ara), α-l-rhamnose (Rha), and α-l-fucose (Fuc)], six-carbon 
sugars [β-D-glucose (Glu), β-D-mannose (Man), and 
α-D-galactose (Gal)], and glyoxalate [UDP-glucuronic acid 
(UDP-GlcA) and UDP-galacturonic acid (UDP-GalA)] monomers 
(Schadel et  al., 2010).

Among them, UDP-Glc and GDP-Man work as upstream 
originators then are further catalyzed and converted to other 
nucleotide sugars by a series of 4-isomerase, 3,5-isomerase, 
4-reductase, 4,6-dehydratase, 6-dehydrogenase, and decarboxylase 
(Reiter, 2008). Many other nucleotide sugars are abundant in 
plant cell walls, but there is no clear evidence that they are 
structural component of hemicelluloses. Studying and 
comprehending the process of the nucleotide sugars synthesis, 
interconversion, and transport can help in analysis of structures 
and functions, as well as the regulation of hemicellulose. In 
this review, we mainly encompass the synthesis and transportation 
of hemicellulose nucleotide sugars.

MAIN STRUCTURES AND FUNCTIONS 
OF PLANT HEMICELLULOSE

The xylan backbone consists of xylose residues linked by a 
β-(1 → 4) glycosidic bond, with reducing tetrasaccharide structure: 
β-D-xylose-(1 → 3)-α-l-rhamnose-(1 → 2)-α-D-galacturonic acid- 
(1 → 4)-D-xylose at the end of the xylan backbone in  
dicots and gymnosperms (Peña et  al., 2007). Based on side 
chains branching, xylans can be  divided into glucuronoxylan 
(GX), arabinoxylan (AX), and glucuronoarabinoxylan (GAX; 
Figure  1). The backbone of xyloglucan is composed of a 
β-D-(1-4)-glucan with α-D-xylosyl group attached to the 
6-position hydroxyl group of approximately 75% of the glucose 
residues in the skeleton, and some of the 2-position hydroxyl 
groups of α-D-xylosyl group are additionally connected to 
β-D-galactosyl or α-l-amylosyl (Figure  1; Perrin et  al., 2003). 
The hemicellulose acetylation, which was covered in our recent 
review paper (Qaseem et  al., 2020), will not be  discussed in 
this article since it does not belong to the sugar substrates. 
The mannans backbone is inconsistent and can be  divided 
into two categories, one consisting entirely of β-D-mannose 
and the other also with β-D-glucose, and the side chains of 
mannans are mainly α-D-galactose linked by α-(1,6) glycosidic 
chains (Figure  1). Therefore, depending on main chain and 
side chain glycosyl groups, mannans can be  divided into four 
categories: mannan, galactomannan, glucomannan, and 
galactoglucomannan (Scheller and Ulvskov, 2010). Β-(1 → 3, 
1 → 4)-glucans are homogeneous unbranched chain 
polysaccharides and composed of three or four β-D-glucose 

units connected by β-1, 3 bonds and β-1, 4 bonds, and the 
content of triose units is generally higher than that of tetraose 
units, while the proportion of β-1, 3 and β-1, 4 bonds varies 
among different sources of β-glucans (Figure  1; Hu et  al., 
2015; Zielke et  al., 2018; Chang et  al., 2021).

In addition to the maintenance of cell wall organization, 
hemicelluloses are important group of cell wall polysaccharides 
which perform many functions, such as structure of primary 
and secondary walls, cell expansion, seed storage carbohydrates, 
and aggregation to facilitate plant growth. All xylan-deficient 
mutants exhibit collapsed xylem vessels and have severely 
impaired growth and fertility with decreased mechanical 
strength in stem, indicating the importance of xylans in 
secondary wall strengthening (Scheller and Ulvskov, 2010). 
Some xyloglucans not only have a protective role serves as 
a physical barrier to prevent pathogens from invading and 
colonizing, and they protect plant from aluminum toxicity, 
but also has a vital role in cell wall extension and providing 
strength to plant organs as it binds along the length of 
cellulose microfibrils (Park and Cosgrove, 2015; Claverie et al., 
2018; Galloway et  al., 2018; Wan et  al., 2018; Kuki et  al., 
2020). Recent research has revealed that Xanthomonas, the 
main causal pathogens of citrus bacterial canker disease, has 
a complicated enzymatic machinery capable of depolymerizing 
xyloglucans and disrupting the cell wall (Vieira et  al., 2021). 
Function of mannan depends on tissue in which they are 
present; in cell wall, these have structural role and provide 
strength and hardness, while in seeds, they function as storage 
polysaccharides. The specific function of β-(1 → 3, 1 → 4)-glucan 
in plants is not yet clear.

NUCLEOTIDE SUGARS BIOSYNTHESIS

UDP-nucleotide sugars are glycosyl donors for hemicellulose 
biosynthesis, and their synthesis is divided into a “de novo 
pathway” and a “salvage pathway” (Figure  2). The majority 
of nucleotides are synthesized via the de novo pathway, which 
involves a series of sugar interconverting enzymes in the 
cytosol and Golgi (Bar-Peled and O’Neill, 2011). UTP is used 
by sugar-specific kinases and pyrophosphorylases to specifically 
convert free monosaccharides, breakdown produced releasing 
from polysaccharide, into their corresponding UDP-sugars 
via the “salvage” pathway (Kotake et  al., 2007; Bar-Peled and 
O’Neill, 2011). During plant growth and development, some 
of hemicelluloses are metabolized or remodeled releasing free 
monosaccharides that gradually accumulated in the plant and 
finally might result in sugar toxicity (Althammer et al., 2020). 
SLOPPY, a recombinant protein encoded by Arabidopsis gene 
At5g52560, has a very strong ability to convert GlcA-1-P, 
Glc-1-P, Gal-1-P, Xyl-1-P, Ara-1-P, and GalA-1-P into their 
corresponding UDP-sugars (Yang et  al., 2009; Decker and 
Kleczkowski, 2018). At present, we  still do not know how 
many nucleotide sugars are provided by the “salvage” pathway 
in plants or if the substrate monosaccharides are produced 
from polysaccharide degradation in the cell wall, cytoplasm, 
or both (Dhonukshe et  al., 2006).
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UDP-Glc and GDP-Man
UDP-Glc and GDP-Man are the starting compounds for the 
synthesis of all hemicellulose riboside sugars. Fructose-6-
phosphate (Fru-6-P), the photosynthetic intermediate, is 
converted to glucose-1-phosphate (Glc-1-P) and mannose-1-
phosphate (Man-1-P) by the collective effect of phosphate-sugar 
isomerase and metathesis enzymes, and then, uridine diphosphate 

glucose pyrophosphorylase/guanosine diphosphate-mannose 
pyrophosphorylases (UGP/GMP) convert reversibly Glc-1-P 
and Man-1-P into UDP-Glc and GDP-Man in cytosol (Reiter, 
2008; Figure  2). Munch Petersen discovered UGP in yeast 
cells for the first time in 1953. There are two genes encoding 
UGP in Arabidopsis (Meng et  al., 2009) and rice (Long et  al., 
2017). Silencing Atugp1/Atugp2 genes in Arabidopsis reduces 

FIGURE 2 | Biosynthesis of nucleotide sugars for plant hemicellulose. Frc-6-P, Fructose-6-phosphate; Glc-1-P, Glucose-1-Phosphate; Man-1-P, Mannose-1-
Phosphate; UDP-Glc, uridine diphosphate glucose; UDP-GlcA, UDP-glucuronate; UDP-Api, UDP-Apiose; Xyl, UDP-xylose; UDP-Gal, UDP-galactose; UDP-GalA, 
UDP-galacturonate; UDP-UDP-Ara, UDP-arabinose; UDP-Rha, UDP-rhamnose; GDP-Man, guanosine diphosphate-mannose; GDP-Fuc, GDP-fucose; UGP, uridine 
diphosphate glucose pyrophosphorylase; GMP, guanosine diphosphate-mannose pyrophosphorylases; UGE, UDP-galactose/glucose 4-epimerase; GalK, 
galactokinase; UGD, UDP-D-glucose dehydrogenase; GlcAK, glucuronide kinase; GAE, UDP-GlcA 4-epimerase; GalAK, GalA kinase; UXS, UDP-GlcA 
decarboxylase; AXS, UDP-D-apiose/UDP-D-xylose synthase; UXE, UDP-Xyl epimerase; UAM, UDP-arabinopyranose mutase; RHM, rhamnose synthase; UER, 
UDP-4-keto- 6-deoxy-D-glucose 3, 5-epimerase 4-reductase; GMD, GDP-mannose-4, 6-dehydratase; GER, GDP-4-keto-6-deoxymannose-3, 5-epimerase 
−4-reductase (GDP-fucose synthetase); MIPS1, myo-inositol-1-phosphatase synthase; MI-1-P, myo-inositol-1-phosphatase; MIAP, myo-inositol alkaline 
phosphatase; MI, myo-inositol; MIO, myo-inositol oxidase.
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the activity of UGP and reduces seed yield by 50% (Meng 
et al., 2009). As the most abundant nucleotide sugars in plants, 
UDP-Glc can be  obtained through two other sources addition 
to above-mentioned pathways. Sucrose synthase can reversibly 
catalyze the degradation of sucrose to UDP-glucose and fructose; 
however, in the presence of UDP, glucose inhibits the reaction 
in both directions (Ruan et  al., 2003; Reiter, 2008; Abdullah 
et  al., 2018). Gal, Glc, and Man produced by the degradation 
of plant cell wall polysaccharides can also be used as substrates 
for UDP-Glc (Figure  2). Some plants glycosyltransferases can 
catalyze the interconversion of sugar molecules between the 
oligosaccharyl in glucoside and other UDP-monosaccharides 
to compose UDP-Glc in the presence of UDP (Bode and 
Muller, 2007; Bar-Peled and O’Neill, 2011).

UDP-Gal
Galactose is important for the plant growth and occupies a 
large proportion in a variety of hemicellulose polysaccharides, 
such as xyloglucan and galactomannan (Scheller and Ulvskov, 
2010). There are two mechanisms for the synthesis of UDP-Gal: 
the de novo pathway and the “salvage” pathway.

De novo Pathway
UDP-galactose/glucose 4-epimerase (UGE) catalyzes the 
interconversion of UDP-Glc and UDP-Gal, and the reaction is 
reversible (Figure  2). There are two types of UGE in vascular 
plants. In addition to catalyzing the conversion of UDP-glucose 
and UDP-galactose, one type of UGE can also reversibly convert 
UDP-xylose and UDP-arabinose, and different types of UGE 
have different catalytic efficiency of UDP-xylose in different 
plants (Guevara et  al., 2014; Yin et  al., 2016a). There are five 
AtUGE genes in the Arabidopsis genome, all of them have 
catalytic activity. AtUGE1 and AtUGE3 mainly catalyze the 
conversion of UDP-galactose to UDP-glucose, while AtUGE2, 
AtUGE4, and AtUGE5 mainly catalyze the conversion of 
UDP-glucose to UDP-galactose (Seifert, 2004). Reverse genetic 
studies of these five genes revealed no significant phenotypic 
changes in the single mutant. However, a significant decrease 
in the galactose content was seen in cell wall of double mutant, 
indicating that the UGE proteins of different isoforms have 
functional redundancy and synergy (Seifert, 2004; Rösti et  al., 
2007) and participate in many physiological processes, such as 
cell growth and differentiation, cell-to-cell communication, and 
defense responses by regulating the interconversion of nucleotide 
sugars (Hou et  al., 2021). In addition to Arabidopsis, similar 
phenomena have been observed in other plants, and including 
Oryza sativa (Kim et al., 2009; Zhang et al., 2020), barley (Zhang 
et  al., 2006), Phyllostachys edulis (Sun et  al., 2016), and 
Ornithogalum caudatum (Yin et  al., 2016a) were reported to 
contain various plant UGE genes. Compared with the wild type, 
these studies found that the content of galactose and glucose 
increased in the hemicellulose polysaccharide profile of rice 
OsUGE1-OX overexpression plants (Guevara et  al., 2014). In 
contrast, OsUGE2 mutation significantly reduced accumulation 
of arabinogalactan proteins in the cell walls, which consequently 
affected plant growth and cell wall deposition (Zhang et al., 2020).

“Salvage” Pathway
Using real-time NMR spectroscopy to monitor the enzymatic 
reaction, the investigators confirmed that Arabidopsis 
galactokinase (GalK) phosphorylates galactose to Gal-1-P at 
position C-1. Finally, Gal-1-P is converted to UDP-Gal in the 
presence of SLOPPY (Yang et al., 2009; Decker and Kleczkowski, 
2017; Figure 2). The AtGALK T-DNA insertion mutant (atgalk) 
showed no growth or morphological defects in the absence 
of Arabidopsis galactokinase and was unable to use free Gal 
and accumulated it in vegetative tissues; the phenotype was 
recovered by constitutively overexpressing the AtGALK cDNA 
(Egert et  al., 2012). The toxicity of free galactose has yet to 
be  determined, but galactose-1-phosphate or an imbalance in 
the sugar-1-phosphate and nucleotide sugar network can cause 
growth defects.

UDP-GlcA
Glucuronic acid mainly exists in glucuronoxylan and 
glucuronoarabinolxylan (Figure  1). UDP-GlcA is a key 
intermediate product in the process of nucleotide sugar 
metabolism and direct precursor of UDP-GalA, UDP-Api, and 
UDP-Xyl, and critical substrate for the transformation of 
UDP-monosaccharides from six-carbon sugars to five-carbon 
sugars (Bar-Peled and O’Neill, 2011).

De novo Pathway
UDP-D-glucose dehydrogenase (UGD) action results in the 
irreversible elimination of hydrogen at the C-6 position, resulting 
in the conversion of UDP-Glc to UDP-GlcA (Figure  2). Since 
it was cloned in soybean in 1996 (Tenhaken and Thulke, 1996), 
the gene encoding UGD has been cloned in various other 
plants, such as Arabidopsis (Klinghammer and Tenhaken, 2007), 
cotton (Pang et  al., 2010), Larix gmelinii (Li et  al., 2014), and 
moso bamboo (Yang et al., 2020). Four UGD genes are identified 
in Arabidopsis, which differ in their enzyme kinetic properties 
and tissue expression specificity, including AtUGD3 having the 
highest activity (Klinghammer and Tenhaken, 2007). Yang and 
his colleagues discovered nine UGD genes with three predicted 
conserved domains, one of which, PeUGDH4, was found in 
the cytoplasm and showed strong expression in the leaf and 
stem. The overexpression of PeUGDH4 in Arabidopsis 
dramatically boosted hemicellulose production and accumulation 
(Yang et  al., 2020). On the other hand, UDP-GlcA can also 
be  formed via myo-inositol oxygenase pathway. D-glucose-6-
phosphate is cyclized under the action of myo-inositol-1-
phosphate synthase to form myo-inositol-1-phosphate, 
myo-inositol alkaline phosphatase catalyzes the 
dephosphorylation of later to form myo-inositol, and myo-inositol 
is oxidized to UDP-glucuronic acid by the action of myo-inositol 
oxidase (Lorence et  al., 2004; Endres and Tenhaken, 2009; 
Pieslinger et  al., 2010; Alford et  al., 2012; Figure  2).

“Salvage” Pathway
There are two genes in Arabidopsis (At3g01640 and At5g14470) 
that encode a α-D-glucuronide acid-1-phosphate kinase 
(GlcAK), which phosphorylates GlcA to GlcA-1-P using ATP 
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and is then pyrophosphorylated by SLOPPY to UDP-GlcA 
(Geserick and Tenhaken, 2013; Figure  2).

UDP-GalA
GalA is present in xyloglucan side chain of lower plants, such 
as mosses, and also part of the tetrasaccharide reducing terminus 
of dicotyledonous and gymnosperm xyloglucan (Peña et  al., 
2007; Pena et  al., 2008). The research on UDP-GalA synthesis-
related proteins in plants started late.

De novo Pathway
UDP-GalA can reversibly transform from UDP-GlcA via 
UDP-GlcA 4-epimerase (UGLcAE, GAE), and the activity 
of GAE is NAD+-dependent (Figure  2). In 2004, three 
research teams identified GAE enzymes almost simultaneously 
and performed expression level analysis. The results showed 
that there were six GAE genes in the Arabidopsis genome, 
and all of them were localized in the Golgi apparatus and 
differently expressed in Arabidopsis roots, leaves, pollen, 
and angiosperms (Gu and Bar-Peled, 2004; Molhoj et  al., 
2004; Usadel et  al., 2004; Rösti et  al., 2007). In addition 
to Arabidopsis, genes encoding GAE were also identified 
in tomato (Ding et al., 2018), Nicotiana benthamiana (Ahmed 
et  al., 2020), and O. caudatum (Yin et  al., 2016b). UAE 
isoforms in different plant species have different enzymatic 
properties, but UAE isoform of the same plant are highly 
conserved. The GAE can produce UDP-GlcA and UDP-GalA 
in Arabidopsis, maize, and rice with a ratio of 1:2, and 
this reversible reaction was inhibited by UDP-Ara and 
UDP-Xyl, though the degree of GAE inhibition by UDP-Xyl 
varied among plants (Gu et  al., 2009; Figure  2).

“Salvage” Pathway
The α-D-galacturonic acid-1-phosphate kinase (GalAK) 
phosphorylates GalA to GalA-1-P, then GlcA-1-P can 
be pyrophosphorylated by SLOPPY to UDP-GalA (Decker and 
Kleczkowski, 2017). Arabidopsis has a single copy of the GalAK 
gene (At3g10700), and its catalytic activity was confirmed using 
real-time NMR (Yang et  al., 2009). However, the extent to 
which UDP-GalA formed by this pathway contributes to the 
UDP-GalA in plants needs to be further investigated (Bar-Peled 
and O’Neill, 2011; Figure  2).

UDP-Xyl
Xylose is a significant component of xyloglucan and xylan. 
With the participation of NAD+ and NADH, UDP-GlcA 
decarboxylase (UDP-GlcA-DC/UXS) catalyzes the 
decarboxylation of UDP-GlcA to form UDP-Xyl in an essentially 
irreversible reaction (Harper and Bar-Peled, 2002; Figure  2). 
The proteins encoded by the Arabidopsis UXS gene family 
are classified as membrane-anchored or cytoplasmic soluble. 
UXS1, UXS2, and UXS4 are membrane-anchored proteins that 
are found in the Golgi, whereas UXS3, UXS5, and UXS6 are 
soluble proteins that are found in the cytoplasm (Harper and 
Bar-Peled, 2002; Kuang et  al., 2016). In Arabidopsis xylan 
synthesis, UXS localized in the cytoplasm plays a more essential 

role; however, xylosyltransferases all use UDP-Xyl in the Golgi 
for hemicellulose synthesis, so UDP-Xyl synthesized in the 
cytoplasm must be transferred to the Golgi (Kuang et al., 2016; 
Zhao et  al., 2018). Ebert et  al. (2015) discovered types of 
UXTs that were localized to the Golgi, and Arabidopsis has 
three UXT genes. Except for the Atuxt1 mutant, whose xylose 
concentration was significantly lower than that of the wild 
type, no other UXT mutant showed a clear phenotype (Harper 
and Bar-Peled, 2002; Ebert et  al., 2015). Further, Zhao et  al. 
(2018) identified that uxt1uxt2uxt3 triple mutants showed an 
uneven xylem and xylan deposition defects (Zhao et al., 2018). 
Like Arabidopsis, rice (O. sativa) also has six UXS genes, which 
were classified into three types (Suzuki et  al., 2003, 2004). 
Subsequently, besides Arabidopsis and rice, UXS gene family 
with varied members has been cloned from only a few plants, 
for example, tobacco (Nicotiana tabacum; Bindschedler et  al., 
2007), Gossypium hirsutum (Pan et al., 2010), Populus tomentosa 
(Du et  al., 2013), and O. caudatum (Yin et  al., 2016b).

UDP-D-apiose/UDP-D-xylose synthase (AXS) can also produce 
UDP-Xyl with UDP-GlcA as substrate in plants (Figure  2). 
Besides, AXS can also convert UDP-GlcA to UDP-Apiose via 
decarboxylation and rearrangement of the carbon skeleton 
(Figure 2). Arabidopsis has two AtAXS genes that are ubiquitously 
expressed across all tissues and developmental stages, with AtAXS2 
showing higher overall expression. AXS has lower enzyme activity 
to convert UDP-GlcA to UDP-Xyl than UXS, implying that it 
functions on pectin RG-II side chain A and B biosynthesis by 
Apiose (Zhao et  al., 2020a). Although AXS and UXS can utilize 
the same substrate, AXS may not have evolved from UXS and 
both may have their own synthetic precursors (Gu et  al., 2010). 
Under normal physiological conditions in plants, AXS plays a 
minor role in the synthesis of UDP-Xyl, because its optimum 
activity conditions close to the pH and temperature in plants 
(pH 5–6, temperature 20–30°C), while AXS makes a difference 
in harsh conditions with higher temperature (50°C) and pH 
optimum (pH 8.5; Yin et  al., 2016b).

UDP-Ara
There are two forms of arabinose, furanose and pyranose. 
Arabinose is found mostly as furanose in grass xylan, and 
xyloglucans of pteridophytes and solanaceous plants, and is a 
major component of the side chains of glucuronide arabinoxylan 
and arabinoxylan. Pyranose, on the other hand, is 
thermodynamically more stable and has been detected earlier 
from various plants as it has been studied more extensively. 
The synthesis of UDP-Arap also has two ways.

De novo Pathway
UDP-Xyl epimerase (UXE) can catalyze the allosteric transition 
of UDP-Xyl into UDP-Arap in a reversible manner (Figure  2). 
The Arabidopsis genome contains four UXE genes, which 
encode the membrane-bound protein UXE, which is present 
in the Golgi apparatus. The cell wall arabinose level was 
drastically reduced in the AtUXE1 gene mutant mur4 screened 
by EMS induction; however, the ability to synthesize UDP-Arap 
was not completely absent (Burget and Reiter, 1999; Burget 
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et  al., 2003). Among the three UXE genes in rice, the total 
expression of OsUXE1 was significantly higher than OsUXE2 
and OsUXE3 in mature rice, especially in the middle of the 
stalk, indicating that UXE1 plays a critical role in UDP-Arap 
production in mature rice, and the arabinose content was 
reduced by 2.19% in the cell wall of the rice ux1uxe2 double 
mutant compared with the wild type (Chen et  al., 2021).

“Salvage” Pathway
Arabinose kinase (AraK) can use Ara as a substrate and 
phosphorylate it to Ara-1-P, which later can 
be  pyrophosphorylated to UDP-Arap by SLOPPY (Neufeld 
et al., 1960; Figure 2). There are two AraKs in the Arabidopsis 
genome (AT4G16130, ARA1; AT3G42850, ARA2), and ara1 
mutants have lost AraK activity and have diminished metabolism 
of arabinose (Gy et  al., 1998). The free arabinose content in 
plants increased significantly after mutation of the ARA1 gene, 
whereas the ara2 mutant did not accumulate free arabinose, 
probably because of the relatively low expression of the ARA2 
gene (Behmüller et  al., 2016).

After UDP-Arap is synthesized, UDP-arabinopyranose mutase 
(UAM) isomerizes it into UDP-Araf in the cytoplasm, which 
is then transferred to the Golgi apparatus to participate in 
polysaccharide synthesis (Figure  2). The interconversion of 
UDP-Arap and UDP-Araf is reversible, and the reaction tends 
to produce pyranose products. Rice, like Arabidopsis and pea, 
has three UAM proteins (UAM1-3), with 80% of them localized 
in the cytoplasm (Klinghammer and Tenhaken, 2007). Willis 
et  al. (2016) used RNAi to downregulate the expression of the 
PvUAM1 gene in switchgrass, and the arabinose associated with 
the cell wall was reduced by more than 50% in the mutant 
leaves and stems, resulting in a compensatory response with 
increased cellulose and lignin content (Willis et al., 2016). Honta 
et  al. (2018) used RNAi to downregulate four NcUAM genes 
and found that, compared to the WT, arabinose content was 
diminished by 35% in NtUAM-KD cell walls (Honta et al., 2018).

UDP-Rha
Rhamnose, also known as 6-deoxy-l-mannose, is used in the 
synthesis of the reduced tetrasaccharide terminus of xylan in 
dicotyledonous and gymnosperm (Peña et al., 2007; Jiang et al., 
2021). The conversion of UDP-Glc to UDP-Rha in bacteria 
requires three enzymatic sequences: dehydratase, isomerase, 
and reductase, while in plants, it require rhamnose synthase 
(RHM) and UDP-4-keto-6-deoxy-D-glucose 3, 5-epimerase 
4-reductase (NRS/UER; Watt et  al., 2004; Oka et  al., 2007; 
Figure 2). RHM possesses three enzymatically active structural 
domains (RHM1; RHM2; RHM3) and catalyzes the three-step 
reaction of the substrate UDP-glucose to produce UDP-Rha 
in the presence of cofactors NAD+ and NADPH (Reiter and 
Vanzin, 2001; Oka et al., 2007). AtRHM1 was found practically 
everywhere, with higher levels of expression in roots and 
cotyledons. Overexpression of the AtRHM1 gene in Arabidopsis 
resulted in a 40% increase in rhamnose content in the cell 
wall as compared to the wild type (Wang et  al., 2009). One 
or more RHM genes were found in a variety of plants, including 

Lobelia erinus (Hsu et  al., 2017), Camellia sinensis (Dai et  al., 
2018), prunes, and peaches (Zhao et  al., 2020b), and the 
recombinant proteins were shown to catalyze the production 
of UDP-rhamnose from UDP-glucose by enzymatic analysis 
and in vitro enzymatic reaction.

The At1g6300 gene, which encodes UDP-4-keto-6-deoxy-
D-glucose3,5-epimerase/UDP-4-keto-rhamnose 4-keto-reductase 
(NRS/UER), was also discovered in Arabidopsis, and the amino 
acids encoded by AtNRS/UER are highly similar to the C-terminal 
sequence of AtRHM2 amino acids, with both isomerase and 
reductase (Watt et al., 2004). The fusion enzyme (VvRHM-NRS) 
may convert UDP-glucose to UDP-rhamnose by fusing the 
N-terminus of VvRHM with the bifunctional (NRS/UER) from 
Arabidopsis. However, it is unclear how NRS/UER function 
in vivo (Pei et  al., 2018).

GDP-Fuc
Fucose is mainly present in pectin and seed coat mucilage, 
less in hemicellulose, and only the side chain of xyloglucan 
contains a small amount of GDP-Fuc (Pena et al., 2008; Bar-Peled 
and O’Neill, 2011).

GDP-Fuc is converted from GDP-man, which involves three 
sequential enzyme processes, just like the conversion from 
UDP-Glc to UDP-Rha. GDP-mannose-4, 6-dehydratase (GMD) 
is a key enzyme in the GDP-fucose synthesis pathway, catalyzing 
the formation of GDP-4-keto-6-deoxy-D-mannose from GDP-D-
mannose, and then, in the presence of NADPH, the GDP-4-
keto-6-deoxymannose-3, 5-epimerase-4-reductase (GDP-fucose 
synthetase, GER) catalyzed the conversion of the intermediate 
into GDP-Fuc (Figure  2). GER contains two enzymatic activity 
domains, epimerase and reductase, and it has been shown that 
this system can catalyze epimerism of substrates even in the 
absence of NADPH, indicating that epimerism and reduction 
reactions are carried out independently (Menon et  al., 1999). 
At1g73250 (GER1) and At1g17890 (GER2) encode GER isoforms 
with 88 percent sequence similarity (Bar-Peled and O’Neill, 2011). 
In Arabidopsis, two genes, that is, GMD1 and GMD2 (MUR1), 
encode for GMD, with GMD2 being the major housekeeping 
gene and expressed in most cell types of the root, while GMD1 
is expressed in the root tip, juvenile stipule organs, and pollen 
grains (Bonin et  al., 2003). Arabidopsis mur1 mutant lacks 
GMD2  in the aboveground portion and has almost no fucose 
in the cell wall, and biochemical assays indicate that the nucleotide 
sugar conversion is blocked in the first step, and the GMD is 
mutated (Bonin et  al., 1997; Bonin and Reiter, 2000; Freshour 
et  al., 2003). Compared to wild-type plants, 80 percent of N. 
benthamiana plants with GMD repression using virus-induced 
gene silencing (VIGS) and RNA interference (RNAi) were fucose-
free in total soluble protein (Matsuo and Matsumura, 2011).

TRANSPORT OF NUCLEOTIDE SUGARS 
FOR PLANT HEMICELLULOSE

Hemicellulose is synthesized by glycosyltransferases in the Golgi 
apparatus, which are type II transmembrane proteins with 
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functional structural domains in the Golgi lumen (Reyes and 
Orellana, 2008). The majority of nucleotide sugar synthases 
and all salvage pathway-related enzymes are found in the 
cytoplasm, whereas GAE, UXE, and a portion of UXS are 
found in the Golgi apparatus, that is, place where hemicellulose 
synthesis occurs. The related glycosyltransferases can directly 
use the nucleotide sugars produced in the Golgi apparatus 
(GTs). However, the nucleotide sugars in the cytoplasm must 
therefore be  transported to the Golgi apparatus to added to 
specific polysaccharide acceptors and participate in hemicellulose 
synthesis (Figure 3). Because the phosphate groups in nucleotide 
sugars have a high molecular mass (500–650 Da) and a negative 
charge, they cannot diffuse directly across membranes and 
must be  transported by nucleotide sugar transporters (NST), 
which are antiporters that exchange nucleoside monophosphate 
for specific NDP-sugars (Orellana et  al., 2016; Figure  3). NST 
generally contains 300–350 amino acids and has 6–10 
transmembrane domains (Handford et  al., 2006). Plant NSTs 
belongs to the nucleotide sugar transporter/triose phosphate 
translocator (NST-TPT) super-family, and the NST-TPT gene 
family of Arabidopsis has 51 members, which can be  divided 
into six clades and are generally highly substrate-specific (Knappe 
et  al., 2003; Rautengarten et  al., 2014). Except for UDP-GalA 
and UDP-Arap, all other transport proteins of hemicellulose 
substrate nucleotide sugars have been identified in a variety 
of plants, including Arabidopsis (Baldwin et  al., 2001; 
Norambuena et  al., 2002, 2005; Knappe et  al., 2003; Handford 
et  al., 2004, 2012; Rollwitz et  al., 2006; Rautengarten et  al., 
2008, 2011, 2014; Mortimer et  al., 2013; Saez-Aguayo et  al., 

2017), rice (Zhang et al., 2011), tobacco, grapevine (Vitis vinifera 
L.), and Dendrobium officinale (Yu et  al., 2018).

There are two ways to identify the function of NST, the 
most direct way is to analyze its biochemical activity, and the 
other way is to screen for mutants of the NST gene. Joshua 
Heazlewood’s team at the University of Melbourne has developed 
a rapid method for measuring NST biochemical activity, and 
in combination with Arabidopsis mutant analysis, the function 
of individual genes was rapidly unraveled in the NST-TPT 
family (Rautengarten et  al., 2014, 2017; Saez-Aguayo et  al., 
2017). Substrate-specific examination of plant NSTs indicated 
that certain NSTs can transport two or more UDP-sugars, and 
many NSTs maintain their ability to transport either UDP-glucose 
or UDP-galactose (Orellana et  al., 2016).

The AtUTr1 gene that transports both UDP-Gal and 
UDP-Glc was discovered in 2000 by Norambuena et  al. 
(2002; Figure  3). The tobacco plant expressing human 
UDP-galactose transporter gene 1 (hUGT1) showed 
significantly higher galactose to total monosaccharide ratios 
in the hemicellulose and pectin fractions of transgenic plants 
compared to control plants, enhanced growth, and increased 
chlorophyll and lignin accumulation (Abedi et  al., 2016). 
There are six UDP-Rha/UDP-Gal transporter (URGT) in 
the Arabidopsis genome, which are localized to the Golgi 
apparatus, and all have detectable transporter activity, while 
mutants of URGT2 gene have significantly reduced Rha 
content in the seed coat mucilage, and URGT1 and URGT2 
overexpressing Arabidopsis have significantly increased Gal 
content in their cell walls (Rautengarten et al., 2014; Figure 3). 
The upregulation of UDP-arabinofuranose transporter protein 
(UAFT2) suggests the existence of compensatory mechanisms 
triggered by URGT2 deficiency, and URGT2 overexpression 
in urgt1 mutant rescues reduced galactose in Arabidopsis 
rosette leaves (Parra-Rojas et  al., 2019; Celiz-Balboa et  al., 
2020). In addition, it has also been shown that the UDP-Gal 
transporter, named AtUTr2, is located in the Golgi apparatus 
and is highly expressed in the root and calli (Norambuena 
et  al., 2005). The nucleotide sugar transporter (GONST1) 
localized to the Golgi apparatus in Arabidopsis was identified 
as the GDP-mannose transporter (GMT; Baldwin et al., 2001; 
Figure  3). Yu et  al. (2018) also cloned three DoGMT genes 
in Dendrobium which are mainly expressed in the stem (Yu 
et  al., 2018). In Arabidopsis, a UUAT1 gene was identified, 
which produces a Golgi-localized protein that transports 
UDP-GlcA and UDP-GalA in vitro (Saez-Aguayo et al., 2017). 
There are three UDP-Xyl transporters (UXT; UXT1, 
AT2G28315; UXT2, AT2G30460; and UXT3, AT1G06890) 
in the Arabidopsis genome. Mutants of the UXT1 gene have 
significantly reduced Xyl content in the cell wall, and triple 
mutant exhibits collapsed vessels and reduced cell wall 
thickness and significantly affected xylan content and fine 
structure (Ebert et al., 2015; Saez-Aguayo et al., 2017; Zhong 
et  al., 2017). The discovery of the UXT genes and the 
research results on the uxt mutants suggest that the UDP-Xyl 
in the cytoplasm is very essential for the growth and 
development of Arabidopsis. Four genes in the Arabidopsis 
NST family encode UDP-Araf transporter proteins (UAfT) 

FIGURE 3 | Mechanism of hemicellulose substrate transport. UTR, UDP-
galactose/UDP-glucose transporter; URGT, UDP-Rha/UDP-Gal transporter; 
UAFT, UDP-arabinofuranose transporter; UXT, UDP-Xyl transporter; UAfT, 
UDP-Araf transporter proteins; GFT, GDP-fucose transporter; GMT, GDP-
mannose transporter.
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localized in the Golgi apparatus (Figure  3). Compared with 
the wild type, the phenotype of the uaft mutant did not 
change significantly, but the Ara content in the cell wall 
of the uaft4 mutant leaves was decreased (Rautengarten 
et  al., 2017). GDP-fucose transporter (GFT), which can 
import GDP-fucose into the Golgi, has now been identified 
from Phaeodactylum tricornutum and Arabidopsis 
(Rautengarten et  al., 2016; Zhang et  al., 2019). The GFT1-
silenced plants exhibited severe growth inhibition or even 
death, with up to 80% decrease in fucose content in cell 
wall-derived xyloglucan and rhamnogalacturonan II 
(Rautengarten et  al., 2016).

NUCLEOTIDE SUGARS IN 
HEMICELLULOSE BIOSYNTHESIS

Forward and reverse genetic approaches, as well as biochemical 
enzyme analyses, have recently made significant advances in 
hemicellulose biosynthesis. Pair genes of IRX9/IRX9L, IRX14/
IRX14L, and IRX10/IRX10L involved in xylan backbone 
elongation by added substrate UDP-Xyl in the Golgi (Brown 
et  al., 2007, 2009; Wu et  al., 2009, 2010; Hornblad et  al., 2013; 
Jensen et al., 2014). FRA8, PARVUS, and IRX8 mainly participate 
in reducing end biosynthesis by adding substrate UDP-Xyl, 
UDP-Rha, and UDP-GalA to the xylan backbone (Brown et al., 
2007, 2009; Wu et  al., 2009). Likewise, five glucuronic acid 
substitution of xylan (GUX) genes are involved in side chain 
decoration and catalyze the attachment of UDP-GlcA and other 
nucleotide sugars to the xylan backbone (Lee et  al., 2012; 
Rennie et  al., 2012; Bromley et  al., 2013).

The β-1,4-glucan synthase, α-1,6-xylosyltransferase, β-1,2-
galactosyltransferase, and α-1,2-fucosyltransferase play primary 
role in xyloglucan biosynthesis, and the former synthesizes 
the glucan backbone and different types of glycosyl transferases 
produce the broad diversity of XyG side chain to decorate 
the glucan chain (Zabotina, 2012). CSLC4 gene from GT2 
family encodes for β-1,4-glucan synthase, which enzyme 
synthesis of xyloglucan backbone with UDP-Glc as substrate, 
and α-1,6-xylosyltransferase encoded by five genes of GT34 
family, XXT1-5, also involved in xyloglucan backbone synthesis 
by affixing UDP-Xyl (Faik et  al., 2002; Cocuron et  al., 2007; 
Liepman and Cavalier, 2012; Vuttipongchaikij et  al., 2012). 
MUR3, XLT2, XUT1, and the XSTs are part of the same 
subclade of GT47 involved in xyloglucan synthesis or side 
chain decoration by substituting two different UDP-Xyl residues 
for UDP-Glc or other nucleotide sugars (Zabotina, 2012; 
Jensen et  al., 2014).

The CSLD gene family and GT2 family members, CSLA2, 
CSLA7, and CSLA9, are involved in mannan biosynthesis 
(Dhugga et  al., 2004; Liepman et  al., 2005; Verhertbruggen 
et  al., 2011). The recombinant CSLA protein catalyzes the 
production of mannans when GDP-Man is used as a substrate, 
and the same protein produces glucomannan with the substrate 
of a mixture of GDP-Man and GDP-Glc (Liepman et al., 2005). 
The Csl family of CslF and CslH proteins is the major components 

of β-(1 → 3, 1 → 4)-glucan synthase, and each of them can 
independently involve in the biosynthesis of the later linking 
multiple UDP-Glc with β-1 → 3 or β-1 → 4-glycosidicor, while 
CslF proteins and CslH proteins do not need to be  active at 
the same time (Burton et  al., 2006; Doblin et  al., 2009; Chang 
et  al., 2021).

SUMMARY AND PERSPECTIVES

The hemicellulose content and composition vary with different 
plant species or within the same plant during different 
growth phases, tissues, and cell types, so do their nucleoside 
substrates. Many genes involved in the biosynthesis and 
transport of the substrate nucleotides sugars for hemicellulose 
were studied in vitro and in vivo. However, the absorption 
and utilization of nucleoside sugars are a balance. Multiple 
nucleoside sugars may be affected if one gene or one substrate 
is changed or mutated. So, we  must employ a systemic 
approach to investigate nucleotide sugar changes using high-
throughput multi-omics analysis, such as transcriptome-
proteome-metabolism analysis. It is also unknown which 
transcription factors regulate nucleotide sugar synthesis 
networks and how they do so. These researches will provide 
a better insight into the interconversion and regulation of 
hemicellulose substrates. As research progressed, researchers 
found that NST is substrate-specific and can only transport 
one or two nucleotide sugars specifically. With the continuous 
development of live cell imaging technology, the spatial and 
temporal resolution of in vivo observation has been greatly 
improved, making it possible to track the transport process 
of NST in real time, which can provide a clearer understanding 
of how NSTs, such as GMT and UAFT, transport 
nucleotide sugars.

The regarding interconversion of nucleotides sugars and 
hemicellulose synthesis needs to be  further explored in depth. 
At the same time, CRISPR/CAS9 gene editing technology can 
be  used to knock out nucleotide sugars biosynthesis and 
transport genes in plants, besides Arabidopsis, to alter the 
composition and structure of hemicellulose and improve 
hemicellulose and biofuel utilization in future.
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