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Nutrient type and plant functional group are both important in influencing proliferation
of roots or hyphae and their benefit to plant growth in nutritionally heterogeneous
environments. However, the studies quantifying relative importance of roots vs. hyphae
affecting the plant response to nutrient heterogeneity are lacking. Here, we used
meta-analysis based on 879 observations from 66 published studies to evaluate
response patterns of seven variables related to growth and morphological traits of
plants and mycorrhizal fungi in nutritionally heterogeneous environments. We found that
phosphorus [P] and organic fertilizer [OF] supply significantly increased shoot (+18.1
and +25.9%, respectively) and root biomass (+31.1 and +23.0%, respectively) and
root foraging precision (+11.8 and 420.4%, respectively). However, there was no
significant difference among functional groups of herbs (grasses, forbs, and legumes),
between herbs and woody species, and between arbuscular mycorrhizal (AM) and
ectomycorrhizal (ECM) tree species in the shoot, root and mycorrhizal fungi responses
to nutrient heterogeneity, except for root biomass and root foraging precision among
grasses, forbs, and legumes, and mycorrhizal hyphal foraging precision between AM
and ECM tree species. Root diameter was uncorrelated with neither root foraging
precision nor mycorrhizal hyphal foraging precision, regardless of mycorrhizal type or
nutrient type. These results suggest that plant growth and foraging strategies are mainly
influenced by nutrient type, among other factors including plant functional type and
mycorrhizal type.

Keywords: nutrient patch, mycorrhizal fungi, foraging precision, herbaceous species, woody species, root
diameter
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INTRODUCTION

In soils, nutrient distribution is spatially heterogeneous (Waring
et al., 2020). Root and mycorrhizal hyphae proliferation within
nutrient-rich zones is a ubiquitous adaptive strategy to acquire
nutrients quickly (Hodge, 2004, 2006) and promote plant growth
to confer a competitive advantage to species with high root
plasticity (Hodge et al, 1999; Kembel et al., 2008; Mommer
et al, 2012; Li H. et al,, 2019; Zhang et al., 2019). Kembel and
Cabhill (2005) found that capacity to respond to small nutrient
patches was generally higher in roots of dicots than monocots,
suggesting it was phylogenetically and taxonomically conserved.
In addition, root proliferation is also generally nutrient-specific
(Robinson, 1994a; Forde and Lorenzo, 2001; Liu et al., 2015),
especially when plant species adopt different strategies to obtain
different nutrients (Ceulemans et al., 2017; Nasto et al., 2017;
Wang et al,, 2021). For example, Li et al. (2014) found that
localized supply of phosphate (P) significantly increased wheat
root length, whereas localized supply of nitrogen (N) had only
a relatively small effect. Therefore, nutrient-specific (e.g., N, P)
responses of plant species may modify phylogenetic signals in
root responses to nutritionally heterogeneous environments.
Previous studies found that large variation in the diameter of
absorptive fine roots (e.g., first-, second-, and sometime third-
order roots) across plant species can affect plant responses to
nutritionally heterogeneous environments (Farley and Fitter,
1999; Eissenstat et al., 2015; Liu et al., 2015; Chen et al., 2018).
The thin-rooted species are considered to have higher specific
root length (Kramer-Walter et al.,, 2016) and root growth rate
(Eissenstat et al., 2015), and even greater root plasticity or
foraging precision than species with thick roots (Chen et al,
2016). Generally, the herbaceous species tend to have thinner
fine-roots than woody species (Freschet et al, 2017). Given
that, herbaceous species are likely to have higher root foraging
precision, capture more nutrients and accrue greater growth
benefits from the nutrient patches in comparison with woody
species. As we known, however, greater plasticity in thin-rooted
than thick-rooted species was observed among four grass and
legumes crop species in localized N+P supply (Li et al., 2014);
other studies found no significant correlation between growth
rate and root foraging precision across plant species in natural
forest systems (Eissenstat et al, 2015; Liu et al, 2015) and
grasslands (Johnson and Biondini, 2001; Grime and Mackey,
2002). Based on these studies, we hypothesized that differential
effects of nutrient heterogeneity on herbaceous and woody plants
may be smaller than expected, especially when considering the
interference of nutrient-specific plant responses. However, few
studies have systematically quantified the difference in influence
of heterogeneous nutrient distribution on the shoot and root
growth of herbaceous and woody species (Robinson, 1994a).
Root proliferation in nutrient patches can be altered by
mycorrhizal fungi. Several recent studies demonstrated there
were tradeoffs between roots and mycorrhizal fungi in nutrient
capturing strategies across forest, grassland and crop species
with different root diameter (Eissenstat et al., 2015; Liu
et al,, 2015; Li et al., 2017; Wen et al,, 2019) and between
different nutrient additions for one species (Li L. et al., 2019;

Wang et al., 2020). Plants may differentially balance allocating
photosynthates to root and/or mycorrhizal hyphal proliferation
in the nutrient patches. For example, hyphal proliferation of
arbuscular mycorrhizal (AM) fungi in the organic matter patches
can be restricted in the presence of roots (Hodge and Storer,
2015). Recent study also found that root length density of Chinese
fir decreased with P addition, and there was no significant
change after the addition of N, whereas hyphal length density
decreased with addition of N (Li L. et al, 2019). Based on
that, testable questions would be: (1) whether thin-rooted species
would have higher root plasticity but lower hyphal plasticity than
thick-rooted species in nutrient patches; and (2) whether such a
correlation would depend on the attributes of nutrient patches.

The optimal nutrient foraging strategy (reliant on roots
or mycorrhizal hyphae) may also depend on whether a
species is associated with either AM or ectomycorrhizal (ECM)
fungi. Ectomycorrhizal tree species generally have greater root
branching intensity and thinner roots than AM tree species, but
there is wide variation within both categories (Comas et al., 2014).
According to the above discussion, ECM tree species should have
relatively higher root plasticity than AM tree species. However,
ECM tree species are considered to rely more on mycorrhizal
hyphae and less on roots than AM plant species in foraging
nutrients from soil layers rich in organic matter (Chen et al.,
2016). This is because ECM fungi are not just the extension
of roots; instead, they have a superior capacity relative to roots
or AM fungi to facilitate decomposition of organic matter and
acquire the nutrients released (Smith and Read, 2008; Shah et al.,
2016; Liu et al., 2018). This may be why ECM trees exhibit
higher hyphal foraging precision in the organic than inorganic
patches (Cheng et al., 2016). Therefore, the distinction of foraging
strategies between AM and ECM tree species may be complex and
mainly dependent on nutrient conditions.

The previous reviews have focused on various aspects of plant
responses to the nutrient patches (Robinson, 1994a; Hutchings
and John, 2004; Hodge, 2004, 2006; Kembel and Cahill, 2005;
Cahill and McNickle, 2011). However, some questions remain
unanswered. For example, Kembel and Cahill (2005) found little
evidence of root foraging precision promoting plant growth
in the nutritionally heterogeneous relative to the homogeneous
soil. However, their conclusion could have been confounded
by variable spatial patterns and amounts of nutrient supplied
[the data coming mainly from Johnson and Biondini (2001)
whereby total nutrient supply was higher in the homogeneous
than the heterogeneous treatment]. Importantly, a relatively low
total nutrient amount in the heterogeneous treatment (Johnson
and Biondini, 2001) may have enhanced root foraging precision
because a high shoot nutrient demand (systemic signal) could
strengthen the local response and induce root proliferation in
the patch zone (Forde and Lorenzo, 2001; de Kroon et al., 2009).
Moreover, root foraging precision exhibited a phylogenetically
conserved pattern only in the plant species studied by Johnson
and Biondini (2001), rather than in the combined species
from multiple studies (Kembel and Cahill, 2005). Thus, the
current reviews (Wang et al., 2021) underline large variation in
responses of plants to soil nutrient heterogeneity, but significant
quantitative patterns are yet to be discovered. This calls for
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a proper meta-analysis of numerous studies available in the
literature, taking into account factors that might potentially
obscure important patterns.

To quantify the response of plants to nutrient heterogeneity,
we selected from the previously published studies seven key
parameters related to the growth and traits of plants and
mycorrhizal fungi including biomass allocation of shoots
and roots, the proliferation of roots and mycorrhizal hyphae,
mycorrhizal colonization and root diameter. We aimed
to address the following questions: (1) whether different
nutrient types can explain the variation in plant responses
to heterogeneous nutrient distribution, (2) whether plant
responses to heterogeneously supplied nutrients would vary
among different functional groups of herbaceous plants,
between herbs and woody plants, and between AM and ECM
tree species, and (3) whether there would be relationships
between root diameter and root or mycorrhizal hyphal foraging
precision in response of plant species to heterogeneous nutrient
distribution in soil.

MATERIALS AND METHODS

Selection of Studies

To develop a comprehensive database, we searched peer-reviewed
papers listed in The Science Citation Index Expanded database
(dating from 1990 to 2021) with the following keywords: (plant
biomass OR shoot biomass OR root biomass OR root length
OR root proliferation OR root plasticity OR mycorrhizal hyphal
proliferation OR mycorrhizal hyphal plasticity OR mycorrhizal
hyphal biomass OR mycorrhizal hyphal length OR mycorrhizal
colonization OR foraging strategy OR foraging precision OR
foraging behavior) AND (localized nutrient OR nutrient patch
OR heterogeneous nutrient OR non-uniform nutrient OR nitrogen
patch OR phosphorus patch). We extracted papers from our search
that matched the following criteria: (i) plant species included
herbs (grasses, non-leguminous forbs, and legumes) and woody
plants (AM and ECM tree species) grown in either greenhouse
or field conditions; (ii) the same or very similar amounts of
nutrients supplied in the homogenous and the heterogeneous
treatments, especially when evaluating plant biomass allocation
and foraging strategy in nutritionally heterogeneous soils, and
(iii) the nutrients considered were N (nitrate or ammonium
alone), P (inorganic phosphorus alone), NP (N and P) or
OF (organic fertilizer or organic matter). With respect to the
criterion (ii) above, we excluded the data from Johnson and
Biondini (2001) (49 species) and Grime and Mackey (2002)
(43 species) because they featured the split-pot designs with
vastly different nutrient amounts between the homogeneous and
the heterogeneous treatments. Additionally, we excluded the
articles that only reported the total biomass of all plants in
different plant functional groups, and articles that nutritional
treatment only set different types of heterogeneous nutrients
without homogeneous nutrient or deionized H,O as control.
Furthermore, all selected studies were divided into two datasets:
the heterogeneous nutrients in the first dataset were compared
with homogeneous nutrients with the same nutrient amounts for

herbaceous or woody plants in greenhouse or field; while the
heterogeneous nutrients (i.e., nutrient-rich patch) in the second
dataset were compared with unfertilized control for woody
species in the field (details in Supplementary Appendix 1 in
the Supplementary Material). Specifically, the articles for the
second dataset must contain root growth (root length or biomass
or foraging precision), mycorrhizal fungi growth (hyphal length
or biomass or foraging precision, or mycorrhizal colonization)
and root diameter. For mycorrhizal type, species were classified
into AM or ECM based on the reports of each study; if not be
reported, mycorrhizal type was designated according to previous
reviews (Wang and Qiu, 2006; Soudzilovskaia et al., 2020).
A total of 879 observations from 66 published studies with
142 plant species (90 herbaceous, 43 AM and 9 ECM woody
species) were used in this meta-analysis (see Supplementary
Material for details). The aim of the first dataset was to test
whether and how biomass allocation of shoots and roots, as
well as root foraging precision would vary among different
nutrient types (N, P, NP, and OF), among functional groups of
herbaceous plants (grasses, forbs, and legumes), and between
herbs and woody plants. The aim of the second dataset was
to test whether the foraging precision of roots and mycorrhizal
hyphae would vary among different nutrient types (N, P, NP,
and OF) and between AM and ECM woody plants; moreover,
whether the foraging precision of roots and mycorrhizal hyphae
was influenced by root diameter.

Data Collection

From each study that met the above criteria, at least one
from seven parameters listed as below was reported to
describe plant responses to non-uniform nutrient supply. The
seven key parameters contained the following variables: four
variables related to plant growth traits (shoot biomass, root
biomass, root:shoot biomass ratio, root length, or biomass
proliferation for calculating root foraging precision); two
variables related to mycorrhizal fungi (mycorrhizal hyphae
length or biomass proliferation for calculating mycorrhizal
hyphal foraging precision, and mycorrhizal colonization [i.e.,
the frequency of colonization]); and one variable related to
root morphological trait (the diameter of absorptive fine roots
including first two or three orders). Here, we adopted foraging
precision of roots and mycorrhizal hyphae to assess the response
of plants and mycorrhizal fungi to heterogeneous nutrient
patches, because this parameter, which being phylogenetic
conservative, can character plant strategy of resource acquisition
(de Kroon and Mommer, 2006).

For each parameter, we extracted the mean, standard
deviation (SD) and the number of replicates (n) for the
controls (homogeneous nutrient treatment in the first dataset
and unfertilized treatment in the second dataset) and the
heterogeneous nutrient patches. If standard errors (SE) were
reported, these were transformed according to the equation
SD = SE x n°. Unspecified error bars in the studies were
assumed to represent standard error. When necessary, data were
taken from graphs using the GETDATA software (v.2.26").

'http://getdata-graph-digitizer.com
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Statistical Analysis

For the biomass allocation of shoots and roots, as well as
the mycorrhizal colonization, effect size (EZ) was calculated
as the natural log-transformed response ratio [In(RR)] in the
nutrient patch treatment compared with the control using
eqn 1 (Hedges et al., 1999). For foraging precision (FP) of
roots and mycorrhizal hyphae (i.e., the ability of root and
mycorrhizal hyphal proliferation into a nutrient patch), effect
size was calculated using eqn 2, consistent with most studies
(Mou et al.,, 1997; Einsmann et al., 1999; Armas et al., 2004). As
previous study has shown that InRR has similar properties to FP
(Armas et al., 2004).

In (RR) = In(M;/M,) (1)
FP (%) = 100% x (M; —M.) / (M; +M,)  (2)

where p;, denotes the mean value of the response variation in
the treatment (heterogeneous nutrient supply) and »;, denotes
the mean value of the control (homogeneous nutrient supply in
dataset 1 and unfertilized treatment in dataset 2).

The approximate variance (Vgz) of each effect size was
calculated using eqn 3, and the 100(1-a)% confidence interval
(CI) of EZ was derived using eqn 4:

(SD);  (SD)?
\ < 3
EZ w2 ned (3)
95%CI = EZ + Z,l/z X SQRT (Vgz) (4)

where SD is the standard deviation, and ,, and ,, denote the
numbers of replicates in, respectively, the treatment and the
control on which each EZ was based; the value of Z,/, is 1.96
(a0 = 0.05). If the 95% CI values of EZ (represented by error bars
in the figures) for a given variable did not cover the zero line, the
effects of nutrient heterogeneity on the variable were significant.
Otherwise, it indicates equal growth of plants or mycorrhizal
fungi in heterogeneous nutrient patches and the control.

The effect size from each individual observation was weighted
by the reciprocal of Vgz before being combined in the meta-
analysis (Hedges et al., 1999). The overall weighted effects of
nutrient supply were derived from the random-effect models
(the useful way to estimate the mean effect in a range of
studies), considering original estimates as the independent
and approximately unbiased samples with known variances
(Borenstein et al., 2010). The level of random variation between
the heterogeneous nutrient supply effects, known as the residual
heterogeneity, was used to estimate whether the categorical
factors could explain differences between groups, applying
Pperween associated to Qpeppeen Statistics with a mixed-effect
model (Viechtbauer, 2007). To test the relationship between the
root diameter and foraging precision of roots and mycorrhizal
hyphae across the tree species with different mycorrhizal types in
experiments with different nutrient patches, we applied linear or
second-order polynomial models for each relationship and each
group depending on their Akaike information criterion (AIC)
values in R version 4.0.5 (R Core Team, 2021).

Publication bias was tested by the funnel plot method
(Egger et al., 1997). Even when the existence of publication
bias in this meta-analysis was detected, the sensitivity analyses
using the trim-and-fill method showed the results were reliable
(Duval and Tweedie, 2000).

RESULTS

Across all the studies reviewed, heterogeneous nutrient supply
had a significant positive effect on shoot biomass, root
biomass, root foraging precision and mycorrhizal hyphal foraging
precision, but a significant negative effect on the effect size
on mycorrhizal colonization, and no effect on root:shoot ratio
(Table 1). The percentage change of plant biomass allocation
(10-12%) was largest in the heterogeneity nutrient treatments
compared with homogeneity nutrient control, followed by root
foraging precision (6%), while root:shoot ratio was smallest (3%).
However, root foraging precision had higher percentage change
(14%) than mycorrhizal hyphal foraging precision (6%) and
lower than mycorrhizal colonization (24%) in the heterogeneity
nutrient treatments compared with unfertilized control.

Shoot and Root Growth

The effect of heterogeneous nutrient supply on shoot biomass,
root biomass and root foraging precision, but not on root:shoot
ratio, depended on nutrient types (Figures 1, 2). Heterogeneous
P and OF supply significantly increased shoot and root biomass
as well as root foraging precision compared to homogeneous
nutrient supply (Figures 1, 2). However, heterogeneous N and
NP supply had no effect on plant biomass allocation and
root foraging precision compared to homogeneous nutrient
supply (Figures 1, 2). Regarding root:shoot ratio, no effects
of heterogeneously supplied nutrients could be demonstrated
(Figure 1C), likely because of relatively small numbers of
observations or consistent response trends to nutrients exist in
shoots and roots.

Compared with homogeneous nutrient supply, heterogeneous
nutrient supply generally increased shoot biomass of grasses and
forbs, but not legumes (Figure 1A). In contrast, heterogeneous
nutrient supply had a positive effect on root biomass of forbs
and legumes, but not grasses (Figure 1B). The root:shoot ratio
effects were similar (and non-significant) for grasses, forbs and
legumes (Figure 1C). In contrast, Root foraging precision of
grasses and legumes rather than forbs was significantly increased
in the heterogeneous nutrient treatments (Figure 2).

Heterogeneously supplied nutrients had significant positive
effects on shoot and root biomass and root foraging precision of
herbaceous species rather than woody species (Figures 1A,B, 2).
However, there was no statistically significant difference between
the responses of herbaceous and woody species regarding root
and shoot biomass, root:shoot ratio and root foraging precision
(Figures 1, 2).

Foraging Traits of Woody Plants
Nutrient type had a significant influence on foraging precision of
roots and mycorrhizal hyphae and the effect size of mycorrhizal
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TABLE 1 | The statistics for the responses of plant and mycorrhizal fungi traits to nutritionally heterogeneous environments.

Variables Mean effect size 95% ClI Percentage change (%) Sample size (n)

Dataset 1: heterogeneity nutrient treatments vs. homogeneity nutrient control

Shoot biomass 0.111 0.078-0.144 11.74 263
Root biomass 0.096 0.043-0.149 10.08 171
Root:shoot ratio 0.031 —0.024-0.085 3.1 55
Root foraging precision 0.061 0.033-0.089 6.25 180
Dataset 2: heterogeneity nutrient treatments vs. unfertilized control

Root foraging precision 0.134 0.088-0.181 14.39 75
Mycorrhizal hyphal foraging precision 0.055 0.011-0.099 5.63 64
Mycorrhizal colonization —0.213 —0.329- —0.097 23.70 71
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FIGURE 1 | Mean effect sizes (closed circles) of the heterogeneous nutrient supply effects on shoot biomass (A), root biomass (B), and root:shoot ratio (C) as
influenced by nutrient types (N, P, NP, or OF = organic fertilizer or organic matter), herbaceous species types (grasses, forbs, and legumes), and plant functional
groups (herbs and woody) based on the first dataset. Error bars represent + 95% confidence intervals. Effects are significant if confidence intervals (95% Cl) for a
given parameter do not overlap with zero. Mean effect sizes < 0 represent a reduction (and >0 an increase) in plant growth in nutritionally heterogeneous
environment compared with homogeneous environment. The numbers under the Cl bars represent the sample sizes. The asterisks denote significant difference
among the categories. *P < 0.05; **P < 0.01; ***P < 0.001.

colonization responding to heterogeneous nutrient patches and OF supply, but not by heterogeneous P supply (Figure 3A).
compared with the unfertilized control (Figure 3). Root foraging Heterogeneous OF supply had significant positive effect on
precision was significantly increased by heterogeneous N, NP mycorrhizal hyphal foraging precision, but heterogeneous
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FIGURE 2 | The effect of the heterogeneous nutrient supply on root foraging precision (closed circles) as influenced by nutrient types (N, P, NP, or OF = organic
fertilizer or organic matter), herbaceous species types (grasses, forbs, and legumes), and plant functional groups (herbs and woody) based on the first dataset. Error
bars represent + 95% confidence intervals. Effects are significant if confidence intervals (95% Cl) for a given parameter do not overlap with zero. Mean effect

sizes > O represent an increase in plant growth in nutritionally heterogeneous environment compared with homogeneous environment. The numbers under the ClI
bars represent the sample sizes. The asterisks denote significant difference among the categories. *P < 0.05; **P < 0.01.

inorganic nutrient supply (i.e., N, P, and NP) had no effect
(Figure 3B). No effects of heterogeneously supplied nutrients
on the effect size on mycorrhizal colonization could be
demonstrated (Figure 3C).

Nutrient heterogeneity increased root foraging precision on
AM tree species (Figure 3A) and mycorrhizal hyphal foraging
precision of ECM tree species (Figure 3B). Moreover, there was
significant difference on mycorrhizal hyphal foraging precision
between AM and ECM tree species in the heterogeneity nutrient
supply (Figure 3B). However, nutrient heterogeneity had no
effect on the effect size on mycorrhizal colonization of AM trees
and ECM trees (Figure 3C).

Correlation of Root Diameter With
Foraging Precision of Roots and
Mycorrhizal Hyphae

Root diameter had no correlation with root foraging precision or
mycorrhizal hyphal foraging precision of AM or ECM tree species
in either inorganic or organic patches (Figures 4A,B). There was
a significant positive and linear correlation between root foraging
precision and mycorrhizal hyphal foraging precision for ECM
trees species in the organic patches rather than inorganic patches,
but no clear correlation for AM tree species in either inorganic or
organic patches (Figure 4C).

DISCUSSION

Effect of Nutrient Types on Plant

Responses to Nutrient Heterogeneity
Our meta-analysis showed that nutrient type had large effects
on shoot and root biomass in the nutritionally heterogeneous

environments (Figure 1). When interpreting the observed
response, the context in which the response had been expressed
(e.g., attributes of the patch) was as important as the actual
response itself (Hodge, 2009). Given the nutrient-specific
responses are ubiquitous (e.g., Robinson, 1994a), testing whether
plant responses to nutrient patches are phylogenetically and
taxonomically conserved across species should be done under the
same set of nutrient environments (Kembel and Cahill, 2005).
Our results showed the P and OF patches had relatively strong
positive effects on shoot and root biomass and root foraging
precision (Figures 1, 2). Because of such nutrient-rich patches
persist for relatively long time (Hodge, 2006), root proliferation
in the patch zones being critical for enhanced capture immobile
nutrients (such as P) and available nutrients released slowly from
OF (Hutchings and de Kroon, 1994; Hodge, 2004). Moreover,
nutrient immobility in soil also is likely to coincide with a
strong plant demand because immobile ions (such as P) have
limited transport to the root surface compared with mobile ions
(such as NO3 ™) (Hodge, 2006). However, the heterogeneous N
and NP environment exhibited neutral effects on plant biomass
(Figure 1) and root foraging precision (Figure 2). Several factors
may be associated with non-response of roots in nutrient-rich
patches. Firstly, root response may not be strictly localized in the
N-rich patch zone that is mobile (Blouin and Puga-Freitas, 2011).
For example, roots of wheat plants did proliferate throughout the
whole root system, not just in the patch zone of NO3; ™ application
(Robinson, 1994b). Secondly, Robinson (1994a) have reviewed
“time-dependent responses,” that is, plant responses may occur
only after local nutrients have been supplied for a certain time
(Dunbabin et al., 2004). Thirdly, the performance of plant roots
in the N-rich patches may be related to the local and systemic
signaling pathways (Alvarez et al, 2012; Forde, 2014). For
mobile ions (such as NO3 ™), local resource concentration and
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FIGURE 3 | Mean effect sizes (closed circles) of the heterogeneous nutrient supply effects on root proliferation (root foraging precision) (A), mycorrhizal hyphal length
or hyphal biomass (mycorrhizal hyphal foraging precision) (B) and mycorrhizal colonization (C) of woody species as influenced by nutrient types (N, P, NP, or

OF = organic fertilizer or organic matter) and mycorrhizal types (AM and ECM) based on the second dataset. Error bars (when larger than the symbol) represent
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reduction (and >0 an increase) in plant growth in nutritionally heterogeneous patches compared with unfertilized control. The numbers under the Cl bars represent
the sample sizes. The asterisks denote significant difference among the categories. **P < 0.01; ***P < 0.001.

root physiological plasticity may be more important than root
morphological plasticity (root proliferation) (Dunbabin et al.,
2004; Kulmatiski et al., 2017). Finally, Grime and his colleagues
also showed that the roots of different species expressed different
responses when supplying local nutrients (Grime et al., 1988,
1991), which is consistent with our results (Figures 1B, 2). The
roots of some plants failed to respond spectacularly to a nutrient-
rich patch may be because they did not have a large demand for
that localized nutrient supplied. Hence, the mixed response of
plants to heterogeneous nutrient addition is not only related to
nutrient type, but also should consider plant functional type.

Effect of Functional Groups on Plant

Responses to Nutrient Heterogeneity
In this meta-analysis, differences in the response patterns
between groups of herbaceous species were identified (Figure 1),

with shoot biomass of legumes showing no sensitivity to
heterogeneous nutrient supply compared to that of grasses
and forbs (Figure 1A). This could be associated with legumes
symbiotically fixing atmospheric N, to maintain tissue N
concentration (Wolf et al., 2017) and having a typically strong
capacity to acidify the rhizosphere (soil pH decreasing from 6.5
to 4.1, cf. Li et al., 2007) and increase availability of P in neutral
or alkaline soils (Li et al., 2007; Png et al., 2017). These efficient
nutrient-capturing strategies in poorly fertile soils may lead to
root growth of legumes, rather than shoot biomass, to establish
symbiosis with rhizobia (Figures 1B, 2).

For root proliferation, root biomass of grasses was not
significantly influenced by heterogeneous nutrient supply (in
contrast to forbs and legumes) (Figure 1B). Grass species
generally have thinner root diameter and higher specific root
length and root mass fraction than other phylogenetic clades,
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second dataset. Regression lines are shown when P < 0.05, and the
regression information in (C) refers to ECM tree species supplied with organic
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such as forbs (Poorter et al., 2015; Li et al., 2017; Valverde-
Barrantes et al., 2017). Hence, proliferation of fine roots in
the patch zone may affect mainly root length and have limited
influence on the whole root biomass of grasses (Ma et al.,
2020). Similarly, Cahill and McNickle (2011) also found grasses
place a smaller proportion of root biomass in nutrient patches

compared with forbs. In addition, we also found root foraging
precision of grass and legume species exhibiting significant
positive response to the heterogeneous nutrient supply, but not
that of forb species (Figure 2). This indicates that root length
has less consistent change with root biomass in heterogeneous
nutrient patches.

Compared to herbaceous species, woody plants did not
change shoot and root biomass and root foraging precision
in nutritionally heterogeneous environments (Figures 1, 2).
However, there was no significant difference in effect size
between these two functional groups, suggesting their similar
biomass allocation and root foraging precision. Conversely, Chen
et al. (2018) found much higher root foraging precision in
herbaceous than woody plant species. The difference between
the two studies may have been caused by the different patch
sizes presented to herbs and woody plants. For example, Chen
et al. (2018) chose the data of herbaceous species from the
study of Johnson and Biondini (2001), whereby the nutrient
amount within the patch zone accounted for about 86% of total
N and 91% of total P supply, and the nutrient patch as the
main nutrient source for plant growth can significantly induce
root proliferation (Hodge, 2004). In contrast, the woody species
data Chen et al. (2018) chose were mainly from adult trees in
a garden (Eissenstat et al., 2015; Chen et al., 2016) and forest
(Liu et al, 2015) with small nutrient patch zones (created by
root bags or in-growth containers) that can hardly be expected
to influence growth of adult trees except for causing local root
proliferation only by a local signal from the nutrient-rich zone.
As a result, the difference in root plasticity in heterogeneous
environments between herbaceous and woody species may have
been overestimated in the study by Chen et al. (2018), because of
the lack of the integration of the systemic and the local signals
in interpreting the root responses to a nutrient patch (see de
Kroon et al,, 2009). However, nutrient patch sizes we chose in
this study were in unison for herbaceous and woody plants,
because of 95% of the herb research and all woody plant research
in our meta-analysis being conducted in the greenhouse. Thus,
explaining the varied root proliferation among plant species
remains challenging.

In the present meta-analysis, nutrient supply heterogeneity
generally had no influence on root:shoot ratio (Figure 1C
and Table 1), regardless of nutrient types and plant functional
groups (Figure 1C). Similarly, Wijesinghe et al. (2001) found
that only one of six herbaceous species changed root:shoot
ratio in the homogeneous vs. heterogeneous environments.
This may be due to increased root growth within nutrient
patches being generally compensated for by decreased root
growth elsewhere (Robinson, 1994a). Moreover, shoot’s rate of
growth was slower than root in patch zone and matched that
in the uniformly supplied control (Drew and Saker, 1975).
Generally, the effects of heterogeneous nutrient supply on
root:shoot ratio are complex and difficult to predict from the
homogeneous nutrient conditions [see the review by Hutchings
and John (2004)]. Overall, the heterogeneous nutrient supply
may not influence root:shoot biomass partitioning when the total
nutrient amount supplied is the same as in the homogeneous
supply conditions.
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Diverse Root and Mycorrhizal Foraging

Strategies Among Tree Species

In our meta-analysis, woody plants showed significant root
foraging precision with heterogeneous N, NP and OF supply but
insignificant with P supply compared with unfertilized control
(Figure 3A). In contrast, mycorrhizal hyphal foraging precision
exhibited significant positive response to heterogeneous OF
supply but non-significant response to heterogeneous inorganic
nutrient (such as N, P and NP) supply (Figure 3B). These
findings are consistent with many previous studies, which
showed that, plants tend to increase root growth rather
than mycorrhizal hyphal growth to capture soil available
nutrients when nutrients become more freely available
(Nilsson and Wallander, 2003; Hodge, 2004; Sharda and
Koide, 2010). However, increased proliferation of mycorrhizal
hyphae in OF patch may be related to mycorrhizal fungi
resisting pathogens through competition for organic nutrients
(Zanne et al., 2020).

Our results showed that there was a positive response to
nutrient patches by AM tree species regarding root foraging
precision and by ECM tree species regarding mycorrhizal hyphae
foraging precision (HFP) (Figure 3). Our results were consistent
with the study by Chen et al. (2016) who suggested AM tree
species relied mostly on root growth and ECM tree species
depended mostly on mycorrhizal hyphae to capture nutrients
within the nutrient-rich zones. Unexpected, we found that
heterogeneous nutrient supply had no effect on the effect size
on mycorrhizal colonization for neither among nutrient type nor
mycorrhizal type (Figure 3C). Presumably because mycorrhizal
colonization is phylogenetic conservative trait (Kong et al,
2014), which is more influenced by host plants than nutrient
availability (Smilauer et al., 2021). Therefore, mycorrhizal
hyphal proliferation may be a better indicator than mycorrhizal
colonization when determining the effects of mycorrhizal types
and heterogeneous nutrient types on mycorrhizal fungi.

In the present study, both root foraging precision and
mycorrhizal hyphal foraging precision were independent of
root diameter for both AM and ECM tree species in either
organic or inorganic patches (Figures 4A,B). This finding
suggested that thick-rooted species could have similar root
and mycorrhizal hyphal foraging precision as thin-rooted
species in a given nutrient type patch. This is consistent with
Caplan et al. (2017) who found similar foraging precision
among six AM understory shrubs species with differing
root diameters and root growth rates. Although the change
of root traits has been proposed to influence the root
foraging capacity, such as thin root diameter, high specific
root length and high root growth rate are associated with
high root foraging precision. However, based on our meta-
analysis and the published studies, we agree with Hodge
(2009) that there may be no simple and definitive “rule”
for explaining the variation in root and hyphal proliferation
among plant species.

Ectomycorrhizal fungi have the capacity to proliferate hyphae
in nutritionally heterogeneous environments (Dowson et al.,
1989). However, there was a significant positive linear correlation

between mycorrhizal hyphal foraging precision and root foraging
precision in organic patches across ECM tree species (Figure 4C).
Recent study has demonstrated that ectomycorrhizal mycelial
biomass was related to host tree species (Hagenbo et al., 2021).
Additionally, compared to AM fungi, ECM fungi have a greater
potential for mineralizing organic matter (Smith and Read, 2008;
van der Heijden et al,, 2015) that may complement the root
functions and lead to a close correlation between the root and
ECM hyphae foraging strategies. Currently, there is a paucity of
data in the literature regarding a relationship between the root
and ECM fungi foraging in nutrient patches. The future studies
need to focus on clarifying the universality of this foraging pattern
in natural forest ecosystems.

Limitations and Future Research

Recent studies have proposed the interactions between plant
species and nutrient types (Liu et al, 2015; Cheng et al,
2016), and between plant and mycorrhizal fungi species (Koch
et al., 2017; Hoeksema et al., 2018), influencing the responses
of plants and mycorrhizal fungi to nutritionally heterogeneous
environments. However, different studies reported a large
variation in patch sizes, nutrient partitioning, and mycorrhizal
fungi species and genotypes. Even though the present study
offered some explanation of adaptive strategies of plant species
with different root and mycorrhizae-related traits, our meta-
analysis could not completely exclude the influence of the varied
experimental factors (such as temperature and precipitation),
especially when the available data were limited. Because of a
lack of data on the hyphal length or biomass of ECM tree
species with large variations in root diameter in inorganic
nutrient patches, it remains unclear how root diameter affects
foraging strategies of ECM tree species. Hence, there are still
large knowledge gaps in predicting plant foraging strategies
for different nutrient types from the plant above- and below-
ground traits, although our findings partly elucidated some
relevant aspects. The future systematic studies should focus on
diverse foraging strategies of various plant and mycorrhizal fungi
species, taking into account evolution perspectives, in order to
provide deep understanding of the relationships governing plant
species coexistence.

CONCLUSION

By synthesizing 879 observations from 66 studies, our meta-
analysis results showed that nutrient types explained most of
the variation in the plant and mycorrhizal fungi responses
to nutritionally heterogeneous environments. No significant
difference was noted in responses to nutrient heterogeneity
among functional groups of herbs (grasses, forbs, and legumes),
between herbs and woody plants, and between AM and ECM
tree species regarding plant growth and foraging strategy,
except for root biomass and root foraging precision among
grasses, forbs and legumes, and mycorrhizal hyphal foraging
precision between AM and ECM tree species. Root foraging
precision and mycorrhizal hyphal foraging precision had no
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correlation with root diameter, regardless of the nutrient type
and mycorrhizal type. In addition, root foraging precision
was positively correlated with mycorrhizal hyphal foraging
precision for ECM tree species in the organic patches.
The results of our meta-analysis suggest that nutrient type
mainly regulate plant response to heterogeneous nutrient
supplies, although AM tree species enhanced root foraging
precision and ECM tree species improved mycorrhizal hyphal
foraging precision.
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