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Although leaf economics spectrum (LES) has been extensively tested with regional and 
global datasets, the correlation among functional traits of desert plants remains largely 
unclear. Moreover, examinations on whether and how leaf and root traits are coordinated 
have yielded mixed results. We investigated variations in leaf and fine-root traits across 
48 species in a desert community of northern China to test the hypotheses that (1) the 
leaf-trait syndrome of plant species in desert shrublands follows the predictions of the 
global LES, and is paralleled by a similar root-trait syndrome, (2) functional traits related 
to nutrient contents and resource uptake are tightly coordinated between leaves and fine 
roots in desert ecosystems where plant growth is limited primarily by dry and nutrient-poor 
conditions, and (3) traits as well as their relationships vary among functional groups. Our 
results partially supported the LES theory. Specific leaf area (SLA) was correlated with 
leaf tissue density, phosphorus content, and carbon-to-nitrogen ratio, but not with leaf 
nitrogen content. Specific root length (SRL) was not correlated with other fine-root traits, 
and fine-root traits were largely independent of each other. Therefore, fine-root traits did 
not mirror the leaf-trait syndrome. Fine-root nitrogen and phosphorus contents, nitrogen-
to-phosphorous ratio, and carbon-to-nitrogen ratio all increased with analogous leaf traits, 
whereas SRL was not correlated with SLA. After phylogenetic effects were considered, 
nutrient contents and their ratios still displayed stronger coordination between leaves and 
fine roots than did SRL and SLA. The overall pattern of trait variations and relationships 
suggested differentiation among functional groups. Our results suggest that despite the 
absence of a root-trait syndrome, fine-root functions in the studied desert community 
were probably coordinated with leaf functions with respect to nutrient allocation and use.

Keywords: functional trait, plant functional type, specific leaf area, specific root length, stoichiometry

INTRODUCTION

Leaf functional traits play an important role in plant carbon assimilation, water relations and 
energy balance (Ackerly et  al., 2002), while root traits determine nutrient and water uptake 
that are crucial for plant survival and growth (McCormack et  al., 2015; Weemstra et  al., 2016; 
Wang et al., 2018). According to leaf and root economics spectrum (LES and RES, respectively), 
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specific leaf area (SLA) and specific root length (SRL) are two 
key traits that indicate plant resource strategies (Wright et  al., 
2004; Cheng et  al., 2016). A global foliar dataset indicated 
that 82% of total variance in photosynthetic capacity can 
be  explained by SLA and leaf nitrogen content (LN; Wright 
et  al., 2004; Ali et  al., 2016). Specifically, species with high 
SLA exhibiting high LN, leaf phosphorus content (LP), high 
photosynthetic rate and short leaf lifespan, and low leaf tissue 
density (LTD), i.e., a resource-acquisitive strategy. The opposite 
is for species with low SLA exhibiting conserved traits (Wright 
et  al., 2004; Pérez-Ramos et  al., 2012). However, some studies 
found weak or a lack of correlation between SLA and other 
leaf traits across species (Zhou et  al., 2010; Chen et  al., 2013). 
In addition, existing studies on leaf traits mainly focused on 
forests and grasslands (He et  al., 2008; Fajardo and Siefert, 
2016; Hosseini et  al., 2019), it remains largely unclear how 
leaf traits are correlated across species in desert communities.

Unlike leaves, the ongoing progress on fine-root trait correlations 
revealed a more complex and multidimensional economics space, 
reflecting a variety of evolutionary pressures and tradeoffs 
belowground (Kong et  al., 2014; Xia et  al., 2021). Some studies 
reported that fine roots of species with high SRL, small diameter, 
low tissue density (RTD), and high N content (RN) were associated 
with low construction costs, high respiration rates, and high 
turnover rates, a pattern analogous to leaf-trait correlations (Reich, 
2014; Caplan et al., 2019). Exceptions to this pattern are nonetheless 
common (Holdaway et  al., 2011; Weemstra et  al., 2016). For 
example, Kramer-Walter et  al. (2016) reported that SRL was 
independent of RTD and the plant economic spectrum across 
the most abundant tree species in New  Zealand. Moreover, 
studies on temperate tree species showed no correlation between 
SRL and RN (Comas and Eissenstat, 2004) or between root 
lifespan and SRL or root diameter (Withington et  al., 2006). 
Far less is known about whether there is a root-trait syndrome 
that parallels the leaf-trait syndrome in desert communities.

For a plant economics spectrum to occur, traits of different 
plant organs (e.g., leaf and root) must be  coordinated in a 
way that follows evolutionary and biophysical constraints (Reich, 
2014; Carvajal et  al., 2019). The level of coordination between 
root and leaf traits can be multidimensional, meaning that certain 
root traits are coordinated with analogous leaf traits, while other 
root traits vary independently of leaf traits (Kramer-Walter et al., 
2016). Empirical evidence indicates that analogous leaf and root 
traits can be correlated across species in grasslands on the Inner 
Mongolian Plateau and the Tibetan Plateau (Geng et  al., 2014). 
However, other studies showed that analogous leaf and root 
traits were weakly correlated at the global scale (Craine et  al., 
2005) and that the same plant can have aboveground traits that 
are correlated with root traits of the opposite growth strategy 
in temperate grasslands (Personeni and Loiseau, 2004). The 
correlation between key physical leaf and root traits remains 
controversial (Cheng et  al., 2016). For example, the reported 
SLA–SRL relationship was positive (Withington et  al., 2006), 
negative (Kembel and Cahill, 2011), or nonsignificant (Chen 
et  al., 2013). The same holds for the correlation between leaf 
and fine-root nutrient contents (e.g., N and P), which was found 
to be  positive in some studies (Tjoelker et  al., 2005; Kerkhoff 

et  al., 2006; Freschet et  al., 2010; Holdaway et  al., 2011), but 
not in others (Withington et  al., 2006; Chen et  al., 2013). These 
mixed findings suggest that the coordination between leaf and 
root traits may be  contingent upon environmental conditions 
(e.g., abiotic stresses and soil properties), species composition, 
plant functional types (PFTs) and the spatial scale of interest 
(Geng et  al., 2014; Cheng et  al., 2016; Weemstra et  al., 2016). 
In desert environments, leaf and fine-root traits are expected 
to be  tightly coordinated because water and nutrient limitation 
to plant growth requires fine-root functions (i.e., water and 
nutrient uptake) to match those of leaves (i.e., photosynthesis 
and transpiration; Carvajal et  al., 2019). We  currently know 
little about the relative strength of stoichiometric vs. physical 
coordination between leaves and roots across desert plants.

Many leaf and root traits have been shown to differ among 
PFTs that are predefined by growth form (e.g., grass, forb, 
and woody species), taxonomy (e.g., monocot and eudicot) or 
functional categories (e.g., legumes, non-legumes; Freschet et al., 
2017). Therefore, PFTs may be  useful in categorizing species 
trait syndromes (Tjoelker et  al., 2005; Caplan et  al., 2019). 
For example, global analyses showed that graminoids had 
generally lower fine-root N content and tissue density than 
forbs, shrubs, and trees (Freschet et  al., 2017). A local-scale 
study in a subarctic flora suggested that differences among 
growth forms can also be  seen for structural traits such as 
SRL and RTD (Freschet et  al., 2010). Although individual leaf 
and fine-root traits were observed to differ among PFTs, whether 
trait correlations differ among PFTs in predictable ways remains 
poorly understood (Tjoelker et  al., 2005).

Current knowledge on plant functional traits is mainly 
obtained from studies on forests and grasslands (Craine et  al., 
2005; Kong et al., 2014; Cheng et al., 2016; Zhang et al., 2018). 
Species from the desert region should display strategies favouring 
higher belowground (water and nutrient) than aboveground 
(light) resource acquisition compared with species from forests 
or grasslands (Liu et  al., 2010). However, it remains largely 
unclear whether existing theories are equally applicable to 
desert plants. Desert shrub communities constitute an ideal 
system to test the traits correlations because water is considered 
the main resource limiting plant abundance and distribution 
(Carvajal et  al., 2019). We  examined how leaf and fine-root 
traits are correlated across species and differ among PFTs in 
a desert shrubland. Specifically, we  tested the hypotheses that 
(1) the leaf-trait syndrome of plant species in desert shrublands 
follows the predictions of the global LES, and is paralleled by 
a similar fine root-trait syndrome, (2) functional traits related 
to nutrient contents and resource uptake are tightly coordinated 
between leaves and fine roots in desert ecosystems where plant 
growth is limited primarily by dry and nutrient-poor conditions, 
and (3) traits as well as their relationships vary among PFTs.

MATERIALS AND METHODS

Study Site
This study was conducted at the Yanchi Research Station 
(37°42′31″N, 107°13′37″E, 1530 m a.s.l.), Ningxia, northern China. 
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The site is located at the southern edge of the Mu Us Desert 
and is characterized by a temperate semiarid continental climate. 
The mean annual temperature (1954–2020) is 8.4°C, and the 
mean annual precipitation is 293 mm. Most precipitation (>70%) 
occurs during June to September (data source: Yanchi 
Meteorological Station, Yanchi Research Station). The soil is 
a Arenosols (The FAO-UNESCO soil classification) with a total 
nitrogen content of 0.1–0.2 g kg−1 and a soil organic carbon 
(C) content of about 2.0 g kg−1. The landscape of this region 
is typical of inland dune ecosystems, which are colonized 
mainly by deciduous perennial shrubs, perennial grasses and 
annuals (She et  al., 2017). The study area experienced severe 
desertification during the 1960–1990’s due to human disturbances 
(e.g., overgrazing and reclamation). Large-scale conservation 
practices (e.g., fencing and grazing ban) over the recent two 
decades have promoted the recovery of natural vegetation (Bai 
et  al., 2018). The studied shrubland community is located in 
a conserved area in which human activities are negligible and 
all plants grow naturally. The shrubland community is dominated 
by a mixture of xerophytic shrub species, including Artemisia 
ordosica, Hedysarum mongolicum, and Salix psammophila. Most 
abundant herbaceous species include Leymus secalinus, Stipa 
glareosa, Pennisetum centrasiaticum, and Setaria viridis. 
Germination and leaf emergence usually start in mid-April, 
and the growing season ends in around mid-October. Leaf 
area index (LAI) at mid-growing season varies from year to 
year, and can exceed 1.0 m−2  m2 in most productive years. 
LAI declines virtually to zero during winter as all plant species 
are cold-deciduous.

Field Sampling and Trait Measurements
Four plots (40 m × 40 m, 20 m apart from each other) were set 
in the studied shrubland community in the spring of 2019. 
The four plots were considered replicates based on their similarity 
in topography and soil properties (Supplementary Table  1) 
as well as in species composition. The similarity in species 
composition was quantified with the Jaccard index (Qin et  al., 
2019), which ranged from 0.61 to 0.71. We  then ranked all 
species in each plot by relative abundance and sampled all 
dominant species (i.e., relative abundance >5%). Following the 
standard trait collection protocols detailed in Cornelissen et al. 
(2003) and other studies (Liu et  al., 2010; Geng et  al., 2014; 
Mitchell et  al., 2017), we  sampled five mature individuals of 
each dominant species (to minimize labor and disturbance) 
from each plot. A total of 20 individuals (five ind. × four plots) 
were sampled for most species, while 10–15 individuals were 
sampled for those which occurred in only two or three plots. 
For each individual we collected five fully-expanded, fresh and 
healthy leaves and 10 fine roots (diameter < 2 mm; Cornelissen 
et  al., 2003; Kong et  al., 2014; Mitchell et  al., 2017). This 
sampling strategy ensures that all field sampling and 
measurements can be  done during the mid-growing season 
(from late June to late August), and that sampled species can 
represent the community assembly. We  acknowledge that our 
small sample size for each species may not be  adequate for 
examining intraspecific trait variations. However, the sampling 

method described here has been commonly used to investigate 
trait variations and relationships across species (Geng et al., 2014).

For shrub species, we carefully excavated the soil (0–30 cm) 
at the base of each individual whose leaves had been collected, 
exposing the coarse roots. To ensure fine roots of the target 
individual were sampled, we  followed each coarse root to 
find the attachment points of fine roots of the target plant. 
The points at which intact fine roots were attached to the 
coarse root were then determined using vernier calipers and 
cut with scissors. For herbaceous species, we carefully collected 
whole plants back to lab for the separation of leaves and 
fine roots. Active fine roots (generally have a lighter color 
and a fully turgid appearance) of each individual were identified 
according to root color, texture and connection to its shoot 
(Cheng et  al., 2016).

A total of 10 shrub and 38 herbaceous species were 
investigated, covering 39 genera and 16 families. All sampled 
species are deciduous, including 33 perennials, three biennials, 
two annual grasses and 10 annual forbs (Supplementary Table 2). 
Leaf traits were measured for all 48 species 
(Supplementary Table  2; Supplementary Figure  1), while 
fine-root traits were measured for a subset of 43 species as 
fine roots were difficult to collect for five herbaceous species. 
We  measured functional traits for both leaves and fine roots, 
including SLA, SRL, LTD, LN, RN, LP, root phosphorous content 
(RP), leaf and root organic C contents (LC and RC, respectively), 
and further calculated LN:LP, RN:RP, LC:LN, and RC:RN ratios.

Plant functional traits of sampled species were measured 
following standardized protocols detailed in Cornelissen et  al. 
(2003). All samples were sealed in plastic bags, placed on ice, 
and returned to the lab where leaf samples were digitally 
imaged within 1 h of collection. Leaf thickness was determined 
with electronic vernier calipers, and leaf area was measured 
using the Image J software.1 Leaf volume was calculated as 
the product of leaf thickness and leaf area. We carefully removed 
the remaining soil and organic matter from the fine-root samples 
using deionized water and tweezers. In the absence of a digital 
image analysis system, we  measured the length of fine roots 
manually. Put the fine-root samples on the glass plate with 
grid paper and measure its length by straightening both ends 
with tweezers (Cheng et  al., 2005). Leaf and fine-root samples 
were oven dried at 75°C for 48 h to constant weight and 
weighed to calculated SLA (leaf area per unit dry mass, cm2 
g−1), SRL (fine-root length per unit dry mass m g−1) and LTD 
(leaf dry mass per total volume, g cm−3). The C, N contents 
(g kg−1) of leaf and fine-root samples were measured through 
an elemental analyzer (Vario Max CN Element Analyser, 
Elementar, Germany) and total P content (g kg−1) was analyzed 
colorimetrically after H2SO4-H2O2-HF digestion (John, 1970).

Statistical Analysis
All data were logarithmically transformed prior to analysis 
to satisfy the assumption of normality. The N:P and C:N 
ratios represent mass ratios in this study. Investigated plants 

1 https://imagej.net/Welcome
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were sorted into PFTs for analyzing differences in trait values 
and bivariate trait relationships among groups. Specifically, 
they were classified into grasses, forbs, and woody species 
based on life form, into legumes and non-legumes based on 
their ability to fix nitrogen, and into monocots and eudicots 
based on their evolutionary relationships. We did not compare 
deciduous vs. evergreen species because the latter are virtually 
absent from our study site due to cold winter. Nor did 
we compare perennial vs. annual species, as this classification 
largely confounds that based on life form (i.e., all woody 
species and most grasses are perennial). Species mean trait 
values were used for testing trait correlations, due to our 
focus on trait relationships across species. Bivariate trait 
relationships were tested with a model II (standardized major 
axis, SMA) regression, which is commonly used when 
independent variable is not clearly defined and/or measurement 
errors exist for both variables (Craine et  al., 2005). SMA 
slopes and y-intercepts were calculated using the “smatr” 
package of the R software. Due to multiple trait correlations, 
a principal component analysis (PCA) was performed for all 
leaf and fine-root traits (“whole-plant PCA” hereafter) to test 
overall patterns of trait variations (Craine et  al., 2005). All 
variables used in PCA were standardized to a mean of zero 
and a SD of one. A separate PCA was also performed for 
all leaf traits (“leaf PCA” hereafter) or all fine-root traits 
(“root PCA” hereafter), to examine overall trait variations in 
leaves and fine roots, respectively. Differences in any leaf or 
fine-root traits among PFTs and species were tested using a 
nested ANOVA (nested ANOVA), in which functional type 
was treated as a fixed factor, and species was treated as a 
random factor nested within functional type. The Tukey HSD 
method was used for post hoc multiple comparisons. Multivariate 
analysis of variance (MANOVA) was performed to test whether 
species scores on the first two PCA axes show overall differences 
among grasses, forbs, and woody species, and Hotelling’s T2-
test was performed instead when comparing between legumes 
and non-legumes, or between monocots and eudicots. In 
addition, ANOVA and t-test were performed on species scores 
to compare PFTs along individual PCA axes.

To remove the effects of phylogenetic relatedness among 
species (due to shared evolutionary history) on trait variations, 
we  calculated phylogenetically independent contrasts (PIC, 
Felsenstein, 1985) using the “ape” R package to further evaluate 
pairwise correlations between leaf and fine-root traits (Kerkhoff 
et al., 2006; Geng et al., 2014). Investigated species were sorted 
into genera and families based on the APG III classification 
using the “plantlist” R package (The Angiosperm Phylogeny 
Group, 2009), and a supertree for all taxa was built using the 
freely available software Phylomatic.2 Because PICs were 
calculated based on nonnegative x-axis contrasts, we  forced 
the SMA regressions on PICs through the origin following 
Kerkhoff et  al. (2006). All statistical analyses were conducted 
in R version 4.0.3 (The R development Core Team). The 
significance level was set as p = 0.05.

2 http://www.phylodiversity.net/phylomatic

RESULTS

Trait Correlations in Leaves and Fine 
Roots Across All Species
Pairwise trait relationships revealed that SLA was positively 
correlated with LP, negative correlated with LTD and LC:LN, 
but not correlated with LN and LN:LP across all species 
(Figure 1). Surprisingly, LN and LP were not correlated (p = 0.21). 
The first two main axes (PC1 and PC2) for the leaf PCA 
explained 43 and 32% of total variance, respectively, in selected 
leaf traits. Leaf PCA was generally consistent with pairwise 
relationships, with PC1 showing that species with low SLA 
had high LTD and LC:LN, but low LN, LP, and LN:LP (Figure 2A 
and Table  1). SRL was independent of other fine-root traits 
(Supplementary Figure  2). PC1 and PC2 for the root PCA 
explained 52 and 27% of total variance, respectively, in examined 
fine-root traits. PC1 for the root PCA showed that species 
with low SRL generally had high RN, and RN:RP and low 
RP and RC:RN (Figure  2B and Table  1).

Correlations Between Leaf and Fine-Root 
Traits Across All Species
Nutrient-related traits (N, P, N:P, and C:N) were all positively 
correlated between leaves and fine roots (Figures  3A–D). 
SLA and SRL were unrelated (Figure  3E). After controlling 
for phylogenetic relatedness among species, N and P contents, 
and N:P ratio were tightly coordinated between leaves and 
fine roots, whereas the correlations between SRL and SLA 
and between LC:LN and RC:RN were marginally significant 
(Table  2).

The whole-plant PCA revealed two independent sets of 
correlations (Figure  2C). PC1 accounted for 41% of total 
variance in leaf and fine-root traits, compared to 24% explained 
by PC2 (Figure 2C and Table 1). PC1 represented a continuous 
distribution of species from those that have low N, N:P ratio 
and high C:N ratio leaves and fine roots to those that have 
high N, N:P ratio and low C:N ratio leaves and fine roots 
(Figure  2C and Table  1). PC2 represented a continuum of 
species from those characterized by high SLA and tissue P 
but low LTD to those with low SLA and tissue P but high 
LTD. Moreover, plant scores on the first two axes of the root 
PCA were, respectively, correlated with their scores on the 
first two axes of the leaf PCA (for PC1: R2 = 0.44, p < 0.01; for 
PC2: R2 = 0.26, p < 0.01).

Variations in Leaf and Fine-Root Traits 
Among PFTs
SRL was higher in monocots than in eudicots, and highest 
in grasses and lowest in woody species 
(Supplementary Figure  3A). LTD was higher in monocots 
than in eudicots, and highest in grasses and lowest in forbs 
(Supplementary Figure  3B). Legumes had generally higher N 
and lower P (therefore higher N:P and lower C:N) than 
non-legumes (Supplementary Figure  4). RN and RP were 
higher in eudicots than in monocots, and highest in forbs 
and lowest in grasses (Supplementary Figures  4A,B). RC:RN 
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ratio was higher in monocots than in eudicots, and highest 
in grasses and lowest in forbs (Supplementary Figure  4D).

Significant correlations between SLA and LTD were found 
in all PFTs except for monocots and grasses (Table  3). SLA 
was positively correlated with LN and LP in forbs and eudicots, 
and was negatively correlated with LC:LN in forbs, eudicots, 
and non-legumes. LP also increased with SLA in non-legumes. 
N and P contents were significantly correlated in leaves 
(R2 = 0.22, p < 0.01) and fine roots (R2 = 0.24, p < 0.01) of 
non-legumes, but not in other PFTs. SRL was largely 
uncorrelated with other fine-root traits in individual PFTs 
(Supplementary Table 3), exceptions were RN–SRL (positive) 
and RC:RN–SRL (negative) relationships in legumes, and 
RP–SRL (positive) and RN:RP–SRL (negative) relationships 
in eudicots.

None of the PFTs showed significant correlation between 
SLA and SRL (Figure  3E, other results not shown). Fine-root 
nutrient contents increased with leaf nutrient contents in forbs, 
woody species, eudicots, and non-legumes (Figure  3 and 
Table  4). LN and LC:LN were significantly correlated with 
RN and RC:RN, respectively, in eudicots but not monocots.

MANOVA and Hotelling’s T2-test revealed that species scores 
on the first two main axes (PC1 and PC2) of leaf, root, and 
whole-plant PCA generally differ among PFTs, except for those 
for leaf PCA among grasses, forbs, and woody species and 

between monocots and eudicots (Supplementary Table  4). 
ANOVA and t-test for PC1 showed significant functional type 
effects on species scores except for leaf traits among grasses, 
forbs, and woody species; and ANOVA and t-test for PC2 
also generally supported trait differentiation among PFTs, albeit 
with a few expectations (Supplementary Table  5).

DISCUSSION

Do Leaf Traits Conform to the LES Theory?
The LES theory predicts that species with high SLA are 
characterized by low LTD, high mass-based nutrient contents, 
high photosynthetic and respiration rates, and short life span, 
while species with low SLA usually show the opposite pattern 
of leaf traits (Wright et  al., 2004). Our results are partially 
consistent with our first hypothesis that leaf traits of desert 
shrubland species follow the LES theory. The correlation 
between SLA and LN, as predicted by LES, was not supported 
in this study. Positive correlations between SLA and LN have 
been widely reported in previous leaf trait studies (Reich, 
2014), with the exception of Zhou et  al. (2010), who found 
that SLA and LN were decoupled across dominant species 
of the Inner Mongolia grassland. The decoupling between 
LN and LP we  found is against the ecological stoichiometry 

A B C

D E

FIGURE 1 | Relationships between specific leaf area (SLA) and leaf tissue density (LTD; A), leaf nitrogen content (LN; B), leaf phosphorus content (LP; C), leaf N:P 
ratio (LN:LP; D), and leaf C:N ratio (LC:LN; E). Species means are shown for forbs (closed circle), grasses (triangle), and woody species (open square). Solid lines 
(R2 and p values) represent linear fits across all species, red dashed lines represent linear fits for forbs, and blue long-dashed lines represent linear fits for woody 
species. Type II model was used for all linear fits. The log10 scale was used on both x- and y-axis.
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theory (Zhang et  al., 2018), but similar to the finding from 
a semi-desert community (Grubb et  al., 2015).

Such a pattern among leaf traits implies that LN is not 
necessarily related to the acquisitive strategy in harsh 
environments (e.g., drylands; He et  al., 2008). First, desert 
species may store part of absorbed N in leaves when plant 
growth is strongly water-limited (Zhou et  al., 2010). Stored N 
does not contribute directly to the “fast” syndrome. Second, 
LN is not only involved in photosynthesis, but also comprises 
compounds that play important non-photosynthetic roles (e.g., 
defense against herbivory and energy production for metabolism; 
Osnas et  al., 2013). Therefore, the multiple functions of LN 
(e.g., photosynthesis, storage, and defense) should be  explicitly 
considered in investigating trait variations, trade-offs, and plant 
strategies in desert communities.

Is There a Root-Trait Syndrome in Parallel 
With the Leaf-Trait Syndrome?
The RES assumes that leaf traits are matched by parallel root 
traits along the acquisitive-conservative resource spectrum 
(Reich, 2014; Weemstra et  al., 2016), and the theory predicts 
that plant roots with high SRL are also characterized by low 
RTD but high nutrient contents, turnover rates, and respiration 
rates. However, the existence of an RES analogous to the LES 
is currently debated, and evidence has been mixed among and 
within studies (Withington et  al., 2006; Kong et  al., 2014; 
Weemstra et  al., 2016). Our results showed generally weak or 
no correlation between fine-root traits, and thus do not support 
our hypothesis that the leaf-trait syndrome is paralleled by a 

TABLE 1 | Coefficients for eigenvectors for main axes of principal component 
analyses (PCAs) on leaf and/or fine-root traits.

Traits Leaf or root 
PC1

Leaf or root 
PC2

Whole-plant 
PC1

Whole-plant 
PC2

SLA 0.24 0.48 0.04 0.36
LTD −0.27 −0.48 −0.09 −0.47
LN 0.57 −0.12 0.40 0.11
LP 0.07 0.54 −0.13 0.45
LN:LP 0.44 −0.48 0.42 −0.20
LC:LN −0.58 0.01 −0.35 −0.23
SRL 0.27 0.39 −0.20 −0.05
RN −0.58 −0.04 0.41 0.08
RP 0.05 −0.80 −0.07 0.51
RN:RP −0.53 0.39 0.40 −0.23
RC:RN 0.55 0.22 −0.38 −0.13

SLA, specific leaf area; LTD, leaf tissue density; LN, leaf nitrogen content; LP, leaf 
phosphorus content; LN:LP, leaf N:P ratio; LC:LN, leaf C:N ratio; SRL, specific root 
length; RN, fine-root nitrogen content; RP, fine-root phosphorus content; RN:RP,  
fine-root N:P ratio; and RC:RN, fine-root C:N ratio.

A

B

C

FIGURE 2 | Principal component analyses (PCAs) for leaf traits (A), fine-root 
traits (B), and whole-plant traits (C). Each data point represents the position of 

FIGURE 2 | a forb (closed circle), grass (triangle), or woody species (open 
square) in the two-dimensional trait space. SLA, specific leaf area; LTD, leaf 
tissue density; LN, leaf nitrogen content; LP, leaf phosphorus content; LN:LP, 
leaf N:P ratio; LC:LN, leaf C:N ratio; SRL, specific root length; RN, fine-root 
nitrogen content; RP, fine-root phosphorus content; RN:RP, fine-root N:P ratio; 
and RC:RN, fine-root C:N ratio. The percentages on x- and y-axis indicate the 
amount of variance explained by the two main axes.

(Continued)
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similar root-trait syndrome. Similar to our results, some studies 
in forests and grasslands also found a lack of correlation 
between SRL and RN (Tjoelker et  al., 2005; Chen et  al., 2013; 
Weemstra et  al., 2016) and between SRL and RTD (Craine 
et  al., 2001; Chen et  al., 2013; Kramer-Walter et  al., 2016).

Several reasons may account for the lack of a root-trait 
syndrome that parallels the leaf-trait syndrome. With regard 
to methodology, the sampled fine roots (<2 mm in diameter) 
were not necessarily all absorptive roots. The possible inclusion 
of fine transport roots (second- or higher-order roots), which 

do not represent resource uptake strategies, may confound 
trait relationships (Withington et  al., 2006; McCormack et  al., 
2015). Root order rather than diameter may be  a better proxy 
for root functioning (McCormack et  al., 2015). Therefore, our 
conclusion of a lack of fine-root trait syndrome is tentative 
and should be  verified in future studies with functional root 
classifications or order-based analyses. With regard to ecological 
mechanisms, roots are subjected to multiple constraints especially 
in desert ecosystems (e.g., uptake of water and multiple nutrients), 
while leaves are mainly adapted for maximizing carbon gain 
during their lifetimes (Weemstra et  al., 2016). Soil physical 
and chemical properties in desert regions (such as density, 
pH, and cation exchange capacity) may present additional limits 
to root traits that are not present aboveground. In addition, 
leaf and root traits are not necessarily analogous, because they 
function differently and might not be related to resource uptake 
in a similar manner (Weemstra et  al., 2016). Finally, resource 
acquisition by roots is strongly influenced by their interactions 
with mycorrhizal fungi and other rhizospheric organisms, 
resulting in selection forces on root traits that are distinct 
from those on leaf traits (Withington et al., 2006; Reich, 2014). 
Therefore, a lack of root-trait syndrome that parallels the leaf-
trait syndrome across desert shrubland species implies that a 

A B C

D E

FIGURE 3 | Relationships between analogous leaf and fine-root traits across species, including the RN–LN relationship (A), the RP–LP relationship (B), the RN:RP–
LN:LP relationship (C), the RC:RN–LC:LN relationship (D), and the SRL–SLA relationship (E). For abbreviations see Figures 1, 2. Species means are shown for 
forbs (closed circle), grasses (triangle), and woody species (open square). Solid lines (R2 and p values) represent linear fits across all species, red dashed lines 
represent linear fits for forbs, blue long-dashed lines represent linear fits for woody species, and green dot-dashed lines represent linear fits for grasses. Type II 
model was used for all linear fits. The log10 scale was used on both x- and y-axis.

TABLE 2 | Phylogenetically-independent contrasts between leaf and fine-root 
traits among desert species.

Root vs. leaf trait R2 p n

logSRL vs. logSLA 0.47 0.05 8
logRN vs. logLN 0.45 <0.01 16
logRP vs. logLP 0.86 <0.01 11
log(RN:RP) vs. 
log(LN:LP)

0.59 <0.01 24

log(RC:RN) vs. 
log(LC:LN)

0.30 0.06 11

For abbreviations see Table 1.
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multidimensional root trait framework (Weemstra et  al., 2016) 
that incorporates multiple root functions, multiple constraints 
on root traits and plant-mycorrhizal interactions may 
be  developed for understanding root-trait variations and 
correlations in deserts and other stressful environments.

Are Fine-Root Traits Coordinated With 
Analogous Leaf Traits?
Our results revealed that plant nutrient contents rather than 
physical traits (i.e., SLA and SRL) were coordinated between 
leaves and fine roots in the studied shrubland, a pattern partially 
in line with our second hypothesis. The whole-plant economics 
spectrum assumes SRL to be  analogous to SLA (Reich, 2014), 
as these two traits represent resource acquisition capability by 
fine roots and leaves, respectively. However, available evidence 
for the linkage between SRL and SLA is mixed at best (Withington 
et al., 2006). Some studies revealed positive SLA–SRL relationships 
in woody (Withington et  al., 2006; Holdaway et  al., 2011) and 
herbaceous species (Cheng et  al., 2016), while other studies 
found either negative or a lack of correlation between SLA 
and SRL in different regions and ecosystem types (Kembel 
and Cahill, 2011; Chen et  al., 2013; Geng et  al., 2014). Our 
finding of the nonsignificant SRL–SLA relationship also suggest 
that SRL may not be  the functional analogue of SLA in desert 
shrublands. In contrast to leaves, the link between root physical 
traits and resource uptake are not well-established, and SRL 
might not be  a adequate predictor of belowground resource 
acquisition capacity in desert ecosystems (Eissenstat et al., 2000; 
Weemstra et al., 2016). Firstly, root functioning (e.g., absorptive 
vs. transport) is strongly affected by its branching order, even 
for herbaceous species which do not have as many root branches 
and complex structures as do woody plants. This may lead 

to differences in root and leaf physical traits, obscuring the 
SRL–SLA relationship (Geng et  al., 2014; Cheng et  al., 2016). 
In addition, the fine roots of herbaceous species in this study 
may have a relatively small range of variation in trait values, 
and as a consequence, the SLA–SRL relationship is likely to 
be  nonsignificant (Geng et  al., 2014). Secondly, many desert 
plants rely on mycorrhizal hyphae to efficiently exploit the 
soil, and small SRL may support more mycorrhizal fungal 
colonization per unit root length (Comas et al., 2002; McCormack 
et  al., 2015). Thirdly, root physical traits such as diameter and 
SRL may be more phylogenetically conservative than leaf physical 
traits, leading to weak physical coordination between organs 
(Comas and Eissenstat, 2009; Chen et  al., 2013). Therefore, 
explicit consideration of fine-root functions and assessment of 
plant-mycorrhizal interactions may aid in the understanding 
of leaf-root coordination in desert plants.

Plant nutrient contents were significantly positively 
correlated between leaves and fine roots (Figures  2C, 3). 
These results are in line with previous studies on temperate 
grasslands (Craine et  al., 2005) and forests (Holdaway et  al., 
2011). Furthermore, the PICs confirmed that the nutrient 
coordination between leaves and fine roots were not the 
result of phylogenetic relatedness among studied species 
(Table  2). Such a nutrient-based leaf-root coordination thus 
reflects the consistency in nutrient uptake and allocation 
above- and below-ground in desert shrublands. The tight 
coordination between leaf and root nutrient contents provides 
the potential to predict belowground stoichiometry from 
aboveground measurements.

TABLE 4 | Correlations between leaf and fine-root traits for different functional 
types (PFTs).

y x PFT a b R2

logRN logLN Forb (27) −0.45 1.10*** 0.39
Woody (10) −1.42 1.65* 0.50
Eudicot (37) −0.59 1.17*** 0.32
Non-legume (32) −0.47 1.01* 0.17

logRP logLP Grass (6) −0.37 0.86* 0.75
Forb (27) −0.14 1.16*** 0.44
Woody (10) −0.35 1.25** 0.67
Monocot (6) −0.37 0.86* 0.75
Eudicot (37) −0.23 1.28*** 0.35
Non-legume (32) −0.34 1.48*** 0.35

log(RN:RP) log(LN:LP) Grass (6) −0.19 1.02* 0.68
Forb (27) −0.73 1.50*** 0.62
Woody (10) −0.63 1.39*** 0.78
Monocot (6) −0.19 1.02* 0.68
Eudicot (37) −0.70 1.46*** 0.67
Non-legume (32) −0.44 1.18*** 0.46

log(RC:RN) log(LC:LN) Forb (27) 0.22 1.11*** 0.40
Woody (10) −0.19 1.57* 0.52
Eudicot (37) 0.10 1.24*** 0.36
Non-legume (32) 0.39 1.06** 0.27

For abbreviations see Table 1. Symbols a and b represent the intercept and slope of 
linear regression, respectively, R2 represents the coefficient of determination. Only 
significant relationships are shown. Species numbers are included in 
parentheses.*Indicates significant linear regression at 0.05 confidence levels.
**Indicates significant linear regression at 0.01 confidence levels.
***Indicates significant linear regression at 0.001 confidence levels.

TABLE 3 | Relationships between SLA (x) and other leaf traits (y) for different 
functional types (PFTs).

y PFT a b R2

logLTD Forb (32) 1.73 −1.04*** 0.41
Woody (10) 1.08 −0.72* 0.43
Eudicot (42) 1.69 −1.02*** 0.47
Legume (13) 1.31 −0.82* 0.31
Non-legume 
(35)

1.92 −1.12*** 0.41

logLN Forb (32) −1.56 1.29** 0.20
Eudicot (42) −1.25 1.18* 0.10

logLP Forb (32) −1.86 0.97* 0.15
Eudicot (42) −1.69 0.91* 0.11
Non-legume 
(35)

−1.50 0.84** 0.19

log(LC:LN) Forb (32) 3.92 −1.20** 0.22
Eudicot (42) 3.63 −1.09** 0.17
Non-legume 
(35)

3.37 −0.94* 0.15

For abbreviations see Table 1. Symbols a and b represent the intercept and slope of 
linear regression, respectively, R2 represents the coefficient of determination. Only 
significant relationships are shown. Species numbers are included in 
parentheses.*Indicates significant linear regression at 0.05 confidence levels.
**Indicates significant linear regression at 0.01 confidence levels.
***Indicates significant linear regression at 0.001 confidence levels.
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Do Functional Types Summarize Differences 
in Traits and Trait Relationships?
Large uncertainties exist on the extent to which trait syndromes 
are able to differentiate among predefined PFTs (Cheng et  al., 
2016; Verheijen et  al., 2016). Our results support our third 
hypothesis, showing that PFTs summarized a significantamount 
of variability in plant traits. Our finding at the local scale is 
consistent with a recent global synthesis (Verheijen et  al., 2016), 
which demonstrated that PFTs of desert community were differently 
positioned in the multidimensional trait space. Similarly, Craine 
et  al. (2001) found that grasses and forbs in central Minnesota 
prairies had distinct trait syndromes. In contrast, Cheng et  al. 
(2016) showed that two key traits, SLA and SRL, were capable 
of classifying 55 species in the Inner Mongolia grassland into 
phylogenetically different groups (i.e., early diverged species vs. 
late diverged species), rather than into distinct PFTs.

Despite the potential of plant traits in discriminating among 
PFTs, both our results and previous studies reported large 
variations within PFTs and overlaps between PFTs in plant 
strategies and traits (Van Bodegom et al., 2012; Verheijen et al., 
2013). This indicates that a wide range of strategies may be used 
by plants within a single PFT to adapt to similar environment 
conditions, and that some plants may show traits similar to 
that of other PFTs (Craine et  al., 2001). For example, in the 
studied desert community some grasses such as Pennisetum 
centrasiaticum and Leymus secalinus were more like forbs in 
the whole-plant trait space, while some forbs such as Corispermum 
hyssopifolium and Bassia dasyphylla had leaves and roots traits 
that resemble grasses (Figure  2C). We  propose that one of 
the future research challenges in trait-based ecology is to 
understand what determines the potential of plant traits to 
functionally differentiate among PFTs, as this potential would 
allow global or regional vegetation mapping based on trait 
maps (Van Bodegom et  al., 2014; Verheijen et  al., 2016).

The ability of plant traits to differentiate among PFTs depends 
partly on how PFTs are classified. Leaf and roots traits in our 
study best discriminated between legumes and non-legumes. 
Another source of uncertainty in differentiating among PFTs is 
the selection of trait combinations (Verheijen et  al., 2016). 
Differentiations between growth forms (grasses, forbs, and woody 
species) or evolutionary relationships (monocots and eudicots) 
were mostly attributed to root rather than leaf traits. Despite 
the importance of root traits in differentiating among PFTs, 
variations in some root traits among PFTs are not in line with 
the presumed RES. For example, low RN and RP in grasses 
exhibiting high SRL (Supplementary Figures  3, 4), indicating 
that their roots have relatively low metabolic rates and depend 
mainly on cost-efficient root structure to acquire soil resources 
(Reich et  al., 2008; Freschet et  al., 2017). Future studies should 
examine which traits and classifications are most relevant to 
functional differences among PFTs. Incorporation of trait variations 
among the most relevant classification of PFTs should improve 
the modelling of plant and ecosystem functioning.

In line with our third hypothesis, PFTs also differed in 
bivariate relationships between leaf and fine-root traits. Most 
trait correlations did not hold in all PFTs, suggesting different 
nutrient absorption and utilization characteristics among PFTs. 

Therefore,  the influence of PFTs on trait associations and trade-
offs should be considered when estimating one trait from another. 
In addition, differences in bivariate trait relationships among PFTs 
could provide important insights into the mechanisms governing 
species effects on ecosystem processes (Tjoelker et  al., 2005).

CONCLUSIONS

Our analyses using 48 species in a desert shrubland community 
of northern China revealed that variations in leaf traits were 
partially in line with the predictions of the global LES. Variations 
in fine-root traits, however, provided little evidence for a RES. 
The coordination between leaves and fine roots was stronger 
for nutrient contents and their ratios than for physical traits 
(i.e., SLA and SRL). In addition, our results illustrate the 
potential of plant traits to functionally differentiate among 
PFTs, despite large overlaps among PFTs in plant strategies. 
We  conclude that fine-root functions in the studied desert 
community are probably coordinated with leaf functions with 
respect to nutrient allocation and use. Future studies at the 
regional scale should examine the extent to which our conclusions 
are applicable across all types of desert communities.
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