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Computational Tools

TRANSPOSABLE ELEMENTS TURN OUT TO BE FUNCTIONAL

Multiple changes that occur constantly in the plant genome allow an organism to develop
from a single-celled embryo to a multicellular organism. A significant part of these changes is
associated with the recombination activity of numerous classes of interspersed repeats. These
numerous families of interspersed repeats were often called “junk DNA” as first, they were not
associated with any vital protein-coding processes. Now, more and more clues indicate that such
repeated DNA might play major roles in the genome as functional “non-coding” DNA (Pennisi,
2012; Ariel and Manavella, 2021). Transposable elements (TEs), such as DNA transposons and
retrotransposons, are the main part of these interspersed repeats (Vitte et al., 2014). The diverse
families of retrotransposons are highly abundant genetic elements that are related to retroviruses
(Wicker et al., 2007). Although retrotransposons are not “true” mobile elements like DNA
transposons—from the comparison of their transposition mechanisms, retrotransposable elements
(RTEs) are notably constitutive of heterochromatin and form a variety of major chromosomal
structures such as centromeres (Bennetzen andWang, 2014) and represent themain intergenic part
of the plant genome (Kalendar et al., 2020). RTEmobility is ensured through an RNA intermediate,
allowing a Copy-And-Paste approach for their transposition. Their own-encoded RNA is reverse
transcribed using their own (or not) encoded enzymes, that will re-create from the single-strand
RNA matrix a double-strand DNA at a new location. This reverse transcription can be either
through extra-chromosomal DNA within a nucleocapsid (e.g., and implies RT/RNAseH + INT
enzymes for LTR retrotransposons) or directly at the insertion site (e.g., Target-Prime Reverse
transcription mechanism, with only the RT as a minimal set of enzymes for LINEs and SINEs;
Wicker et al., 2007). Such Copy-And-Paste mechanisms allow a quick invasion of naive genomes,
and is responsible for massive genome increase in a few periods of time (Piegu et al., 2006). Such
invasions belong to a few number of initial active copies, called Master copies; however, while
these copies must be transcriptionally active (i.e., able to produce RNA), they can be translationally
inactive and may rely on other copies for enzymatic activities (Sabot and Schulman, 2006). When
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recently inserted, neo-copies can be related phylogenetically
because of their sequence identity; subsequent mutations (point
mutation, recombination, and so on) will then occur and their
lineage can then be complex to recompose. Once inserted, each
copy has its own evolutionary history and some may acquire
biological role (or some part of the copy) and being excepted
by their host. Some RTEs can provide evolutionary advantages
to the host and were demonstrated to play a significant role in
plant adaptation (Song and Cao, 2017). If the fact that TEs can be
beneficial to the host is now accepted, recent advances in the field
has placed RTEs at the center of the current debate on eukaryotic
and notably plant evolution. To advance this important research
field, in the Research Topic “Mobile Elements and Plant Genome
Evolution, Comparative Analyses, and Computational Tools”
we focused on the efficiency of new genomic tools for the
discovery of TEs, and highlighted some recent studies on the
role of mobile elements in the evolution of the host genome, as
well as on genome-wide comparative analysis and profiling of
transposable elements.

MOBILE ELEMENT AND HOST GENOME

EVOLUTION

Different retrotransposon families, each with its own lineage and
structure, may have been active at distinct phases in the evolution
of a species. Retrotransposon sequences bear the promoters that
bind the nuclear factors of transcription initialization and initiate
RNA synthesis by polymerases II or III. In the article entitled
“Additional ORFs in Plant LTR-Retrotransposons” by Vicient
and Casacuberta, LTR-retrotransposons that carry additional
but not retrotransposon-specific open reading frames (aORF)
were discovered and analyzed. This discovery reinforces the
unique potential of LTR-retrotransposons as evolutionary tools,
thanks to their ability to provide new genetic variants within
a genome. The presence of antisense aORFs in characterized
LTR-retrotransposon families from various angiosperm species
indicates a putative role of these coding regions in the
transposition process. To clarify the functions of these aORFs,
further analysis of TE transcript splicing variants and thus access
to the TE functional diversity would be very valuable.

TRANSPOSABLE ELEMENTS AS DRIVERS

OF STRUCTURAL AND FUNCTIONAL

VARIATIONS

Thanks to their remarkable diversity in size, genomic
organization and transposition process, TEs are important
drivers of genome evolution and species diversity (Vicient
and Casacuberta, 2017). Keidar-Friedman et al. and Bariah
et al. reported the potential impact of miniature transposable
element insertions on the expression of genes in different
wheat species, with the articles entitled “The Evolutionary
Dynamics of a Novel Miniature Transposable Element in
the Wheat Genome” and “Where the Wild Things Are:
Transposable Elements as Drivers of Structural and Functional
Variations in the Wheat Genome.” TE-mediated genomic

rearrangements and insertions of mobile genetic elements
in gene-rich regions may act as mutagens and contribute to
genome alteration (Vicient and Casacuberta, 2017). TE-mediated
epigenetic modifications lead to phenotypic diversity, genetic
variation, and environmental stress tolerance. Potential TEs
also contribute to genome plasticity and have a dramatic
impact on the genetic diversity and evolution of the wheat
genome. Using transposon display (Kalendar et al., 2021) and
genome-wide profiling analysis of insertional polymorphisms
of transposable elements (Kalendar and Schulman, 2006), the
authors discovered large genomic rearrangement events, such
as deletions and introgressions in the wheat genome. High-
throughput bioinformatics with next-generation sequencing
(NGS) were key tools in these studies (Vondrak et al., 2020).
Structural rearrangements, gene duplications, and variation in
TE contents may have a large impact on the overall genomic
structure and may be responsible for phenotypic diversity
(Belyayev et al., 2010). In the article entitled “Genome Size
Variation and Comparative Genomics Reveal Intraspecific
Diversity in Brassica rapa,” Boutte et al. investigated structural
variants and changes in the repetitive fraction between two
accessions of Brassica rapa, and characterized genome-size
variation among a core collection, using comparative genomics
and cytogenetic approaches. Detection of large genomic
variants between different cultigroups of the same species
B. rapa highlighted the potential impact of the differential
insertion dynamics of repeated elements in the intraspecific
variability of genome size and chromosomal structure. This
study also justifies the recent and general effort to construct
pangenomes when access to the genomic diversity of a given
species is sought.

TEs contribute also to the driving force in the evolution of
epigenetic regulation and have a long-term impact on genomic
instability and evolution. Remnants of RTEs appear to be
overrepresented in transcription regulatory modules and other
regions conserved among distantly related species, which may
have implications for our understanding of their impact on
speciation. In the article entitled “Sequencing Multiple Cotton
Genomes Reveals Complex Structures and Lays Foundation
for Breeding,” Pan et al. revealed that post-polyploidization
of cotton genome instability resulted in numerous genomic
structural changes that were accompanied by the expansion of
LTR-retrotransposon families with an unbalanced contribution
from the constituent genomes of cotton, with TEs from the
D-genome being more active than TEs from the A-genome.
This study also demonstrated that TE transposition activity
coincided with cotton genome divergence, supporting the major
role of TEs in genome shaping and speciation. Finally, the
authors depicted the evolutionary past of cotton plants, which
were recursively affected by polyploidization, like all plant
lineages (Alix et al., 2017): a decaploidization contributed to
the formation of the genus Gossypium prior to the well-
known neo-tetraploidization that accompanied the formation
of the currently widely cultivated cotton species. The resulting
functional innovation comes directly from the diversity of
duplicated genes, as suggested by their uncommonly high
evolutionary rates.
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CHROMOSOME EVOLUTION WITH

TRANSPOSABLE ELEMENTS AND

SATELLITE DNAS

The centromere is the unique part of the chromosome
that combines a highly conserved function with a large
variability of its constituent DNA sequences. In the article
entitled “Functional Allium fistulosum centromeres comprise
arrays of a long satellite repeat, insertions of retrotransposons
and chloroplast DNA” Kirov et al. studied the functional
centromere organization in the large-sized chromosomes of
the species Allium fistulosum and A. cepa. They demonstrate
that long and high-copy repeats are associated with insertions
of retrotransposons and chloroplast DNA sequences, with
tandem repeats being also constitutive of the centromeres.
This article provides an insight into the major role of
repetitive DNA in centromere function. Among evolutionary
factors, repetitive sequences play multiple roles notably in sex
chromosome evolution. As such, the Spinacia genus serves as
an ideal model to investigate the evolutionary mechanisms
underlying the transition from homomorphic to heteromorphic
sex chromosomes. This was studied in the article entitled
“Genome-Wide Analysis of Transposable Elements and Satellite
DNAs in Spinacia Species to Shed Light on Their Roles in
Sex Chromosome Evolution” by Li et al. Major repetitive

sequence classes were identified in male and female genomes
of Spinacia species and their ancestral relative sugar beet in
order to decipher the evolutionary processes of sex chromosome
evolution using NGS data. The differences of repetitive DNA
sequences correlate with the formation of sex chromosomes and
satellite DNAs are highly accumulated at the sex determination
locus, demonstrating the role of repetitive DNA in sex
chromosome evolution.
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