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INTRODUCTION

Within the last 20 years, after the landmark paper by Meuwissen et al. (2001), genomic selection
(GS) has been widely incorporated in plant and animal breeding (Crossa et al., 2017; Hickey et al.,
2017). However, adoption happened at different speeds and with distinct focus.

Here, we give a short description of the history and the current state of GS implementation
in German dairy cattle breeding (as an example in animal breeding), at the private plant
breeding company KWS SAAT SE & Co. KGaA, and at the public breeding programs of the
International Maize and Wheat Improvement Center (CIMMYT) and the Consultative Group for
International Agricultural Research (CGIAR) in general. We close by highlighting some differences
in organizational structure and objectives of the considered breeding institutions, and comment on
how these differences may have influenced the adoption of GS.

GENOMIC SELECTION IN DAIRY CATTLE BREEDING

Dairy cattle breeding provided good conditions for the introduction of GS. Selection decisions
had been based for decades purely on additive genetic effects reflected in a sire’s breeding value,
and the use of pedigree-based estimated breeding values (PEBVs) had already been common
practice. However, reliabilities of early estimated breeding values from information on parents
only were low. Therefore, a testing scheme was used, in which bulls were mated to a more or less
representative sample of cows in a first step. The resulting daughters were then raised until their
performance could be measured, thus improving the reliabilities of their sires’ breeding values.
Only then, the best test bulls were selected and used broadly. This costly waiting period led to a
generation interval of more than five years. Using genomically estimated breeding values (GEBVs)
of young bulls, which are more reliable than PEBVs, permitted to reduce this waiting period, and
thus to increase selection gain per time. Although the accuracy of the breeding value of a bull
which has been extensively progeny tested over years is of higher accuracy than a young bull’s
GEBV, the costs in terms of waiting time do not pay off for the breeding program, when comparing
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a more accurate late selection to a less accurate
early selection based on the GEBV instead of
the PEBV.

With this setup, genomic breeding values for Holsteins and
Jerseys were first published in the USA in 2009 (Wiggans et al.,
2017), about a decade after the release of the first commercial SNP
chip (Wang et al., 1998). In Europe, four breeding organizations
(UNCEIA: France; VikingGenetics: Denmark, Finland, and
Sweden; DHV-vit: Germany; CRV: The Netherlands, Flanders)
joined forces and put a reference population together with 4,000
bulls each (Lund et al., 2011). After 1.5 years of development,
from August 2010 onwards, genomic breeding values, based on
the joint reference population, were published in these European
countries. This rapid evolution was only possible due to a long-
established international data infrastructure withMultiple Across
Country Evaluations (MACE) being in place since the 1990s at
the international evaluation center Interbull. MACE allows the
expression and use of estimated breeding values on the scale of
each participating country (Schaeffer, 1994). Since 2010, breeding
progress hasmore than doubled for all traits in GermanHolsteins
as seen from Figure 1, mostly due to the sharply decreased
generation interval for bulls.

The initial 50k Illumina SNP set is still the reference SNP set
for genomic evaluations at vit in Germany, although dozens of
different SNP chips have been integrated since then, especially
many low density chips. With dropping genotyping costs and
low density 10k SNP chips, female animals came also into the
focus. In 2019, cows were integrated in the German reference
population. As of the routine genetic evaluation in April 2021,
there were 43,699 bulls and 249,363 cows in the reference
population for milk traits. Current efforts aim at implementing
Single Step methodology (Aguilar et al., 2010) in the genetic
evaluation systems of most countries, which is a computationally
demanding task with big populations, requiring specialized
algorithms (e.g., Liu et al., 2014).

FIGURE 1 | Breeding progress in important traits in German Holsteins, measured as yearly mean EBVs of bulls, weighted by the number of inseminations with their

semen. The label “RZ” denotes that all breeding values are standardized to a genetic standard deviation of 12, and a mean of 100 in the female base population (year

of birth 2014–2016), all breeding values are expressed such that more positive values are more desirable from the breeder’s perspective. RZG, total merit index; RZM,

milk production index; RZS, somatic cell score; RZN, longevity; RZR, fertility index; RZKm, index of maternal calving traits; RZhealth, health trait index; RZcalfhealth,

calf survival. *Year 2020: incomplete data. Slightly modified from IT Solutions for Animal Production (vit - IT Solutions for Animal Production, 2021).

GENOMIC SELECTION AT KWS

Around 2008, KWS started own research activities in the field of
GS and participated in several large collaborations (e.g., Albrecht
et al., 2011; Hofheinz et al., 2012). Only a few years later, GS
became an established part of the breeder’s toolbox for all KWS
field crops.

The reason for this rapid adoption of GS is its attractiveness
for addressing several components of the breeder’s equation
simultaneously: Shorten the breeding cycle by replacing
phenotypic evaluation steps through a genomic evaluation,
increasing accuracy by integrating information from relatives
and multiple environments, and increasing selection intensity in
case that genotyping is cheaper than phenotyping.

Advances in genome analysis of major crops over the past
15 years led to the availability of a vast number of molecular
markers, a pre-requisite for GS application. New genotyping
technologies reduced costs of genotyping to a fraction of the costs
of phenotyping an individual in field trials.

As a consequence of these developments, GS influenced
the design of breeding schemes. With this tool at hand,
predictive breeding is used to plan crosses, to reduce breeding
cycle length, and to select for more stable performance using
multi-year training sets. Genomic prediction is now practiced
on many complex traits including yield, quality, biotic, and
abiotic stress.

For instance in sugar beet breeding, GS has become an
essential component to address the trait “sugar yield,” which is
a composite of “sugar content” and “yield.” These two traits
are addressed by both (i) within cycle prediction, which allows
higher selection intensity and (ii) across cycle prediction, which
allows early selection. Predictive ability in each breeding program
is constantly monitored. Besides routine application, KWS does
very active research to further enhance the efficiency of this
tool. Two factors have been the focus of genomic prediction
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research: chip design and size and composition of training
sets. For instance, for sugar beet, we saw that approximately
2,000 markers are sufficient for genomic prediction, potentially
due to high linkage disequilibrium in the breeding material.
The required training set size is highly dependent of the
relationship between training set and prediction set as well as
the heritability of the trait. We observe a diminishing return
on prediction accuracy for the phenotype of sugar yield when
having more than 300 individuals in the training set (which
may also be a consequence of the high linkage disequilibrium in
breeding populations).

Today, GS has become a routine application in breeding
programs at KWS. Thousands of GS analyses are performed
every year. Therefore, KWS has optimized genotyping processes
and analysis pipelines. With GS being implemented widely in
all breeding programs, KWS is extending prediction methods
using artificial intelligence and genotype by environment
(GxE) interactions.

GENOMIC SELECTION AT THE
INTERNATIONAL MAIZE AND WHEAT
IMPROVEMENT CENTER (CIMMYT)

CIMMYT has started to explore GS more aggressively as a new
breeding tool since 2010 (de los Campos et al., 2009; Crossa
et al., 2010, 2019; Dreisigacker et al., 2021). The estimation of
GEBVs for the germplasm is routinely implemented for themaize
and the wheat program, but it is a decision of the respective
breeder which weight is given to this information in the selection
process. The initial focus of GS application has been on greater
selection intensity in stage I yield trials by predicting the GEBVs
of germplasm which had not been included in the trials. Recent
projects aim to use GS for early selection and to shorten cycle
time. Standardized workflows for data storage, processing, and
subsequent analyses are currently advanced by the Excellence in
Breeding (EiB) platform and various projects at CIMMYT and
other CGIAR centers. CIMMYT has also worked on genomic
prediction of traits of germplasm bank accessions (Crossa et al.,
2016) to explore its potential for harnessing genetic resources
(Martini et al., 2021). The center has built the basis for more
informed screening of novel allelic diversity in the germplasm
collection by genotyping a substantial part of the available
accessions (Sansaloni et al., 2020).

The question which impact GS had on the annual genetic gain
for yield across breeding pipelines is more difficult to answer
than for the dairy cattle example presented above. Estimates of
genetic gain vary and GS has been used to different extend across
breeding pipelines. Since programs introduced GS gradually, it
is difficult to separate a potential increase in genetic gain due to
the use of GS, from other aspects which may have improved the
breeding pipelines. A recent publication by Gerard et al. (2020)
reports estimated yearly selection gains of 0.93% for low-rainfall
environments and 3.8% for high-rainfall environments for the
period of 2007–2016 for grain yield in wheat. However, we cannot
clearly attribute the credit of this selection gain to GS, since this
period is too short after GS has been implemented. However,

several dedicated experiments in maize outlined the potential of
GS. For instance, Beyene et al. (2015) used GS to select from bi-
parental maize populations for yield under drought stress and
reported a higher selection gain than for conventional breeding
methods. Comparing to previous studies, the authors concluded
that “the average gain observed under drought in our study using
GS was two- to fourfolds higher than what has been reported
from conventional phenotypic selection under drought stress.”
Moreover, CIMMYT’s Global Maize Program designed a rapid
cycle genomic selection (RCGS) of multi-parental crosses (Zhang
et al., 2017). Two cycles per year were performed, and the
authors found that “the genetic gains from the RCGS [. . . ] are
at the same or higher level than those observed in other studies
under phenotypic selection [. . . ].” Also, Beyene et al. (2019)
compared selection gain of phenotypic selection (PS) and GS
for two different environments (well-watered and water stressed)
and observed a higher selection gain for PS for well-watered
conditions, and a higher selection gain for GS under water
stress. The authors highlighted that GS provides “the potential
to bypass stage I trial evaluation and move material directly into
stage II” which “would reduce both the costs and cycle time but
will require accurate predictions from training sets composed of
historical data” (Beyene et al., 2019). This potential to reduce
cycle time has not yet been included in the study.

IMPLEMENTATION OF GENOMIC
SELECTION CGIAR-WIDE

The CGIAR has entered a phase of pushing the application
of GS for all crops, from maize to bananas (Nyine et al.,
2017; Wolfe et al., 2017; Ahmadi et al., 2020; Gemenet et al.,
2020; Atanda et al., 2021). The EiB platform provides technical
assistance and practical guidelines for the implementation of GS
and the modernization of breeding programs (see for instance
Covarrubias-Pazaran et al., 2021). Before EiB, several initiatives
advanced the use of GS in specific crops. For example, the
NextGen Cassava project took important steps toward the
successful implementation of GS for root, tuber, and banana
(RTB) crops (Wolfe et al., 2017; Maxmen, 2019). Those steps
included the development of a robust database system, matching
the genotyping logistics with the growing season, and automating
analytical pipelines. Similar steps have been taken by initiatives at
IRRI and CIMMYT (Crossa et al., 2017; Gao et al., 2020).

Crops currently using GS to reduce cycle time are cassava
and maize (Atanda et al., 2021; Esuma et al., 2021). Genomic
selection is being used to increase selection intensity in cassava,
maize, rice, and wheat (Ahmadi et al., 2020; Dreisigacker et al.,
2021). Finally, GS is used for increasing the selection accuracy
of yield trials by all the aforementioned and yams (Agre et al.,
2018). Other crops, including beans, pulses, forages, bananas,
and potato are developing and validating the necessary logistics
and tools to manage the data, genotyping, analytical pipelines,
and costs. This picture is rapidly changing since the ambition of
all breeding programs in the CGIAR is to use genome-assisted
prediction methodologies to reduce the length of the breeding
cycle to 2–3 years.

Frontiers in Plant Science | www.frontiersin.org 3 November 2021 | Volume 12 | Article 728567

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gholami et al. Adoption of GS Across Institutions

CONCLUSION

Dairy Cattle Breeding Compared to Plant
Breeding
Genomic selection was adopted in dairy cattle breeding
almost instantly after genotyping costs dropped below the
anticipated break-even point, presumably because the routine
use of pedigree-based predictions, and a culture of centrally
processing data of fragmented production units, had already been
established (Schaeffer, 1994; Wiggans et al., 2017).

In contrast, plant breeding programs are traditionally
dedicated to more specific geographical regions aiming to
adapt the germplasm to certain environmental conditions, and
the data used for selection decisions have almost exclusively
focused on the most recent trials of the respective program. An
overarching approach for handling data across programs
or selection cycles had not been necessary. Moreover,
pedigree information had hardly been used for pedigree-
based predictions, since the pedigree information has often
been incomplete and “relatively wide” crosses of unrelated
material have been used (Dreisigacker et al., 2021). Moreover,
a PEBV may not provide additional information, since it
cannot capture the segregation within a family generated by a
certain cross.

Also, plant breeders traditionally tend to focus on product
development that is on identifying varieties, rather than
on population improvement, that is identifying parents for
new crosses. In other words, breeders are more interested
in the genotypic value comprising the complete genetic
contribution to the phenotype than in the additive genetic
value (the breeding value). A focus on the latter is natural
in dairy breeding, where the sire’s breeding value is defined
indirectly by the performance of its offspring, not by its own
phenotype (Mrode, 2014).

Only in recent years some concepts from animal breeding,
such as the focus on the breeding value, have been transferred
in more formal and more rigorous ways to plant breeding.
An example is the separation of population improvement from
product development (Gaynor et al., 2017) which allows to focus
on the breeding value for the population improvement step. The
impact of this paradigm shift on genetic gain is to be observed in
coming decade(s).

Public Compared to Private Plant Breeding
In general, the timelines for the exploration of the potential
of GS were relatively similar between the considered public
and private plant breeding organizations. CIMMYT and the
CGIAR are public research organizations that also pursue the
publication of novel, creative approaches, and follow in parts
a (research) project-based organization. In contrast, private
institutions naturally tend to focus more on the standardization

and optimization of routine processes for GS, which may have
had a lower priority in the public sector. The EiB platform
and associated projects are currently addressing a stronger
standardization of data storage and related analysis pipelines.
Moreover, the project-based organization in public institutions
comes with a variance in funding which leads to challenges for
mid to long-term planning on the use of GS.

Finally, CGIAR centers are plant improvement-breeding
centers that focus on delivering germplasm to National
Agricultural Research institutions (NARs), in particular in Africa
and Asia. This implies other priorities for traits, different
frameworks for the evaluation of material, and different cost
structures compared to, for instance, a commercial program
in North America. The economics of implementing GS may
therefore differ from those at private companies.

Overall, we think that the advent of GS has provided a
tipping point to catalyze the ongoing reform of plant breeding
institutions to data processing focused organizations. This
transformation will leverage both the historic data resources
amassed and the data generated annually to more effectively
drive breeding decisions. However, with the increasing number
of phenotypic records, and genotypic and environmental
information, we now face the challenge of how to use “big data”
most efficiently.
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