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Single-modal images carry limited information for features representation, and RGB
images fail to detect grass weeds in wheat fields because of their similarity to wheat in
shape. We propose a framework based on multi-modal information fusion for accurate
detection of weeds in wheat fields in a natural environment, overcoming the limitation of
single modality in weeds detection. Firstly, we recode the single-channel depth image
into a new three-channel image like the structure of RGB image, which is suitable
for feature extraction of convolutional neural network (CNN). Secondly, the multi-scale
object detection is realized by fusing the feature maps output by different convolutional
layers. The three-channel network structure is designed to take into account the
independence of RGB and depth information, respectively, and the complementarity of
multi-modal information, and the integrated learning is carried out by weight allocation
at the decision level to realize the effective fusion of multi-modal information. The
experimental results show that compared with the weed detection method based on
RGB image, the accuracy of our method is significantly improved. Experiments with
integrated learning shows that mean average precision (mAP) of 36.1% for grass weeds
and 42.9% for broad-leaf weeds, and the overall detection precision, as indicated by
intersection over ground truth (IoG), is 89.3%, with weights of RGB and depth images
at α =0.4 and β=0.3. The results suggest that our methods can accurately detect the
dominant species of weeds in wheat fields, and that multi-modal fusion can effectively
improve object detection performance.

Keywords: weeds detection, RGB-D image, multi-modal deep learning, machine learning, three-channel network

INTRODUCTION

Weeds are a major biological problem that limits the yield and quality of wheat by competing for
light, water, fertilizer, and space (Munier-Jolain et al., 2013; Fahad et al., 2015). There are both grass
and broad-leaf weeds (Gaba et al., 2010). Grass weeds have narrow, long leaves very similar to those
of wheat, and consist mainly of Echinochloa crusgalli, Avena fatua, and Aegilops tauschii. Broad-leaf
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weeds look different, and include Pharbitis nil, Galium spurium,
Veronica didyma, Capsella bursa-pastoris, and Convolvulus
arvensis. Changes in farming practice and the introduction
of new wheat varieties have led to significant changes in the
species and occurrence of weeds. Grass weeds have invaded and
dominated wheat fields, and like broad-leaf weeds, they threaten
production (Ulber et al., 2009). They diminish wheat grain
filling and have a greater impact on growth and yield (Siddiqui
et al., 2010). Grass weeds have morphological characteristics and
living habits similar to those of wheat, which interfere with
their recognition.

Chemical herbicides have become the primary means of
farmland weeds management worldwide because of their high
efficiency (Jaime and Ricardo, 2017; Kniss, 2017). Due to the
lack of information on weeds species and distribution, they are
sprayed over large areas, resulting in overuse, low utilization,
and serious pollution. Although herbicides can directly kill
object wild plants, excessive use will cause serious environmental
pollution (Rose et al., 2016), decrease the yield and quality of
agricultural products, and reduce the efficiency of agricultural
production. Site-specific weeds management (SSWM) is an
important solution to herbicide overuse, whose study includes
the aspects of crop and weeds detection systems, decision-
making algorithms for herbicide application, and weeds control
implementation (Camille et al., 2008; Christensen et al., 2010),
among which the recognition and localization of weeds in
fields are key issues.

Since images with high spatial resolution are usually easily
available and not costly, they are favored in the integration
and application of precision weeds management and adjustable
spraying systems. Hence, weeds detection based on digital
images is a key technical tool for the accurate recognition
and localization of weeds in farmlands (Bakhshipour et al.,
2017). Weeds detection with wheat field images using traditional
machine learning methods usually requires the selection of an
object area with a sliding window. Manually designed features,
such as the color, location, morphology, and texture of wheat
and weeds, are analyzed and extracted from wheat field images
(Tellaeche et al., 2008; Petra et al., 2018). This process fails in
multi-scale object detection tasks, the time complexity is high,
and manually designed features are sensitive to sample variation
(Pflanz et al., 2018; Xu et al., 2020a). Deep learning approaches
based on CNNs avoid the use of manually designed features,
can well detect objects of different sizes, and have been used in
the study of weeds detection to significantly improve recognition
efficiency (Patrícioa and Riederb, 2018; Smith et al., 2019;
Alsamhi et al., 2021; Saleh et al., 2021). However, most weeds
detection algorithms are based on the input of single-modal
images (RGB), and the limited information makes it difficult to
recognize different weeds species (Alessandro et al., 2017; Bah
et al., 2018; Huang et al., 2018b). In particular, weeds detection
in wheat fields is seriously restricted by the similar shapes of grass
weeds and wheat, and the lack of recognizability in RGB images.

Studies have demonstrated that the fusion of multi-modal
data can effectively improve the robustness of object detection in
unfavorable environments, and the combination of RGB, depth
and infrared information provides more richer feature space,

which facilitates precise classification and detection (Haque et al.,
2020). Since different modalities represent the same scene in
different ways, their independence and complementarity can be
used to improve the precision of object detection. RGB images,
which contain color and texture information, and depth images,
which contain geometric structure information, are widely used
in object detection tasks because of their high complementarity
(Qi et al., 2018). The pixel value in a depth image reflects
the distance between the object and the sensor, and effectively
describes the geometric characteristics of the object surface in
an image. A depth image is therefore an effective supplement to
an RGB image. Plant height is an important feature of growth
status, which differs greatly between crops and weeds due to
growth competition (Piron et al., 2009; Zhang and Grift, 2012).
Therefore, we fuse the multi-modal information from RGB and
depth images of wheat and weeds to detect weeds in wheat fields.
Our work can be summarized as follows:

(1) A weeds-in-wheat-field RGB-D dataset for object
detection is proposed, including 1,228 RGB images and
corresponding depth images, and the weed areas are
labeled as broad-leaf and grass.

(2) To address the CNN’s inability to extract abundant features
from single-channel depth images, they are recoded by
simulating the RGB image structure to generate new
structure images that contain more geometric information
and are more suitable for CNN-based feature learning.

(3) According to the concept of multiscale object detection
and considering the independence and complementarity
of multi-modal data, a three-channel network for weeds
detection is proposed from the perspectives of feature-level
fusion and decision-level fusion.

MATERIALS AND METHODS

Experimental Design
Experiments on wheat and weeds were carried out from
December 2017 to April 2020 at the demonstration base of the
National Engineering and Technology Center for Information
Agriculture in Rugao County, Nantong City, Jiangsu Province,
China. The experimental area was 50 m long and 12 m wide
(Figure 1). Weeds were not controlled during field management,
and seeds of six weeds species commonly associated with wheat
were randomly sown to simulate weeds growth in the open
field. Alopecurus aequalis, Poa annua, Bromus japonicus, and E.
crusgalli are grass weeds; Amaranthus retroflexus and C. bursa-
pastoris are broad-leaf weeds; and the species composition was
similar to that of actual weeds species in wheat fields.

Image Acquisition and Preprocessing
Wheat field images were acquired using an Intel RealSense
Depth Camera D415 (99 mm × 20 mm × 23 mm), an RGB-
D camera that adopts active infrared stereo vision technology.
As shown in Figure 2A, there were two infrared stereo cameras,
an infrared projector, and a color sensor. The infrared stereo
cameras generate depth images, and the color sensor generates

Frontiers in Plant Science | www.frontiersin.org 2 November 2021 | Volume 12 | Article 732968

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-732968 November 3, 2021 Time: 14:40 # 3

Xu et al. Multi-Modal Weed Detection

FIGURE 1 | (A) Experimental site; (B) Images of all plots; (C) RGB image of wheat field. The red star represents the location of our experiments in the map.

FIGURE 2 | (A) Intel RealSense D415; (B) Equipment setup for field image acquisition.

RGB images, both with a resolution of 1,280 × 720. RGB and
depth field images under natural conditions were obtained at
wheat tillering and jointing stages. Image collection was carried
out under clear and windless weather conditions. The camera was
70 cm above the crop canopy, and set up in the field as shown
in Figure 2B. Images were transmitted to a computer in real
time via USB 3.0.

Since the RGB and depth images had different origins, there
is a mismatch problem between the data of different modalities,
that is, the same object has a certain degree of position deviation
on the images of different modalities. In order to share unified
labeling results between RGB images and depth images in
subsequent image samples and reduce the impact of mismatch
on subsequent feature fusion, coordinate transformation is used
first to align depth images and RGB images. The process of image
alignment is firstly to restore the depth point of the depth image
coordinate system to the world coordinate system, and then to
convert the depth point of the world coordinate system to the

RGB image coordinate system. The internal parameters matrix,
rotation matrix, and translation vector of the depth camera and
RGB camera were obtained from the System Design Kit (SDK)
provided by Intel. Data loss (void) occurred in depth images
due to lighting conditions, infrared reflective properties of object
surface materials, and shielding, and depth images were repaired
using a hole filling (HF) algorithm (Xu et al., 2020b) to obtain
complete depth information for subsequent feature extraction.

Recoding Depth Images
A depth image contains data captured by a depth camera
that reflect the distance between the object and the camera.
A depth image provides information on object shape and
geometry that are lost in RGB images but crucial for object
detection. In many object detection studies based on multi-modal
information, depth images provide supplementary information
to RGB images and improve the performance of object detection
(Gupta et al., 2010; Hedau et al., 2010). However, the original
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depth information is less representative. In particular, feature
extraction from depth images with a CNN generates feature
maps of distance rather than geometric structures with physical
significance. Therefore, single-channel depth images were
transformed to three-channel images by recoding the original
images to make them more representative and structurally similar
to RGB images. The three channels of recoded images are phase,
height above ground, and angle with gravity, and recoded images
are referred to as PHA images. Phase was calculated according
to the mechanism by which depth information is generated
(Cai et al., 2017),

d = n · 2πl+ φl (1)

where n ∈ N, l ∈ N, and 2πl is the uniqueness range of
the camera. The natural number n ensures φ ∈ [0, 2π]. The
maximum distance in the depth image dmax was identified, and
the relative distance between object and sensor was converted to
height above ground,

H = dmax − d(i, j) (2)

where d(i, j) is the depth in image coordinates (i, j). The third
channel (angle with gravity) is the angle between the local surface
of a pixel and the direction of gravity (Gupta et al., 2013),

min
g:||g||2=1

∑
ni∈N1

cos2(θ(ni, g))+
∑

nj∈N2

sin2(θ(nj, g)), (3)

Where g is the direction of gravity, N1 represents the set of
normals parallel to the direction of gravity, N2 represents the set
of normals perpendicular to the direction of gravity, n1 and n2
represent some element in N1 and N2, respectively. And θ is the
Angle between two vectors.

Weeds Object Detection Network Based
on Multi-Modal Information
There are two primary approaches to detect objects based on
multi-modal information from RGB-D: (1) to use a depth image
as an additional channel of the RGB image (Couprie et al., 2014);
and (2) to separately learn features from RGB and depth images
(Wang et al., 2015). However, these methods can neither extract
fine geometric features from depth images nor make full use
of the complementarity of different modalities. We designed a
network by considering the common features (complementarity)
between the two modalities (RGB and depth) and the unique
features (independence) learned from single modalities.

The network architecture is shown in Figure 3. We designed a
three-channel CNN to learn different features from multi-modal
information, including two channels for learning RGB- and
depth-specific features, and one for learning RGB-D-correlated
features. Each network was designed based on Faster R-CNN
with VGG16 as a backbone. Since the object area of weeds varied
greatly and some were thin and small, we introduced multiscale
object detection when designing the correlated detection net.
The concept of multiscale representation in CNNs has been
demonstrated in previous studies. Low-level feature maps have
smaller receptive fields and larger scales, and they contain less
semantic information and more low-level feature information
such as edges and colors. High-level feature maps contain

more semantic information and high-level feature information
such as object parts and components (Bell et al., 2016; Kong
et al., 2016). Therefore, object detection using the last feature
map is not favorable for the detection of multiscale and small
objects. Therefore, when designing the architecture of correlated
detection net, the basic idea is to utilize the advantages of
different receptive fields in detecting targets of different scales
so that the network can better deal with multi-scale targets and
improve the overall detection accuracy. We used the structure of
a hypernet as a reference in designing the structure of a correlated
detection net (Kong et al., 2016), fusing the feature maps after
the first, third, and fifth convolutional blocks in RGB- and depth-
specific detection nets. Because layers had different feature map
dimensions, max pool was used in the first layer, and deconv in
the fifth layer, to facilitate calculation. To enhance the learning of
complementary features by the correlated detection net, instead
of directly connecting via add and concat, a previously described
method (Xu et al., 2017) was used in the ultimate fusion of feature
maps, and the fused feature map was defined as:

fcorr =
√

fRGB ◦ fDepth (4)

where fRGB and fDepth denote the feature maps generated by CNN
in RGB- and depth-specific detection nets, respectively, and ◦
denotes the Hadamard product.

In order to generate multi-modal object proposals, three
Region Proposal Networks (RPNs; Ren et al., 2017) are slid
over last feature maps. One is for modality-correlated object
estimation and the other two are for modality-specific object
estimation. The loss function of RPN network is divided into
two parts: the boundary-box regression loss function and the
classification loss function. For bounding box regression, given
an anchor box with (xa, ya, wa, ha), bounding box regression
is developed to predict deviations t∗ = (t∗x , t∗y , t∗w, t∗h) following
(Felzenszwalb et al., 2010; Girshick et al., 2013):

t∗x = (x∗ − xa)/wa
t∗y = (y∗ − ya)/ha,

t∗w = log(w∗/wa)

t∗h = log(h∗/ha)

(5)

Where x, y, w and h denote the bounding box’s center
coordinates and its width and height. x∗, y∗, w∗, h∗ and
xa, ya, wa, ha are for the ground-truth box and anchor box,
respectively. Smooth L1 (Girshick, 2015) is adopted to calculate
the bounding box regression loss.

Smooth L1 =
{

0.5x2 if |x| < 1,

|x− 0.5| otherwise
(6)

With these definitions, the object estimation multi-task loss L is
defined as:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p∗i )

+λ
1

Nreg

∑
i

p∗i Smooth L1(ti − t∗i ) (7)
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FIGURE 3 | Weeds detection network architecture.

where the mini-batch size is ignored. i represents the index of
an anchor point, pi and p∗i are the predicted object probability
of an anchor and ground-truth label. If the anchor is positive,
p∗i = 1. And if the anchor is negative, p∗i = 0. Two types of
anchors are treated as positive: the anchors with the highest
intersection over union (IoU) overlap with a ground-truth box,
and the ones that have an IoU overlap higher than 0.7 with any
ground-truth box. Lcls is log loss over. The two terms in Eq. (7)
are normalized by Ncls and Nreg and weighted by a balancing
parameter λ. The former is normalized by the mini-batch size and
the latter is normalized by the number of anchor locations. The
modality-correlated RPN and modality-specific RPNs are trained
simultaneously with the same supervision.

To better exploit the complementarity of multi-modal data,
we fused data at the decision level of the algorithm for ensemble
learning and assigned weights to detection results of the three-
channel network. The equation is as follows:

G(x) = αgRGB(x)+ βgPHA(x)+ (1− α− β)gcorr(x) (8)

where, g(·) is the output of detection network, α, β (α ≥ 0, β ≥
0, α+ β ≤ 1) are the ensemble weights for RGB and depth
branch, respectively. α, β vary in [0, 1] with a step size of 0.05.

Datasets and Model Training Methods
To increase the robustness of the object detection network, we
performed image data enhancement by rotation and flipping.
The resulting multi-modal weeds in the wheat field dataset
(MWWFD) included 1,228 RGB images (500 × 500) and 1,228
corresponding depth images (500 × 500). Broad-leaf and grass

weeds in images were labeled using LabelImg; 1,105 images were
used for training, and 123 images for testing.

The deep learning framework used is TensorFlow, GPU
is NVIDIA RTX2080Ti, CPU is Intel(R) Core(TM) i7-7800x
CPU @ 3.50 GHz. The multi-modal weeds detection network
was subjected to end-to-end training with backpropagation and
stochastic gradient descent methods. For RPN networks, each
mini-batch arises from a single image that contains many positive
and negative example anchors. Some proposals generated by
the region proposal network (RPN) overlapped significantly. To
reduce redundancy, we performed non-maximum suppression
(NMS) and set the threshold of IoU at 0.7. Other training
hyperparameters are shown in Table 1. We adopted the weight
sharing strategy in the training process, which has been proven
effective in many studies because it greatly reduces model
complexity and running time (Lecun and Bottou, 1998). Gupta
et al. (2016) proved that features learned from depth images are
complementary to RGB features even if a CNN based on depth
images is supervised and trained by a CNN based on RGB images,
and training a network with shared weights is effective.

TABLE 1 | Training parameters of multi-modal weeds detection network.

Parameters Value

Initial learning rate 0.001

Momentum 0.9

Weight decay 0.0001

Iteration per epoch 1000

Number of epochs 300
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Evaluation Methods
Mean average precision (mAP) is a common and reliable measure
of model performance in the detection of multi-category objects.

AP =
∫ 1

0
P(R)dR (9)

where P denotes the precision and R denotes the recall. mAP is
APs averaged over all categories. However, in the detection of
weeds in wheat fields, labeling was complicated by the cluster
growth of weeds. As shown in Figure 4, labeling affected the
evaluation of detection precision. Therefore, we used mAP to
evaluate model detection performance, and intersection over
ground truth (IoG), which is the quotient of the intersection and
union of the detected and labeled datasets, to evaluate the overall
precision of weed detection.

RESULTS

Evaluation of PHA Image Quality
We compared the structures of PHA and RGB images from two
aspects for suitability in CNN-based feature learning. As shown
in Figure 5, the entropy values of PHA and RGB images were
closer to each other than to that of depth images, suggesting
that they contained more information and were more closely
correlated than depth images. Comparison of output from the
first convolutional layer of VGG16 showed that PHA images well

FIGURE 4 | (A,B) Different labeling results of the same image.
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FIGURE 5 | Entropy values of PHA, RGB, and depth images.

retained the height information in depth images, with yellow
areas in the feature map representing a higher wheat canopy
(Figure 6). The depth images had pixels with uniform color in
soil and weeds areas, while PHA and RGB images had similar
textures, which also indicated their similarity. These comparisons
indicated that PHA images obtained by recoding depth images
were similar to RGB images in terms of information and structure
and were more suitable than depth images for CNN-based
feature learning.

Detection of Weeds in Wheat Fields With
Different Datasets
The precision of weeds detection with different datasets is
shown in Table 2. Detection based on the PHA dataset was
significantly better than on the depth dataset, which confirmed
that PHA was more suitable for CNN-based feature learning.
Comparison of weeds detection with the three single-modal
datasets showed that RGB images were superior in the detection
of broad-leaf weeds. Depth and PHA images had similar detection
performance regardless of weeds species, and PHA images had
the best results in grass weeds detection. The geometric features
extracted from PHA images effectively distinguished wheat from
the various weeds species.

Detection With Multi-Modal Datasets in
Multichannel Network Architectures
We compared the detection of weeds in wheat fields with different
multi-modal datasets and network architectures (Table 3). Dual-
VGG16 is the direct superimposition of the last layers of feature
maps of different modal images regardless of feature learning
in the remaining convolutional layers. Direct superimposition
of feature maps reduced precision compared to detection based
on single-modal RGB images (Table 2). This is consistent with
previous work (Gupta et al., 2016) showing that information
mapping in the same scene varies across modalities, and
direct fusion can cause the divergence of detection results
and diminished precision. Therefore, the complementarity of
different modality datasets was considered in network design,
and detection performance was optimized by fusing feature
maps from different convolutional layers. By comparing the
performance of the same model in different datasets, it can
be proved that the PHA image obtained by recoding is more
conducive to weeds detection. The detection precision (mAP) of
grass and broad-leaf weeds with correlated detection net (RPN-
Corr) was 29.9 and 39.3%, respectively, and the overall precision
(IoG) was 81.4%.

Ensemble Learning Strategy
While taking into account the complementarity of multi-modal
datasets, the independence of datasets was exploited through
an ensemble learning strategy. Three independent detection
models (RGB-specific, depth-specific, and RGB-D-correlated)
were trained, and weights were assigned according to Eq. (3),
with results as shown in Figure 7. The detection precision was
improved compared to a correlated detection net. When α=0.4
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FIGURE 6 | Feature maps from first convolutional layers in VGG16 network of PHA, RGB, and depth images.

and β=0.3, mAP = 39.6%. The detection precision of broad-
leaf and grass weeds was 42.9% and 36.1%, respectively, and
IoG = 89.3%. Figure 8 shows weeds results in different images.
Notably, we still found some false positive cases on the test set.
These cases may be caused by labeling errors. Due to complex
field conditions and low image resolution, some fine weeds may
be omitted in labeling. The existence of multiple labeling methods
in the same weed area is also the main reason for false positive
cases. Therefore, we proposed a new accuracy evaluation method,
hoping to avoid the influence of such situation on detection
results. In the second row of Figure 8, we can find that our
method can well realize weed detection in wheat field under
natural environment when there is no labeling information. Most
areas of both grass and broad-leaf weeds were detected, and the
majority of wheat leaves were correctly recognized even with the
overlap of leaves in the fields.

TABLE 2 | Weeds detection with single-modal datasets.

Dataset Backbone mAP of broad-leaf
weeds (%)

mAP of grass
weeds (%)

IoG (%)

RGB VGG16 38.5 24.7 77.6

Depth VGG16 11.6 11.7 42.1

PHA VGG16 24.6 25.2 56.9

TABLE 3 | Weed detection with multi-modal datasets in multichannel network.

Dataset Backbone mAP of broad-leaf
weeds (%)

mAP of grass
weeds (%)

IoG (%)

RGB-D Dual-VGG16 36.2 23.5 72.6

RGB-PHA Dual-VGG16 37.1 24.2 73.5

RGB-D RPN-Corr 37.9 25.1 75.2

RGB-PHA RPN-Corr 39.3 29.9 81.4

DISCUSSION

Weeds Detection in Wheat Fields Based
on Multi-Modal Information
Previous work in the accurate detection of weeds in wheat fields
with information technology mostly used single modalities, such
as spectral information and RGB images. However, because of the
similar leaf shape and canopy structure of grass weeds and wheat,
there are few differences in RGB image features and in reflectance
spectra at characteristic wavelengths, which makes the use of
modal information difficult for grass weeds detection (Gómez-
Casero et al., 2010). We fused depth images with RGB images,
extracted geometric features such as height from PHA images,
and used multi-modal information for the effective detection

FIGURE 7 | Ensemble learning results of RGB-specific, depth-specific, and
RGB-D-correlated models with different weight assignments.
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FIGURE 8 | Weeds detection with images of wheat fields. The three graphs in the first row show the detection results of the test set, where green indicates true
positive cases, blue indicates corresponding labeling results, pink indicates false negative cases, and red indicates false positive cases. The two graphs in the
second row show the detection results of our method on images outside the MWWFD.

of weeds in wheat fields. In the proposed three-channel weeds
detection network, feature maps from different convolutional
layers were fused using the concept of multiscale object detection.
Ensemble learning was carried out at the decision level based on
the independence and complementarity of different modalities,
which effectively improved weeds detection precision. However,
weight assignment in ensemble learning still relied on hand-
designed weight gradient experiments, and detection precision
remained suboptimal. Weight assignment methods should be
further studied.

Application of Different Machine
Learning Algorithms in Weeds Detection
The selection and improvement of machine learning algorithms
are a focus in the development of weeds detection technologies.
The accuracy and real-time of the detection algorithm determine
whether it can be applied in practical agricultural production.
In recent years, deep learning methods based on CNN have
been widely used in weeds detection with the advantage of
end-to-end, avoiding the influence of extraction of manually
designed features on detection results (Huang et al., 2018a).
This involves calculation of coordinates of bounding boxes
around object objects and generates detection results in which
the size of the predicted bounding box matches that of the
actual weeds object, which improves the precision of weeds
detection (Hall et al., 2017). We added a input channel
and multi-modal feature fusion blocks, and realized high-
precision weeds detection in wheat field through use of
multi-modal information effectively. However, compared to
traditional machine learning algorithms (Siddiqi et al., 2014;
Xu et al., 2020a), the proposed weeds detection algorithm still
suffers from a high computational load and low computational

efficiency. Although weight sharing was used in training
to reduce the computational burden, the demand on the
hardware was still high. In future work, we will explore
model compression to improve detection efficiency while
maintaining precision.

Weeds Detection in Complex Wheat
Field Background
Data (images) of a single category and simple background are
usually used in weeds detection, which is limited to the early stage
of wheat growth (Nieuwenhuizen et al., 2010; Tellaeche et al.,
2011). We considered two growth periods with high incidence
of weeds in wheat fields, and the cultivation conditions of field
experiments were in line with the actual situation. A weeds
detection model based on multiscale object detection was suitable
to detect weeds areas of different sizes. However, due to shielding
of wheat and weeds leaves in fields, RGB-D images from a single
perspective failed to capture the information of the shielded
objects. Therefore, we will adopt a multi-perspective approach
for image acquisition to mitigate the effect of leaf shielding on
weeds detection.

CONCLUSION

We proposed a three-channel weeds detection method based
on multi-modal information by fusing RGB and depth images
and applying the concept of multiscale object detection, which
effectively improved the precision of weeds detection in wheat
fields. The single-channel depth image is recoded, and the
resulting PHA images were more similar in structure to RGB
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images and more suitable for CNN-based feature learning.
The results showed that when the same network was used,
weeds detection precision based on PHA images was 1.35-
fold of that based on depth images. And the independence
and complementarity of the two modalities of RGB and depth
images were taken into account, and a three-channel weeds
detection network was designed from the perspective of feature-
and decision-level fusion. The results showed that the model
could effectively detect different species of weeds in wheat fields
(IoG = 89.3% ).
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