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Genomic prediction is an effective way for predicting complex traits, and it is becoming

more essential in horticultural crop breeding. In this study, we applied genomic prediction

in the breeding of cucumber plants. Eighty-one cucumber inbred lines were genotyped

and 16,662 markers were identified to represent the genetic background of cucumber.

Two populations, namely, diallel cross population and North Carolina II population, having

268 combinations in total were constructed from 81 inbred lines. Twelve cucumber

commercial traits of these two populations in autumn 2018, spring 2019, and spring 2020

were collected for model training. General combining ability (GCA) models under five-fold

cross-validation and cross-population validation were applied to model validation. Finally,

the GCA performance of 81 inbred lines was estimated. Our results showed that the

predictive ability for 12 traits ranged from 0.38 to 0.95 under the cross-validation strategy

and ranged from −0.38 to 0.88 under the cross-population strategy. Besides, GCA

models containing non-additive effects had significantly better performance than the pure

additive GCAmodel for most of the investigated traits. Furthermore, there were a relatively

higher proportion of additive-by-additive genetic variance components estimated by the

full GCA model, especially for lower heritability traits, but the proportion of dominant

genetic variance components was relatively small and stable. Our findings concluded

that a genomic prediction protocol based on the GCA model theoretical framework can

be applied to cucumber breeding, and it can also provide a reference for the single-cross

breeding system of other crops.

Keywords: cucumber breeding, genomic prediction, GBLUP, bayesian ridge regression, model validation

INTRODUCTION

Genomic prediction predicts the breeding value of potential hybrids using high-density molecular
markers or genetic relationship matrices (Meuwissen et al., 2001; Jannink et al., 2010; Crossa et al.,
2017) and is more effective in selecting potential hybrids. The genomic prediction method has been
widely used in crop breeding, such as maize (Riedelsheimer et al., 2012), rice (Xu et al., 2016),
and potato (Sverrisdottir et al., 2018). However, relatively fewer studies in horticultural crops are
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reported, such as in pea (Tayeh et al., 2015), tomato (Duangjit
et al., 2016), and strawberry (Gezan et al., 2017), while there are
still no related reports in cucumber.

Cucumber (Cucumis sativus L.) is an important vegetable
crop, with a worldwide production of more than 87 million tons
in 2019 (http://www.fao.org/faostat/en/?#data/QC). Nowadays,
using the traditional breeding methods, diverse ecotypes of
cucumber have been developed to satisfy different consumption
markets (Weng et al., 2015). Many important horticultural
traits, such as size/shape of fruits and flowering time, which
are quantitatively inherited and their underlying quantitative
trait locus and related genes have been recently reported
and identified (Pan et al., 2020). Mostly, the quantitative
traits of cucumber are their economic traits that have a
polygenic structure and are highly influenced by environmental
factors. However, selecting potential hybrids by using the
marker-assistant selection method has its limitations under
such circumstances. Fortunately, genomic prediction models
can capture complex genetic variances using genomic-coverage
molecular markers to achieve more accuracy in the selection
process. In cucumber, the genomic prediction has also become
more practical with the release of the full cucumber genome
(Huang et al., 2009; Yang et al., 2012) and the decreasing cost of
genome sequencing.

In genomic prediction practices, fitting high-density markers
as fixed effects will cause over-fitting issues in a linear model
(due to n << p, where n signifies observations and p signifies
predictors). Therefore, alternatively, they can be fitted as a
random effect such as ridge-regression best linear unbiased
prediction (BLUP) (Ogutu et al., 2012). To improve the normal
distribution assumption of the random effect in ridge-regression
BLUP for some traits with more simple inheritance, the Bayesian
models may assign different priors to the marker effects allowing
for stronger shrinkage or a mixture of null- and major-effect
markers (Karkkainen and Sillanpaa, 2012; Perez and de los
Campos, 2014). In addition, genetic relationship matrices are
used as predictors in the genomic-BLUP (GBLUP)model (Nishio
and Satoh, 2014), which can estimate the genetic variance
components more conveniently under the Bayesian theoretical
framework, and it is equivalent to the ridge-regression BLUP
model (Endelman, 2011).

In a single-cross breeding system, F1 hybrids produced by
the inbred lines are breeding goals, where their performances
are divided into general combining ability (GCA) and special
combining ability (SCA) to explain the genetic effects from
parental independence and its interaction (de Santana et al.,
2017). In previous studies, GCA and SCA have been used in
cucumber breeding (Golabadi et al., 2015; Moradipour et al.,
2017; Ene et al., 2019), which indicates that both GCA and
SCA are good indicators for evaluating either the inbred lines or
hybrid lines. Furthermore, the accurate estimation of combining
ability relies on the orthogonal a priori hypothesis of variance
components, and the GCA model has been developed for the
single-cross breeding system (González-Diéguez et al., 2021). In
the GCA model, the genetic relationship matrices of additive,
dominance, additive-by-additive, and residual genetic effects are
defined orthogonally. The GCA model has shown its potential
in a maize single-cross breeding program (Technow et al., 2014;

González-Diéguez et al., 2021). In this study, we investigated
whether the GCAmodel is suitable for the cucumber single-cross
breeding system.

In general, the predictive ability of the model is estimated
by the cross-validation (Heslot et al., 2012). In some cases,
the model performance needs more comprehensive verification.
The performance of a model for cross seasons and/or cross
populations is necessary to validate since the population size
and the times of trial in the field are usually limited in a
training group. From another perspective, whether the genetic
variance components are similar among different seasons and/or
population structures is also essential for the comprehension of
trait performance in a breeding system.

To verify the applicability of genomic prediction in cucumber,
three GCA models under two model validation strategies
in cucumber were performed to solve the following issues:
(i) estimation of variance parameters under orthogonal prior
hypothesis; (ii) the GCA model performance under cross-
validation and cross-population strategies; and (iii) estimation of
the GCA performance of 81 inbred lines.

MATERIALS AND METHODS

Construction of Model Training
Populations
Seventy-one cucumber inbred lines were collected for genomic
prediction. For these collected lines, the inbred lines with “WI
##” were provided by professor Yiqun Weng at the University
of Wisconsin-Madison, and most of the other inbred lines were
obtained from our own Laboratory. Besides, another 10 inbred
lines from Liu et al. (2015) and Qi et al. (2013) were used for
the analysis. The origin of some inbred lines refers to Bo et al.
(2016), and the detailed information of all 81 inbred lines is listed
in Supplementary Table 1.

There were two populations for model training, namely,
diallel cross (DC) population and the North Carolina II (NC)
population. The DC population included 18 inbred lines, 153 DC
F1 hybrids, and another 5 F1 hybrids developed from 8 cucumber
inbred lines with a total of 176 combinations. The NC population
included 92 combinations, which were derived by “23,” “3,511”
as male parents, and other 49 inbred lines as female parents
based on the NC genetic mating design (Xu et al., 2018). The
detailed information for two model training populations is listed
in Supplementary Table 2.

Genotypic Data Collection
Seventy-two collected inbred lines were planted in a greenhouse
at the Horticultural Farm of Northwest A&F University
(HF-NWAF), Yangling, Shaanxi Province, China, (108.0809◦E,
34.3006◦N) during spring 2018. Young leaves of these inbred
lines were collected for DNA extraction by using the cetyl
trimethyl ammonium bromide (CTAB) method from the
seedlings at a four-leaf stage. Murray and Thompson (1980).
The qualified DNA samples were used for sequencing library
construction following the paired-end library protocol (Illumina
company). The Illumina HiSeq2500 platforms and the paired-
end 150 bp sequencing strategy were used for re-sequencing.
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To obtain clean reads, raw sequencing data were filtered
by removing sequences with adaptors, filtering out the reads
with N content over 10%, and ignoring the reads that had
over 50% of low-quality bases. Regarding reads alignment and
single nucleotide polymorphism (SNP) calling, 81 inbred lines
were sequenced and analyzed altogether. First, the clean reads
of 81 inbred lines were aligned onto the draft genome of
cucumber “9930” V2.0 (https://www.ncbi.nlm.nih.gov/genome/
1639?genome_assembly_id=228904), using BWA software (Li
and Durbin, 2010) (parameter: mem -t 4 -k 32 -M). Second,
the SNP calling process was performed by using SAMtools
software (Li et al., 2009) with the “mpileup” function. Missing
and heterozygous SNP loci were imputed by major homozygous
SNP genotype, and the SNP locus with minor allele frequency
<0.05 was removed. Later, the SNPs located on coding sequences
were annotated by using ANNOVAR software (Wang et al.,
2010). Finally, 16,662 non-synonymous SNPs were collected
as genotypic data for the construction of genetic relationship
matrices. The origin SNP information of 81 inbred lines is given
in Supplementary File 1.

Phenotypic Data Collection
Three field trials of the DC population were carried out during
autumn 2018 (2018A), spring 2019 (2019S), and spring 2020
(2020S). The planting dates of these three seasons are July 27,
2018, March 14, 2019, and March 6, 2020, respectively. One field
trial of the NC population was carried out during 2020S. For each
field trial, combinations in the DC population had two blocks
(separated glasshouse as a block) while four (two blocks in a
single glasshouse) in the NC population. A total of 10 plants
were sowed for each combination in a block, and the detailed
experimental design was visualized in Supplementary Figure 1.

A total of 12 traits were collected in both DC and
NC populations, namely, commercial fruit yield (cFY, kg),
commercial fruit number (cFN), female flower time (FFT, days),
commercial fruit weight (cFW, g), commercial fruit length (cFL,
mm), commercial fruit diameter (cFD, mm), commercial fruit
neck length (cFNL, mm), commercial fruit flesh thickness (cFTH,
mm), commercial seed cavity radius (cSCR, mm), commercial
fruit spine density (cFSD, n·cm−2), female flower node ratio
(FFNR), and the first female flower node (FFFN) traits. The
naming standard of these traits follows the rules in the study by
Wang et al. (2020).

The commercial fruits of all combinations in three seasons
were collected and measured according to the market standard
of fresh cucumbers (Golabadi et al., 2015). The phenotypic data
collection methods were described as follows:

For cFY and cFN, the total cFY and cFN were continuously
recorded up to 30 harvesting days. FFT was recorded from
sowing until days to 50% of female flowering. Moreover, each
block was a measurement unit for cFY, cFN, and FFT. FFNR was
recorded by calculating a ratio of female flower nodes within the
first 20 nodes and FFFN from the FFFN. A total of six plants
were used for measuring FFNR and FFFN, while a total of six
commercial fruits were collected for the measurement of cFW,
cFL, cFD, cFNL, cFTH, cSCR, and cFSD, respectively. cFSD trait
was recorded by selecting six random fruits, and their spine

numbers were converted to spine density (n·cm−2). All these
12 traits were recorded in 2019S and 2020S; however, the FFNR
and FFFN traits were not available in 2018A. The information of
origin phenotypic data are listed in Supplementary File 2.

Before model training, for most traits in each season,
including cFW, cFL, cFD, cFNL, cFTH, cSCR, cFSD, FFNR, and
FFFN, the phenotypic data were corrected using the following
mixed linear model:

yijk = gi + blockj + Repk + εijk (1)

where yijk is the origin phenotypic value, gi is the best linear
unbiased estimates (BLUEs) of the ith hybrids, blockj is the jth
block, Repk is the kth replicates, and εijk is the residual item.
For cFY, cFN, and FFT in each season, the phenotypic data were
corrected using a simplified model: yijk = gi+blockj+εijk, where
the replicate item was ignored.

Model Type and Model Validation Strategy
For a single-cross breeding system, the decomposition of
combining ability of F1 hybrids is the basic theoretical framework
of genomic prediction, and the basic formula is:

yij = µ + GCAi + GCAj + SCAij + εij (2)

where yij is the BLUEs of F1 combinations (female parent i ×
male parent j),µ is the overall mean of the group,GCAi andGCAj

are the GCA of female parent (i) andmale parent (j), respectively.
SCAij is the SCA of the F1 hybrids (female parent i×male parent
j), and εij is the residual item.

In this study, the GCA models developed by González-
Diéguez et al. (2021) were used for model training. In the full
GCA model, additive, dominance, additive-by-additive epistatic,
and residual genetic effects were all considered. In addition, GCA
components were considered by the following formula:

GCA = T1gA+T2gA+T1gAA+T2gAA+T1r+T2r (3)

where GCA is the GCA effect vector of inbred lines, gA is
the additive effect vector of inbred lines, gAA is the additive-
by-additive (intrapopulation epistatic) effect vector of inbred
lines, and T1 and T2 are incidence matrices assigning hybrids
to female parents and male parents, respectively. The additive
effects in inbred line population are assumed to be distributed
as gA∼MVN

(

0, GAσ
2
A

)

, and the GA matrix was calculated based

on the following formula: GA =
ZZ

′

∑n
i piqi

, where pi and qi are

allele frequencies in ith SNP loci and n is the SNP number.
Z=M−1np

′

, where M is the m × n SNP matrix of inbred lines,
and m is the inbred line number. {0, 1} are basic elements in
M, where 0 means “aa” and 1 means “AA.” The intrapopulation
additive-by-additive effects in inbred line population are assumed
as gAA∼MVN

(

0, GAAσ
2
AA

)

. r is the residual genetic effect
(Endelman et al., 2018), which is assumed to be distributed as
r∼MVN(0, Iσ 2

r ), and r = gAAA + gAAAA + . . ..
For the SCA component, the dominance effect was

considered, and the formula is

SCA = gD (4)
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FIGURE 1 | Two model validation strategies for analysis. DC, diallel cross population; NC, NCII population.

where SCA is the SCA effect vector of hybrids, gD is
the dominance effect of hybrids, which is assumed as
gD∼MVN

(

0, GDσ
2
D

)

. GAA and GD genetic relationship matrices
are constructed followed by González-Diéguez et al. (2021).

Thus, the full GCA model is the GCA additive–dominance–
epistasis (A–D–E) model, and the formula is

y = 1nµ + T1gA+T2gA+gD+T1gAA+T2gAA+T1r+T2r+ε (5)

where y is the BLUE vector of F1 combinations, ε is the residual
item, and ε∼MVN(0, Iσ 2

e ). Other items in formula (5) have been
described earlier.

Besides, the other two simplifiedmodels were also used for the
analysis as follows:

y = 1nµ + T1gA+T2gA+gD+T1r+T2r+ε (6)

y = 1nµ + T1gA+T2gA+T1r+T2r+ε (7)

Formula (6) is the GCA additive–dominance (A–D) model,
which contains additive, dominance, and residual genetic effects.
Formula (7) is the GCA additive (A) model, which contains
additive and residual genetic effects. In addition, three GCA
models without residual genetic effects were also performed.

All the three GCA models were performed by using the
Bayesian ridge regression framework, and variance components
including σ

2
A, σ

2
D, σ

2
AA, σ

2
r , and σ

2
e were estimated by using the

Bayesian ridge regression model. Broad-sense heritability (H2)
was calculated by the proportion of genetic variance in the total
variance. To show the genetic relationship among 81 inbred lines,
GA matrix was visualized using a heat map. Finally, the GCA of

81 inbred lines in all three seasons was estimated using the full
GCA model.

Two model validation strategies, namely, five-fold cross-
validation and cross-population validation, were used to check
the predictive ability of themodel. These two strategies are shown
in Figure 1.

For the five-fold cross-validation strategy, DC population in
2018A, DC population in 2019S, and (DC + NC) populations
in 2020S were training groups, respectively. For the cross-
population validation strategy, the DC population in 2018A,
2019S, and 2020S were the training groups, and the NCII
population in 2020S was the validation group. Regarding each
model validation strategy, the Pearson’s correlation relationship
between the phenotypic BLUEs and the genomic estimated
breeding values (GEBVs) was calculated as model predictive
ability, and each model validation process was repeated 20 times
to obtain robust results.

Statistical Analysis
In this study, most of the analyses were performed by using
R (3.6.1 version) software (R Development Core Team, 2013).
The correlations among the BLUEs of traits in three seasons
were visualized by using “ggpairs” (https://ggobi.github.io/
ggally/reference/ggpairs.html), and the heat map of the GA

matrix was visualized by “pheatmap” package using R software
(https://CRAN.R-project.org/package=pheatmap). The principal
component analysis of DC and NC populations was performed
based on the 16,662 non-synonymous SNP information of these
two populations using “prcomp” R function.
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FIGURE 2 | The heat map of the GA matrix for the dataset with 81 cucumber inbred lines genotyped with 16,662 SNP markers. All 81 cucumber lines are clustered

into four groups, namely, East Asia, Eurasian, Indian, and xishuangbanna groups, respectively.

Regarding the GCA models validation process, the “BGLR”
function in “BGLR” package in R software was used for the
analysis (Perez and de los Campos, 2014). For the parameter
setting of “BGLR” function, the nIter parameter was 30,000,
the burnIn parameter was 10,000, and the thin parameter was
5 (default value). The trace plot of each variance parameter
was visualized to check its convergence. The R script including
the function for the model validation process is presented in
Supplementary File 3.

RESULTS

Overview of Genetic Relationship of Inbred
Lines and Phenotypic Data
In this study, a total of 81 cucumber inbred lines were
collected to represent the main genetic background of cucumber.
The heat map of GA matrix (Figure 2) showed that all
the collected cucumber inbred lines were divided into four
genetic groups, namely, East Asian group (43 inbred lines),
Eurasian group (23 inbred lines), Indian group (9 inbred lines),
and xishuangbanna group (6 inbred lines). Two populations,

namely, DC and NC, were constructed for genomic prediction
(Supplementary Figure 2A). The principal component analysis
of two populations (Supplementary Figure 2B) showed that the
DC population had a similar but broader genetic background
compared with the NC population.

Two main types of traits in DC and NC populations were
collected, including fruit yield-related and commercial-related
traits. Fruit yield-related traits included cFY, cFN, FFT, FFNR,
and FFFN traits; fruit commercial-related traits included cFW,
cFL, cFD, cFNL, cFTH, cSCR, and cFSD traits.

The distribution and correlation relationship among the
BLUEs of traits of DC population (Figure 3) showed that in all
the three seasons, cFY paired cFN (r = 0.941∗∗∗), cFW paired
cFL (r = 0.789∗∗∗), cFL paired cFNL (r = 0.869∗∗∗), and cSCR
paired cFD (r = 0.832∗∗∗) had strong positive relationships; cFL
paired cFD (r = −0.746∗∗∗), cFL paired cSCR (r = −0.619∗∗∗),
FFNR paired FFFN (r = −0.781∗∗∗), and cFN paired FFFN (r
= −0.781∗∗∗) had strong negative relationships. In addition, the
density distributions of cFY, cFN, and FFT traits in all three
seasons were different, while most of the fruit commercial-related
traits have similar distributions in all three seasons, especially for
cFL and cFNL traits. It is noted that the density distribution of
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FIGURE 3 | Distribution and correlation relationship among best linear unbiased estimates of traits in three seasons. A total of 12 traits information in three seasons is

visualized. The upper right part is the Pearson’s correlation coefficient among traits (***: p < 0.001; **: p < 0.01; and *: p < 0.05); the diagonal position is the density

distribution of traits in three seasons; and the lower left part is the scatter plot among traits in different seasons. Red color, traits in autumn 2018; green color, traits in

spring 2019; blue color, traits in spring 2020.

cFTH trait in 2018A has a significant deviation compared with
those in 2019S and 2020S.

Model Predictive Ability Under Five-Fold
Cross-Validation Strategy
For the five-fold cross-validation strategy, the model predictive
ability was estimated by the training group itself. Table 1 shows
that for model comparison in 2018A, the GCA (A) model had
the best performance for FFT, cFL, cFD, and cFTH, and the GCA
(A–D) model had the best performance for cFY, cFN, and cFNL,
while the GCA (A–D–E) model had the best performance for
cFW, cSCR, cFL, and cFSD. For model comparison in 2019S, the
GCA (A) model performed the best for only cFTH and cSCR
traits, and the GCA (A–D) model performed the best for cFW,
cFD, cFSD, and FFFN traits, while the GCA (A–D–E) model
performed the best for the other six traits. For model comparison
in 2020S, only the cSCR and cFSD with the GCA (A) model had
the best performance, and FFT, cFW, cFL, cFD, FFNR, and FFFN
with the GCA (A–D) model had the best performance, while cFY,
cFN, cFNL, and cFTH with the GCA (A–D–E) model had the
best performance.

Besides, GCA models had a better predictive ability for most
of the fruit commercial-related traits in three seasons, except for
the cFTH. Moreover, the GCA models for cFL had the highest
predictive ability (r > 0.90 in all three seasons) compared with
the other 11 traits, while the GCA model had a relatively worse

predictive ability for cFTH in 2018A (0.38–0.44) and FFT in
2020S (0.48–0.62).

The Estimation of Variance Parameters of
GCA Models
The posterior genetic variance parameters of three GCA models
for 12 traits in three seasons were estimated. The information
of variance parameters for the cFY trait is listed in Table 2,
and the information of variance parameters for the other 11
traits is listed in Supplementary Table 3. For all the 12 traits,
with increasing model complexity, a higher proportion of genetic
variance components was observed, leading to a higher broad-
sense heritability. For example, for the cFY in 2018A, broad-sense
heritability showed increment by 11.6% under the GCA (A–D–E)
model (0.37) as compared with the GCA (A) model (0.33).

Some traits in different seasons had obvious differences for
broad-sense heritability. For example, for cFY in 2018A, the
broad-sense heritability under the GCA (A–D–E) model was
0.37, and in 2019S, the broad-sense heritability under the GCA
(A–D–E) model was 0.49. Besides, the cFTH in 2018A had low
broad-sense heritability (0.19–0.22) compared with the other two
seasons (0.34–0.43).

In addition, a relatively high proportion of additive-by-
additive (epistatic) genetic variance was captured in the GCA
(A–D–E) model for most of the traits. For example, for cFY in
2018A, the additive-by-additive genetic variance accounted for
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TABLE 1 | Predictive ability of GCA models under the five-fold cross-validation strategy.

Season Trait GCA model

GCA (A) GCA (A–D) GCA (A–D–E)

2018A cFY 0.683(0.001) c 0.701(0.001) a 0.697(0.001) b

cFN 0.654(0.001) c 0.691(0.001) a 0.681(0.001) b

FFT 0.830(0.001) a 0.799(0.001) b 0.799(0.001) b

cFW 0.533(0.001) b 0.511(0.001) c 0.592(0.001) a

cFL 0.912(0.000) a 0.908(0.000) b 0.899(0.000) c

cFD 0.840(0.000) a 0.825(0.001) c 0.828(0.001) b

cFNL 0.885(0.000) c 0.901(0.000) a 0.895(0.000) b

cFTH 0.439(0.001) a 0.426(0.001) b 0.381(0.002) c

cSCR 0.826(0.000) c 0.831(0.001) b 0.831(0.001) a

cFSD 0.803(0.001) b 0.802(0.001) c 0.811(0.001) a

2019S cFY 0.715(0.001) c 0.782(0.001) b 0.796(0.001) a

cFN 0.788(0.001) c 0.814(0.001) b 0.823(0.001) a

FFT 0.729(0.001) c 0.768(0.001) b 0.783(0.002) a

cFW 0.846(0.000) c 0.857(0.000) a 0.848(0.000) b

cFL 0.948(0.000) c 0.955(0.000) b 0.957(0.000) a

cFD 0.882(0.000) b 0.886(0.000) a 0.880(0.001) c

cFNL 0.913(0.000) c 0.920(0.001) b 0.924(0.000) a

cFTH 0.679(0.001) a 0.663(0.001) c 0.672(0.001) b

cSCR 0.860(0.000) a 0.854(0.000) b 0.853(0.000) c

cFSD 0.866(0.000) c 0.882(0.000) a 0.873(0.001) b

FFNR 0.866(0.000) c 0.897(0.000) b 0.898(0.001) a

FFFN 0.811(0.001) b 0.836(0.001) a 0.785(0.001) c

2020S cFY 0.725(0.001) c 0.738(0.001) b 0.779(0.000) a

cFN 0.845(0.001) c 0.886(0.001) b 0.900(0.000) a

FFT 0.482(0.002) c 0.650(0.002) a 0.620(0.002) b

cFW 0.840(0.001) b 0.845(0.001) a 0.836(0.000) c

cFL 0.950(0.000) c 0.955(0.001) a 0.952(0.001) b

cFD 0.827(0.001) c 0.839(0.001) a 0.832(0.000) b

cFNL 0.892(0.000) c 0.903(0.001) b 0.913(0.000) a

cFTH 0.668(0.001) b 0.668(0.001) b 0.680(0.001) a

cSCR 0.805(0.001) a 0.805(0.001) a 0.798(0.001) b

cFSD 0.791(0.000) a 0.782(0.001) b 0.744(0.002) c

FFNR 0.846(0.000) c 0.880(0.000) a 0.875(0.000) b

FFFN 0.752(0.000) c 0.792(0.001) a 0.791(0.001) b

Regarding the GCA model, (A) is an additive model, (A–D) is an additive–dominance model, and (A–D–E) is the additive–dominance–epistasis (additive-by-additive) model. The predictive

ability is presented asmean (SD). Different letters indicate a significant difference in the predictive abilities of different models for the same trait (p< 0.05, Duncan’s newmultiple range test).

GCA, general combining ability; cFY, commercial fruit yield; cFN, commercial fruit number; FFT, female flowering time; cFW, commercial fruit weight; cFL, commercial fruit length; cFD,

commercial fruit diameter; cFNL, commercial fruit neck length; cFTH, commercial fruit flesh thickness; cSCR, commercial seed cavity radius; cFSD, commercial fruit spine density; FFNR,

female flower node ratio; FFFN, first female flower node.

43.5% of the total genetic variance under the GCA (A–D–E)
model and for cFY in 2019S, the ratio was 47.6%. And in 2020S,
the ratio was 39.6%. But for the high broad-sense heritability
traits, like cFL in 2020S, the ratio of additive-by-additive genetic
variance to total genetic variance was only 20.6%. When σ

2
AA

existed (GCA (A–D–E) model), the proportion of additive and
residual genetic components drops compared with the other
GCA models. In contrast, the proportion of dominant genetic
variance in total genetic variance during three GCA models is
relatively stable.

Besides, the percentage of genetic variance components in
the total variance among traits under the GCA (A–D–E) model
was visualized (Figure 4). σ

2
A components accounted for low

proportions of the total genetic variance (1.9–15.2%), especially
for cFTH in 2018A (1.9%). σ 2

D components also accounted for a
lower proportion of the total genetic variance (1.2–14.9%), and
only for FFT, FFFN in 2020S had relatively higher dominant
variance (12.7–14.9%). σ

2
AA and σ

2
r components accounted for

higher proportions of the total genetic variance, respectively
(9.7–36.8% for σ

2
AA and 8.6–56.1% for σ

2
r ).
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TABLE 2 | The estimated posterior of genetic variance components and broad-sense heritability (H2) under three GCA models for the cFY trait.

Season Model Variance components H2

σ
2
A

σ
2
D

σ
2
AA

σ
2
r

σ
2
ε

2018A GCA (A) 0.028 (0.022) 0.122 (0.054) 0.306 (0.034) 0.328

2018A GCA (A-D) 0.023 (0.021) 0.011 (0.008) 0.111 (0.053) 0.282 (0.033) 0.339

2018A GCA (A–D–E) 0.013 (0.012) 0.008 (0.005) 0.071 (0.044) 0.071 (0.035) 0.282 (0.033) 0.366

2019S GCA (A) 0.082 (0.054) 0.243 (0.113) 0.433 (0.049) 0.429

2019S GCA (A-D) 0.064 (0.044) 0.022 (0.013) 0.219 (0.115) 0.374 (0.044) 0.449

2019S GCA (A–D–E) 0.033 (0.039) 0.018 (0.011) 0.169 (0.102) 0.136 (0.076) 0.372 (0.043) 0.488

2020S GCA (A) 0.123 (0.057) 0.275 (0.087) 0.389 (0.042) 0.506

2020S GCA (A–D) 0.162 (0.073) 0.012 (0.006) 0.275 (0.094) 0.309 (0.034) 0.593

2020S GCA (A–D–E) 0.035 (0.038) 0.009 (0.004) 0.176 (0.092) 0.225 (0.075) 0.311(0.033) 0.589

Regarding the GCA model, (A) is an additive model, (A–D) is an additive–dominance model, and (A–D–E) is the additive–dominance–epistasis (additive-by-additive) model.

σ
2
A , σ

2
D , σ

2
AA, and σ

2
r are additive, dominance, additive-by-additive, and residual genetic variance components, respectively. σ 2

ε
is the residual variance.

The estimated posterior of genetic variance components is expressed as mean (SD).

GCA, general combining ability; cFY, commercial fruit yield.

FIGURE 4 | The percentage of genetic variance components in the total variance among traits under the general combining ability (A–D–E) model. σ
2
A , σ

2
D , σ

2
AA, and

σ
2
r are additive, dominance, additive-by-additive, and residual genetic variance components, respectively.

The Phenotypic Correlation of DC
Population in Three Seasons
The phenotypic correlation of the DC population of
each trait in 2018A, 2019S, and 2020S was estimated
(Supplementary Figure 3). Most of the traits have a relatively
higher correlation in three seasons, especially for cFL traits
(r = 0.92–0.95). However, the cFTH showed relatively
inconsistent correlations among these three seasons, in
which the cFTH in 2018A has a weak correlation with the
cFTH in 2019S and 2020S (r = −0.02–0.21), while cFTH trait
in 2019S has a relatively higher correlation with that in 2020S
(r = 0.63).

Model Predictive Ability Under
Cross-Population Strategy
For the cross-population strategy, there were three validation
schemes (Table 3). The NC population in 2020S was the
validation group, and the DC population in 2018A, 2019S,
and 2020S were the training groups, respectively. As shown in
Table 3, when the DC population in 2018A was the training
group, the GCA (A) model was enough to obtain the best
performance for cFW, cFL, cFNL, cFTH, cSCR, and cFSD, and
the GCA (A–D–E) model had the best performance for cFY, cFN,
FFT, and cFD.When the DC population in 2019S and 2020S were
training groups, the GCA (A–D–E) model performed the best
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TABLE 3 | The model predictive ability under the cross-population strategy.

Validation strategy Trait GCA model

GCA (A) GCA (A–D) GCA (A–D–E)

2018A(DC)–>2020S(NC) cFY 0.621 (0.002) b 0.600 (0.003) c 0.627 (0.002) a

cFN 0.803 (0.003) c 0.828 (0.003) b 0.850 (0.002) a

FFT 0.334 (0.003) c 0.388 (0.003) b 0.526 (0.005) a

cFW 0.749 (0.003) a 0.676 (0.005) c 0.731 (0.003) b

cFL 0.849 (0.005) a 0.817 (0.005) b 0.835 (0.008) a

cFD 0.592 (0.005) b 0.593 (0.003) b 0.609 (0.005) a

cFNL 0.819 (0.003) a 0.781 (0.005) b 0.821 (0.003) a

cFTH −0.066 (0.019) a −0.072 (0.020) a −0.383 (0.010) b

cSCR 0.403 (0.022) a 0.379 (0.017) a 0.426 (0.014) a

cFSD 0.677 (0.007) a 0.602 (0.008) b 0.692 (0.004) a

2019S(DC)–>2020S(NC) cFY 0.625 (0.001) c 0.637 (0.001) b 0.658 (0.001) a

cFN 0.813 (0.002) c 0.840 (0.002) b 0.860 (0.002) a

FFT 0.393 (0.002) c 0.470 (0.001) b 0.602 (0.003) a

cFW 0.794 (0.005) c 0.807 (0.004) b 0.839 (0.004) a

cFL 0.831 (0.011) b 0.839 (0.010) ab 0.862 (0.010) a

cFD 0.602 (0.002) b 0.609 (0.003) b 0.624 (0.004) a

cFNL 0.830 (0.004) c 0.845 (0.005) b 0.874 (0.005) a

cFTH 0.386 (0.010) b 0.411 (0.007) b 0.448 (0.013) a

cSCR 0.452 (0.012) b 0.443 (0.010) b 0.488 (0.014) a

cFSD 0.668 (0.011) b 0.656 (0.017) b 0.708 (0.008) a

FFNR 0.811 (0.002) b 0.845 (0.001) a 0.816 (0.004) b

FFFN 0.746 (0.002) b 0.770 (0.002) a 0.765 (0.007) a

2020S(DC)–>2020S(NC) cFY 0.623 (0.002) b 0.616 (0.002) c 0.646 (0.002) a

cFN 0.780 (0.004) c 0.811 (0.004) b 0.839 (0.004) a

FFT 0.393 (0.001) c 0.485 (0.002) b 0.615 (0.005) a

cFW 0.817 (0.006) ab 0.803 (0.006) b 0.827 (0.005) a

cFL 0.821 (0.011) b 0.854 (0.007) a 0.876 (0.004) a

cFD 0.597 (0.005) b 0.599 (0.007) b 0.635 (0.009) a

cFNL 0.834 (0.003) b 0.818 (0.005) c 0.868 (0.003) a

cFTH 0.324 (0.013) b 0.235 (0.022) c 0.378 (0.016) a

cSCR 0.455 (0.015) b 0.348 (0.033) c 0.537 (0.017) a

cFSD 0.692 (0.007) b 0.648 (0.014) c 0.727 (0.003) a

FFNR 0.799 (0.001) c 0.845 (0.001) a 0.831 (0.002) b

FFFN 0.748 (0.001) c 0.787 (0.001) b 0.825 (0.003) a

Regarding the GCA model, (A) is an additive model, (A–D) is an additive–dominance model, and (A–D–E) is the additive–dominance–epistasis (additive-by-additive) model. For the

cross-population strategy, the NCII population in spring 2020 is the validation group, and the DC population in autumn 2018, spring 2019, and spring 2020 are training groups.

The Pearson’s correlation coefficient between the observed value and the predicted value is calculated as model predictability. The prediction ability is presented as mean (SD). Different

letters indicate a significant difference in the predictive abilities of different models for the same trait. (p < 0.05, Duncan’s new multiple range test).

GCA, general combining ability; cFY, commercial fruit yield; cFN, commercial fruit number; FFT, female flowering time; cFW, commercial fruit weight; cFL, commercial fruit length; cFD,

commercial fruit diameter; cFNL, commercial fruit neck length; cFTH, commercial fruit flesh thickness; cSCR, commercial seed cavity radius; cFSD, commercial fruit spine density; FFNR,

female flower node ratio; FFFN, first female flower node.

for most of the traits, except for cFL in 2020S and FFNR in both
2019S and 2020S.

Besides, most of the traits had effective predictive ability under
the cross-population strategy, indicating that the GCA models
are effective for cross-population prediction, while cSCR and
cFTH under the cross-population strategy had relatively worse
performance (−0.38 to 0.53).

The GCA Estimation Result of 81 Inbred
Lines Under the Full GCA Model
The estimated GCA information of 81 inbred lines during
three seasons is listed in Supplementary Table 4. The result
shows that most of the inbred lines in the East Asian and
Eurasian groups had higher fruit yield, earlier FFT, and more
diverse fruit commercial traits. The GCA effects including
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additive and additive-by-additive genetic effects are stable
genetic effects between generations, and they are essential for
evaluating inbred lines. Overall, the estimated GCA information
of these 81 inbred lines could provide useful guidance in
cucumber breeding practice, which makes the breeding scheme
more purposeful.

DISCUSSION

The Discussion About GCA Models
The GCA model has been developed by González-Diéguez
et al. (2021), which can trace genetic effects of male and
female parents (“according to origin”) based on the GCA and
SCA theoretical framework. Moreover, it can also estimate the
orthogonal variance components. The correlation among the
variance components estimated by the GCA (A–D–E) model
for cFY (Supplementary Figure 4) shows that the correlation
relationship among genetic variance components is weak
(r ≈ 0), which might be due to its orthogonal prior
hypothesis. Orthogonal variance components are essential for
the estimation of genetic effects, because the non-orthogonal
variance components have overlaps among each other, and
genetic effects cannot be estimated accurately. Therefore, the
GCA model is a more powerful tool for the estimation of
variance components.

Residual genetic effects contain high-order additive effects
and interaction (epistatic) effects (gAAA, gAAAA, . . .), which are
important for the genetic structure (González-Diéguez et al.,
2021) but are difficult to be estimated separately. In this
study, the GCA model without residual genetic effects was also
considered. The variance components estimated by the GCA
models without residual genetic effects (Supplementary Table 5)
showed that the additive and the additive-by-additive effects will
have overestimated tendency when residual genetic effects do not
exist, though dominance effect and broad-sense heritability may
not have obvious changes. The residual genetic effects will be
estimated separately when residual genetic effects exist, causing
the genetic variance estimation more accurate. However, due
to the a priori hypothesis that the variance components are
orthogonal, the dominant and the residual items are independent
and not affected.

Besides, in the GCA model developed by González-Diéguez
et al. (2021), the parents come from different populations. In this
study, we assumed that both female and male parents are from
the same population because cultivated cucumber species have
relatively lower genetic diversity and similar genetic structure due
to the severe domestication bottleneck events (Qi et al., 2013).
Therefore, there were some differences in the details of the GCA
models compared to the previous study (González-Diéguez et al.,
2021). In addition, this study involved some wild and semi-
wild germplasm, which were not suitable for direct breeding
of commercial cucumber varieties. However, the significance of
including this germplasm for model training was to expand the
genetic background of the training population and make the
genomic prediction models more robust (Crain et al., 2020).

Additive and Non-additive Genetic Effects
in GCA Models
The additive effect, also called “breeding value,” is the
accumulation of genotype values of minor genes (Hayes et al.,
2009). An additive effect is essential for a breeding program
because it is stable and accumulable between generations. Non-
additive effects, like dominance and additive-by-additive effects,
are also important to capture more genetic variance (Varona
et al., 2018). Although non-additive models are transient and
highly dependent on the heterozygosity of the population, F1
hybrids are final cultivars in a single-cross breeding system, thus
non-additive effects can provide more accurate information for
the prediction of F1 hybrid performance, and the performance of
three GCA models under the five-fold cross-validation strategy
verified this conclusion (Table 1). Some previous studies have
reported that models containing non-additive effects perform
better than pure additive models in some cases (Munoz et al.,
2014; Dias et al., 2018; Wu et al., 2019), especially for the traits
with lower heritability (Liu et al., 2018).

The proportion of each genetic variance to the total genetic
variance reflects the degree of control on each genetic effect
of traits. In this study, the SCA effect (σ 2

D) accounts for only
a small part (1.2–14.9%) of the total genetic variance for
most of the traits (Figure 4) compared with the GCA effect
(20.4–81.4%). This estimation result indicates that the GCA
effect plays a leading role in explaining phenotypic variance
in cucumber. Therefore, breeding excellent inbred lines is very
important for selecting superior cucumber hybrid varieties, and
Supplementary Table 4 shows the valuable GCA information for
81 cucumber inbred lines.

Although year/season effects have important impacts on
breeding work, we did not handle these effects in the model,
as we preferred to analyze and compare the changes of genetic
effects in different seasons/years. But the phenotypic correlation
of the DC population among three seasons was calculated to
check whether there were any obvious year/seasonal effects. It
was stated as G × E effects (where G signifies genotypes and E
signifies environments). Most of the traits have a relatively higher
correlation in three seasons indicating that there were no obvious
G× E for these traits.

The Comparison of Two Model Validation
Strategies
In this study, two model validation strategies were used, which
were five-fold cross-validation and cross-population strategies.
In the previous studies, k-fold cross-validation and leave-one-out
cross-validation are the two main methods for model predictive
ability estimation (Wu et al., 2019; Cui et al., 2020), which are
similar to the five-fold cross-validation strategy in this study. The
cross-validation strategy provides an effective tool for checking
overfitting issues among three GCA models. For instance, the
cFL in 2018A, the GCA (A) model is enough to obtain the
best performance, since dominance and additive-by-additive
genetic components occupy a relatively small proportion of the
total genetic variance (23.1%), thus more complex GCA models
are unnecessary.
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For the five-fold cross-validation strategy, the model
predictive ability represents the reliability estimation of
prediction results. In general, the predictive ability has a positive
correlation with trait heritability (Combs and Bernardo, 2013),
indicating that the higher predictive ability means higher trait
heritability. Furthermore, the higher trait heritability means the
higher proportion of genetic variance explained by the genomic
prediction model to the total variance, resulting in more reliable
estimates for untested inbreds and combinations. For example,
the predictive ability of cFL is 0.90–0.95 under the GCA (A–D–E)
model, and the corresponding heritability is 0.70–0.83. In fact,
cFL is more stable under different environments compared with
yield-related traits. Therefore, traits with high predictive ability
will provide more precise references to practical breedings.

The cross-population strategy is cross-population validation
in the same or different seasons. When the training group and
the validation group are in the same season, the environmental
factor is similar, and the model performance mainly depends on
the genetic similarity between populations (Sverrisdottir et al.,
2018; Edwards et al., 2019). More complex models can capture
a higher genetic variance proportion of the training group for
explaining the variance in the validation group. Thus, more
complex models have better performance (Table 3, 2020S(DC)–
>2020S(NC) validation strategy).

When the training group and the validation groups are in a
different year, especially in different seasons, not only the genetic
similarity between populations but also environmental factors
may affect the model performance. Although GCA (A–D) and
GCA (A–D–E) models can catch non-additive genetic effects,
like dominance and additive-by-additive variance components,
these non-additive effects are transient and highly dependent on
the population structure and specific environment. The additive
effect is relatively stable among populations but the additive effect
is reduced in the non-additive models, especially in the GCA
(A–D–E) model (Supplementary Table 3). Therefore, the GCA
(A) model is enough for cFW, cFL, cFNL, cFTH, cSCR, and
cFSD under the “2018A(DC)–>2020S(NC)” validation strategy
(Table 3).

The Comparison Between GCA Models
and Traditional Combining Ability
Estimation Methods
Combining ability estimation has always been an important
content in plant breeding, which provides a valuable reference
for the breeding of inbreds and hybrids (Lv et al., 2012). There
are some studies on combining ability estimation in cucumber
breeding (López-Sesé and Staub, 2002; Golabadi et al., 2015;
Ene et al., 2019), where rigorous field experimental design and
phenotypic variance decomposition were used to estimate GCA
and SCA. In these studies, SCA has a substantial contribution to
some traits. For example, FL and FD have high proportions of
variance of SCA in the study by Golabadi et al. (2015), but the
variance of SCA for these traits may be overestimated.

In this study, the genetic relationship matrices based on high-
density markers and the phenotypes of the training population

were used for model training, and genetic effects were estimated
accurately based on the assumption of orthogonal genetic
variance. The results show that for all investigated traits, the SCA
(dominance effect) only accounts for a small part of the total
variance (1.2–14.9%), and the GCA accounts for the main part
of the total variance (20.4–81.4%). Besides, in actual breeding
practice, the heterosis of cucumber is not obvious in most cases
(Weng, 2021), indicating that the proportion of non-additive
effects (SCA) is low. Therefore, the GCAmodels in this studymay
be more accurate in combining ability estimation compared with
traditional methods.

In addition, the GCA model can predict the GCA of inbred
lines, which have genotypes but not involved in field trials.
Moreover, the GCA models do not have strict requirements for
the design of the training population, thoughmore representative
training groups will have more reliable results. These advantages
can make combining ability estimation more efficient and then
saving the costs in breeding.

Opportunities and Challenges of Genomic
Prediction Applied to Cucumber Breeding
The traditional hybrid breeding scheme limits the efficiency
of cucumber breeding, as potential hybrids that need to be
tested will increase exponentially when parents increase linearly.
The genomic prediction could perform large-scale accurate
prediction with a smaller training group, which improves the
selection efficiency significantly and meet the increasing demand
for breeding tasks. Besides, the cucumber genome is relatively
small (∼400 Mbp) (Weng, 2021), and fewer molecular markers
can achieve high marker density, which is an advantage of low
cost for genomic prediction applied to cucumber breeding.

Although genomic prediction has broad application prospects
in cucumber breeding, there are some challenges that need to be
considered. First, some fresh market cucumber species should
be planted in a greenhouse, but the greenhouse area may limit
the training population size. Second, some cucumber agronomic
traits are important but difficult to quantify, such as fruit
crispness, fruit aroma, fruit skin color consistency, etc. Therefore,
more in-depth studies are needed to quantify these traits to
support the application of genomic prediction. Regarding further
studies, stress resistance and fruit nutritional quality traits of
cucumber will be considered in genomic prediction to make the
breeding scheme more practicable.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found at: NCBI BioProject
accession: PRJNA741624.

AUTHOR CONTRIBUTIONS

CL: data curation, investigation, methodology, software,
writing—original draft, writing—review, and editing. XL: data

Frontiers in Plant Science | www.frontiersin.org 11 August 2021 | Volume 12 | Article 729328

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liu et al. Genomic Prediction and Cucumber Breeding

curation, investigation, methodology, writing—review, and
editing. YH: funding acquisition, project administration,
and supervision. XW and YD: methodology, writing—
review, and editing. HM: funding acquisition, project
administration, supervision, writing—review, and editing.
ZC: conceptualization, project administration, supervision,
writing—original draft, writing—review, and editing.
All authors contributed to the article and approved the
submitted version.

FUNDING

This study was supported by the National Key Research and
Development Program of China (2016YFD0101705).

ACKNOWLEDGMENTS

The authors are grateful to Professor Yiqun Weng at the
University of Wisconsin-Madison for providing the seeds (WI#)
of part cucumber inbred lines used in this study. In addition, we
thank Dr. Yupeng Pan, Dr. Hanqiang Liu, Dr. Husain Ahmad,
Dr. Muhammad Ali, and Dr. Muhammad Jawaad Atif for helping
us revise this study.We are especially grateful to David González-
Diéguez for the suggestions of the comprehension of GCA
model theory.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
729328/full#supplementary-material

REFERENCES

Bo, K. L., Wang, H., Pan, Y. P., Behera, T. K., Pandey, S., Wen, C. L.,

et al. (2016). SHORT HYPOCOTYL1 Encodes a SMARCA3-Like chromatin

remodeling factor regulating elongation. Plant Physiol. 172, 1273–1292.

doi: 10.1104/pp.16.00501

Combs, E., and Bernardo, R. (2013). Accuracy of genomewide selection for

different traits with constant population size, heritability, and number of

markers. Plant Genome. 6, 1–7. doi: 10.3835/plantgenome2012.11.0030

Crain, J., Bajgain, P., Anderson, J., Zhang, X. F., DeHaan, L., and Poland, J. (2020).

Enhancing crop domestication through genomic selection, a case study of

intermediate wheatgrass. Front. Plant Sci. 11:319. doi: 10.3389/fpls.2020.00319

Crossa, J., Perez-Rodriguez, P., Cuevas, J., Montesinos-Lopez, O., Jarquin,

D., de los Campos, G., et al. (2017). Genomic selection in plant

breeding: methods, models, and perspectives. Trends Plant Sci. 22, 961–975.

doi: 10.1016/j.tplants.2017.08.011

Cui, Y. R., Li, R. D., Li, G. W., Zhang, F., Zhu, T. T., Zhang, Q. F., et al. (2020).

Hybrid breeding of rice via genomic selection. Plant Biotechnol. J. 18, 57–67.

doi: 10.1111/pbi.13170

de Santana, P. N., Reis, A. J. D., and Chaves, L. J. (2017). Combining

ability of sugarcane genotypes based on the selection rates of single cross

families. Crop Breed. Appl. Biotechnol. 17, 47–53. doi: 10.1590/1984-70332017v

17n1a7

Dias, K., Gezan, S. A., Guimaraes, C. T., Nazarian, A., da Costa, E. S.

L., Parentoni, S. N., et al. (2018). Improving accuracies of genomic

predictions for drought tolerance in maize by joint modeling of additive and

dominance effects in multi-environment trials. Heredity (Edinb). 121, 24–37.

doi: 10.1038/s41437-018-0053-6

Duangjit, J., Causse, M., and Sauvage, C. (2016). Efficiency of genomic selection for

tomato fruit quality.Mol. Breed. 36:29. doi: 10.1007/s11032-016-0453-3

Edwards, S. M., Buntjer, J. B., Jackson, R., Bentley, A. R., Lage, J.,

Byrne, E., et al. (2019). The effects of training population design on

genomic prediction accuracy in wheat. Theor. Appl. Gene. 132, 1943–1952.

doi: 10.1007/s00122-019-03327-y

Endelman, J. B. (2011). Ridge regression and other kernels for genomic

selection with R package rrBLUP. Plant Genome 4, 250–255.

doi: 10.3835/plantgenome2011.08.0024

Endelman, J. B., Carley, C. A. S., Bethke, P. C., Coombs, J. J., Clough,M. E., da Silva,

W. L., et al. (2018). Genetic variance partitioning and genome-wide prediction

with allele dosage information in autotetraploid potato. Genetics 209, 77–87.

doi: 10.1534/genetics.118.300685

Ene, C. O., Ogbonna, P. E., Agbo, C. U., and Chukwudi, U. P. (2019). Heterosis

and combining ability in cucumber (Cucumis sativus L.). Inform. Process. Agric.

6, 150–157. doi: 10.1016/j.inpa.2018.07.008

Gezan, S. A., Osorio, L. F., Verma, S., andWhitaker, V.M. (2017). An experimental

validation of genomic selection in octoploid strawberry.Horticult. Res. 4:16070.

doi: 10.1038/hortres.2016.70

Golabadi, M., Golkar, P., and Eghtedary, A. (2015). Combining ability analysis of

fruit yield and morphological traits in greenhouse cucumber (Cucumis sativus

L.). Can. J. Plant Sci. 95, 377–385. doi: 10.4141/cjps2013-387

González-Diéguez, D., Legarra, A., Charcosset, A., Moreau, L., Lehermeier,

C., Teyssèdre, S., et al. (2021). Genomic prediction of hybrid crops

allows disentangling dominance and epistasis. Genetics 218:iyab026.

doi: 10.1093/genetics/iyab026

Hayes, B. J., Bowman, P. J., Chamberlain, A. J., and Goddard, M. E. (2009). Invited

review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci.

92, 433–443. doi: 10.3168/jds.2008-1646

Heslot, N., Yang, H. P., Sorrells, M. E., and Jannink, J. L. (2012). Genomic

selection in plant breeding: a comparison of models. Crop Sci. 52, 146–160.

doi: 10.2135/cropsci2011.06.0297

Huang, S. W., Li, R. Q., Zhang, Z. H., Li, L., Gu, X. F., Fan, W., et al. (2009).

The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275–U1229.

doi: 10.1038/ng.475

Jannink, J. L., Lorenz, A. J., and Iwata, H. (2010). Genomic selection in

plant breeding: from theory to practice. Brief. Funct. Genomics 9, 166–177.

doi: 10.1093/bfgp/elq001

Karkkainen, H. P., and Sillanpaa, M. J. (2012). Back to basics for

Bayesian model building in genomic selection. Genetics 191, 969–987.

doi: 10.1534/genetics.112.139014

Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment

with Burrows-Wheeler transform. Bioinformatics 26, 589–595.

doi: 10.1093/bioinformatics/btp698

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al.

(2009). The sequence alignment/map format and SAMtools. Bioinformatics 25,

2078–2079. doi: 10.1093/bioinformatics/btp352

Liu, H. Q., Meng, H. W., Pan, Y. P., Liang, X. J., Jiao, J. Q., Li, Y. H., et al.

(2015). Fine genetic mapping of the white immature fruit color gene w to a

33.0-kb region in cucumber (Cucumis sativus L.). Theoretic. Appl. Genetics 128,

2375–2385. doi: 10.1007/s00122-015-2592-z

Liu, X. G., Wang, H. W., Wang, H., Guo, Z. F., Xu, X. J., Liu, J. C., et al. (2018).

Factors affecting genomic selection revealed by empirical evidence in maize.

Crop J. 6, 341–352. doi: 10.1016/j.cj.2018.03.005

López-Sesé, A. I., and Staub, J. (2002). Combining ability analysis of yield

components in cucumber. J. Am. Soc. Horticult. Sci. 127, 931–937.

doi: 10.21273/JASHS.127.6.931

Lv, A. Z., Zhang, H., Zhang, Z. X., Tao, Y. S., Yue, B., and Zheng, Y. L. (2012).

Conversion of the statistical combining ability into a genetic concept. J. Integr.

Agric. 11, 43–52. doi: 10.1016/S1671-2927(12)60781-0

Frontiers in Plant Science | www.frontiersin.org 12 August 2021 | Volume 12 | Article 729328

https://www.frontiersin.org/articles/10.3389/fpls.2021.729328/full#supplementary-material
https://doi.org/10.1104/pp.16.00501
https://doi.org/10.3835/plantgenome2012.11.0030
https://doi.org/10.3389/fpls.2020.00319
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1111/pbi.13170
https://doi.org/10.1590/1984-70332017v17n1a7
https://doi.org/10.1038/s41437-018-0053-6
https://doi.org/10.1007/s11032-016-0453-3
https://doi.org/10.1007/s00122-019-03327-y
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1534/genetics.118.300685
https://doi.org/10.1016/j.inpa.2018.07.008
https://doi.org/10.1038/hortres.2016.70
https://doi.org/10.4141/cjps2013-387
https://doi.org/10.1093/genetics/iyab026
https://doi.org/10.3168/jds.2008-1646
https://doi.org/10.2135/cropsci2011.06.0297
https://doi.org/10.1038/ng.475
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.1534/genetics.112.139014
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1007/s00122-015-2592-z
https://doi.org/10.1016/j.cj.2018.03.005
https://doi.org/10.21273/JASHS.127.6.931
https://doi.org/10.1016/S1671-2927(12)60781-0
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liu et al. Genomic Prediction and Cucumber Breeding

Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total

genetic value using genome-wide dense marker maps.Genetics 157, 1819–1829.

doi: 10.1093/genetics/157.4.1819

Moradipour, F., Olfati, J. A., Hamidoghli, Y., Sabouri, A., and Zahedi, B. (2017).

General and specific combining ability and heterosis for yield in cucumber fresh

market lines. Int. J. Vege. Sci. 23, 285–293. doi: 10.1080/19315260.2016.1262488

Munoz, P. R., Resende, M. F. R., Gezan, S. A., Resende, M. D. V., de los

Campos, G., Kirst, M., et al. (2014). Unraveling additive from nonadditive

effects using genomic relationship matrices. Genetics 198, 1759–1768.

doi: 10.1534/genetics.114.171322

Murray, M. G., and Thompson, W. F. (1980). Rapid isolation of high molecular

weight plant DNA. Nucleic Acids Res. 8, 4321–4325. doi: 10.1093/nar/8.19.4321

Nishio, M., and Satoh, M. (2014). Including dominance effects in the

genomic BLUP method for genomic evaluation. PLoS ONE. 9:e85792.

doi: 10.1371/journal.pone.0085792

Ogutu, J. O., Schulz-Streeck, T., and Piepho, H. P. (2012). Genomic selection using

regularized linear regression models: ridge regression, lasso, elastic net and

their extensions. BMC Proc. 6:S10. doi: 10.1186/1753-6561-6-S2-S10

Pan, Y. P., Wang, Y. H., McGregor, C., Liu, S., Luan, F. S., Gao, M. L.,

et al. (2020). Genetic architecture of fruit size and shape variation in

cucurbits: a comparative perspective. Theoretic. Appl. Genetics 133, 1–21.

doi: 10.1007/s00122-019-03481-3

Perez, P., and de los Campos, G. (2014). Genome-wide regression and

prediction with the BGLR statistical package. Genetics 198, 483–495.

doi: 10.1534/genetics.114.164442

Qi, J. J., Liu, X., Shen, D., Miao, H., Xie, B. Y., Li, X. X., et al. (2013). A

genomic variation map provides insights into the genetic basis of cucumber

domestication and diversity. Nat. Genet. 45, 1510–1515. doi: 10.1038/ng.2801

R Development Core Team (2013). R: A language and environment for

statistical computing.

Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., Lisec, J., Technow, F.,

Sulpice, R., et al. (2012). Genomic and metabolic prediction of complex

heterotic traits in hybrid maize. Nat. Genet. 44, 217–220. doi: 10.1038/ng.1033

Sverrisdottir, E., Sundmark, E. H. R., Johnsen, H. O., Kirk, H. G., Asp, T.,

Janss, L., et al. (2018). The Value of expanding the training population to

improve genomic selectionmodels in tetraploid potato. Front. Plant Sci. 9:1118.

doi: 10.3389/fpls.2018.01118

Tayeh, N., Klein, A., Le Paslier, M. C., Jacquin, F., Houtin, H., Rond, C., et al.

(2015). Genomic prediction in pea: Effect of marker density and training

population size and composition on prediction accuracy. Front. Plant Sci. 6:941.

doi: 10.3389/fpls.2015.00941

Technow, F., Schrag, T. A., Schipprack, W., Bauer, E., Simianer, H., and

Melchinger, A. E. (2014). Genome properties and prospects of genomic

prediction of hybrid performance in a breeding program ofmaize.Genetics 197,

1343–1355. doi: 10.1534/genetics.114.165860

Varona, L., Legarra, A., Toro,M. A., andVitezica, Z. G. (2018). Non-additive effects

in genomic selection. Front. Plant Sci. 9:78. doi: 10.3389/fgene.2018.00078

Wang, K., Li, M. Y., and Hakonarson, H. (2010). ANNOVAR: functional

annotation of genetic variants from high-throughput sequencing data. Nucleic

Acids Res. 38:e164. doi: 10.1093/nar/gkq603

Wang, Y. H., Bo, K. L., Gu, X. F., Pan, J. S., Li, Y. H., Chen, J. F.,

et al. (2020). Molecularly tagged genes and quantitative trait loci in

cucumber with recommendations for QTL nomenclature. Horticult. Res. 7:3.

doi: 10.1038/s41438-019-0226-3

Weng, Y. Q. (2021). Cucumis sativus chromosome evolution,

domestication, and genetic diversity—implications for cucumber

breeding. Plant Breed. Rev. 49, 77–111. doi: 10.1002/97811197170

03.ch4

Weng, Y. Q., Colle, M., Wang, Y. H., Yang, L. M., Rubinstein, M., Sherman,

A., et al. (2015). QTL mapping in multiple populations and development

stages reveals dynamic quantitative trait loci for fruit size in cucumbers

of different market classes. Theoretic. Appl. Genetics 128, 1747–1763.

doi: 10.1007/s00122-015-2544-7

Wu, P. Y., Tung, C. W., Lee, C. Y., and Liao, C. T. (2019). Genomic

prediction of pumpkin hybrid performance. Plant Genome 12:180082.

doi: 10.3835/plantgenome2018.10.0082

Xu, S. Z., Xu, Y., Gong, L., and Zhang, Q. F. (2016). Metabolomic prediction of

yield in hybrid rice. Plant J. 88, 219–227. doi: 10.1111/tpj.13242

Xu, Y., Wang, X., Ding, X. W., Zheng, X. F., Yang, Z. F., Xu, C. W., et al. (2018).

Genomic selection of agronomic traits in hybrid rice using an NCII population.

Rice. 11, 1–10. doi: 10.1186/s12284-018-0223-4

Yang, L. M., Koo, D. H., Li, Y. H., Zhang, X. J., Luan, F. S., Havey, M. J., et al.

(2012). Chromosome rearrangements during domestication of cucumber as

revealed by high-density genetic mapping and draft genome assembly. Plant

J. 71, 895–906. doi: 10.1111/j.1365-313X.2012.05017.x

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Liu, Liu, Han, Wang, Ding, Meng and Cheng. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Plant Science | www.frontiersin.org 13 August 2021 | Volume 12 | Article 729328

https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1080/19315260.2016.1262488
https://doi.org/10.1534/genetics.114.171322
https://doi.org/10.1093/nar/8.19.4321
https://doi.org/10.1371/journal.pone.0085792
https://doi.org/10.1186/1753-6561-6-S2-S10
https://doi.org/10.1007/s00122-019-03481-3
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1038/ng.2801
https://doi.org/10.1038/ng.1033
https://doi.org/10.3389/fpls.2018.01118
https://doi.org/10.3389/fpls.2015.00941
https://doi.org/10.1534/genetics.114.165860
https://doi.org/10.3389/fgene.2018.00078
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1038/s41438-019-0226-3
https://doi.org/10.1002/9781119717003.ch4
https://doi.org/10.1007/s00122-015-2544-7
https://doi.org/10.3835/plantgenome2018.10.0082
https://doi.org/10.1111/tpj.13242
https://doi.org/10.1186/s12284-018-0223-4
https://doi.org/10.1111/j.1365-313X.2012.05017.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Genomic Prediction and the Practical Breeding of 12 Quantitative-Inherited Traits in Cucumber (Cucumis sativus L.)
	Introduction
	Materials and Methods
	Construction of Model Training Populations
	Genotypic Data Collection
	Phenotypic Data Collection
	Model Type and Model Validation Strategy
	Statistical Analysis

	Results
	Overview of Genetic Relationship of Inbred Lines and Phenotypic Data
	Model Predictive Ability Under Five-Fold Cross-Validation Strategy
	The Estimation of Variance Parameters of GCA Models
	The Phenotypic Correlation of DC Population in Three Seasons
	Model Predictive Ability Under Cross-Population Strategy
	The GCA Estimation Result of 81 Inbred Lines Under the Full GCA Model

	Discussion
	The Discussion About GCA Models
	Additive and Non-additive Genetic Effects in GCA Models
	The Comparison of Two Model Validation Strategies
	The Comparison Between GCA Models and Traditional Combining Ability Estimation Methods
	Opportunities and Challenges of Genomic Prediction Applied to Cucumber Breeding

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


