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Understanding the genetic basis of agronomic traits is essential for wheat breeding

programs to develop new cultivars with enhanced grain yield under climate change

conditions. The use of high-throughput phenotyping (HTP) technologies for the

assessment of agronomic performance through drought-adaptive traits opens new

possibilities in plant breeding. HTP together with a genome-wide association study

(GWAS) mapping approach can be a useful method to dissect the genetic control

of complex traits in wheat to enhance grain yield under drought stress. This study

aimed to identify molecular markers associated with agronomic and remotely sensed

vegetation index (VI)-related traits under rainfed conditions in bread wheat and to use

an in silico candidate gene (CG) approach to search for upregulated CGs under abiotic

stress. The plant material consisted of 170 landraces and 184 modern cultivars from

the Mediterranean basin. The collection was phenotyped for agronomic and VI traits

derived from multispectral images over 3 and 2 years, respectively. The GWAS identified

2,579 marker-trait associations (MTAs). The quantitative trait loci (QTL) overview index

statistic detected 11 QTL hotspots involving more than one trait in at least 2 years. A CG

analysis detected 12 CGs upregulated under abiotic stress in six QTL hotspots and 46

downregulated CGs in 10 QTL hotspots. The current study highlights the utility of VI to

identify chromosome regions that contribute to yield and drought tolerance under rainfed

Mediterranean conditions.

Keywords: wheat, yield components, vegetation indices, marker trait association, candidate genes

INTRODUCTION

Wheat (Triticum aestivum L.) is the most common cultivated crop worldwide. It is grown on 216
million hectares of land, and its global production of 765 million tons of grain provides 19% of
calories and 21% of the protein in the human diet (Faostat 2019, http://www.fao.org/faostat). To
cover the expected food demand of a world population that will increase up to 60% by 2050,
wheat production needs to be increased by 1.7% per year (Leegood et al., 2010). Achieving this
objective will not be easy, considering the expected negative effects of climate change on wheat
yield, particularly in areas, such as the Mediterranean basin, where a rise in temperature by 3–5◦C
and a decrease in the annual rainfall by 25–30% have been predicted (Giorgi and Lionello, 2008).
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An increasing frequency and severity of terminal drought stress
will reduce grain weight, grain quality, and wheat yield (Araus
et al., 2002; Slafer et al., 2005; Kulkarni et al., 2017). Therefore,
there is a need to improve the identification of genotypes that
are able to maintain acceptable levels of yield and yield stability
in semiarid environments, which have been identified as the
most sensitive to the effects of climate change (Rufo et al.,
2021). The release of improved cultivars with enhanced drought
adaptation will be critical for breeding programs focusing
on wheat adaptability and stability under rainfed conditions
(Graziani et al., 2014; Bhatta et al., 2018).

The recent progress in high-throughput phenotyping (HTP)
based on the use of multispectral images acquired from
unmanned aerial vehicles (UAVs) has increasingly improved
the assessment of agronomic traits (Gracia-Romero et al., 2017;
Xie and Yang, 2020; Gomez-Candon et al., 2021; Rufo et al.,
2021) on large germplasm collections in a rapid, cost-effective,
and high spatial resolution way (Duan et al., 2017), as it
allows for the estimation of various plant traits using non-
intrusive and non-destructive technology (White et al., 2012;
Rufo et al., 2021). Remote sensing has attracted growing interest
in breeding programs since it can deliver detailed information
about biophysical crop traits in many situations to cope with the
current phenotyping bottleneck (Araus and Cairns, 2014; Juliana
et al., 2019; Bellvert et al., 2021). Some studies have demonstrated
the use of vegetation indices (VI) to indirectly detect wheat
plants under water stress due to a decrease in vegetative growth
(Condorelli et al., 2018). Others have demonstrated the use
of energy balance models to estimate the actual water status
(Gomez-Candon et al., 2021). When VIs are derived from
multispectral cameras, they are obtained from the combination
of wavelengths located at the visible, red-edge and near-infrared
(NIR) regions of the light spectrum (Kyratzis et al., 2017).
These wavelengths allow for discerning differences in vegetative
greenness, rate of senescence, photosynthetic efficiency, and stay-
green duration (Stenberg et al., 2004; Babar et al., 2006; Lopes and
Reynolds, 2012). It has been stated that anthesis (A) and milk
grain are the most suitable growth stages for the assessment of
agronomic traits on a plot-by-plot basis (Aparicio et al., 2002;
Royo et al., 2003). The use of HTP as a suitable and accurate
predictor of agronomic traits, such as phenology, grain filling
duration, biomass, and yield will provide unique opportunities
to increase the power of quantitative trait loci (QTL) discovery
by increasing the number of genotypes included in the analysis
(Juliana et al., 2019). This method will increase the frequency of
rare alleles of potential interest to improve wheat adaptation to
various environmental conditions.

The dissection of the genetic and molecular basis of complex
traits, such as yield and drought stress tolerance through
complementary approaches, such as QTL mapping and genome-
wide association studies (GWAS) or association mapping (AM)
is essential in breeding programs. GWAS is based on linkage
disequilibrium (LD; Flint-Garcia et al., 2003), and it is a
powerful approach that provides high mapping resolution due
to the higher recombination events analyzed in comparison
with biparental mapping (Soriano et al., 2017; Qaseem et al.,
2019). The AM has been used to identify genomic regions

related to drought and heat tolerance in durum and bread wheat
(Maccaferri et al., 2016; Valluru et al., 2017). Several studies
have been conducted to investigate the genetic basis of grain
yield and yield-related traits in bread wheat under water-stress
conditions using AM (Edae et al., 2014; Gizaw et al., 2018;
Qaseem et al., 2019; Mérida-García et al., 2020). The release of
genome sequences for emmer wheat (Avni et al., 2017), bread
wheat (IWGSC, 2018), and durumwheat (Maccaferri et al., 2019)
and the availability of open databases of RNA sequencing (RNA-
seq) experiments (Ramírez-González et al., 2018) have made it
possible to use a candidate gene (CG) approach to find targets
within QTL intervals without performing new functional studies.

The aim of the current study is to identify molecular markers
linked to important agronomic traits, vegetation indices (VIs),
and plant features related to drought resistance assessed by HTP,
to define the most important QTL hotspots for such traits and
to perform in silico detection of the underlying CG in those
genomic regions.

MATERIALS AND METHODS

Plant Material and Field Trials
A germplasm collection of 354 bread wheat (Triticum aestivum

L.) genotypes from the MED6WHEAT IRTA panel described
by Rufo et al. (2019) was used in this study, of which 170
corresponded to landraces and 184 to modern varieties collected
and adapted to 24 and 19 Mediterranean countries, respectively
(Supplementary Table 1). The panel is structured into six genetic
subpopulations (SPs) and 38 genotypes that remained admixed
(Rufo et al., 2019). SP1: west Mediterranean landraces (43
accessions); SP2: north Mediterranean landraces (59 accessions);
SP3: east Mediterranean landraces (42 accessions); SP4: France–
Italy modern germplasm (82 accessions); SP5: Balkan modern
varieties (24 accessions); and SP6: CIMMYT-ICARDA-derived
varieties (62 accessions).

The field trials were conducted at Gimenells, Lleida (41◦38’
N and 0◦22’ E, 260m.a.s.l), northeastern Spain, under rainfed
conditions for three consecutive seasons: 2016, 2017, and 2018.
Average minimum and maximum monthly temperatures and
rainfall were calculated from daily data recorded for a weather
station close to the experimental fields. Climatic data (rainfall
and temperature) for the last 15 years corresponding to the
weather station in Gimenells, Lleida (Spain) were downloaded
from https://ruralcat.gencat.cat/web/guest/agrometeo.estacions.
Experiments followed a non-replicated augmented design with
two replicated checks (cv. “Anza” and “Soissons”) at a ratio of
1:4 between checks and tested genotypes and in 3.6 m2 plots
with eight rows spaced 0.15m apart. The sowing density was
adjusted to 250 germinable seeds m−2, and the sowing dates were
December 2, 2015; November 21, 2016; and November 15, 2017,
whereas harvesting dates were July 7, 2016; July 5, 2017; and July
5, 2018. Weeds and diseases were controlled following standard
practices at the site.

Agronomic Data
The following traits were measured across the 3 years (2016,
2017, and 2018) according to the protocol described by Rufo
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et al. (2021): grain yield (GY, t ha−1), number of spikes per
m2 (NSm2), number of grains per m2 (NGm2), thousand kernel
weight (TKW, g), aboveground biomass at physiological maturity
(biomass, t DM ha−1), harvest index (HI), plant height (PH,
cm) and early vigor (estimated as green area, GA). The HI was
calculated as the ratio between grain and plant weights in a 1-
m long row sample. The PH was measured at maturity for three
main stems per plot and was measured from the soil to the
top of the spike, excluding the awns. Early vigor was calculated
by integrating the green area (GA) values obtained by ground-
based red, green, and blue (RGB) images taken every 14 days
as described by Casadesús and Villegas (2014) from emergence
until the detection of the first node. Finally, days from sowing to
anthesis (A) (DSA, GS65) and grain filling duration (GFD, GS87)
were measured on each plot based on the growth stage (GS) scale
of Zadoks et al. (1974). The GSs were achieved when at least 50%
of the plants in each plot reached the stage.

Image Acquisition
Image acquisition was conducted with a multispectral camera
(Parrot Sequoia) (Parrot, Paris, France) installed onboard an
UAV (DJI S800 EVO hexacopter, Nanshan, China). Images were
acquired during 2 years, on April 21, 2017 and May 19, 2017
and on April 17, 2018 and May 18, 2018. Flights were always
conducted at ∼12:00 solar time under sunny conditions and
with a wind speed below 12 m/s. The UAV flew at a height of
40m above ground level (agl) and with a flight plan of 80/60
frontal and side overlap. The multispectral camera has four
spectral bands located at wavelengths of 550 ± 40 nm (green),
660 ± 40 nm (red), 735 ± 10 nm (red edge), and 790 ± 40 (near
infrared). The camera yields a resolution of 1,280 × 960 pixels.
All images were radiometrically corrected through an external
incident light sensor that measured the irradiance levels of light
at the same bands as the sensor, as well as with in situ spectral
measurements in ground calibration targets (black, white, soil,
and grass). Spectral measurements were conducted with a Jaz
spectrometer (Ocean Optics, Inc., Dunedin, FL, USA). Jaz has
a wavelength response from 200 to 1,100 nm and an optical
resolution of 0.3–10.0 nm. The calibration of the spectrometer
measurements was taken using a reference panel (white color
SpectralonTM). Geometrical correction was conducted by using
ground control points (GCPs) and measuring the position
in each with a handheld global positioning system (GPS)
(Geo7x, Trimble GeoExplorer series, Sunnyvale, CA, USA). All
images were mosaicked using AgisoftPhotoscan Professional
version 1.6.2 (Agisoft LLC., St. Petersburg, Russia) software and
geometrically and radiometrically corrected with QGIS 3.2.0
(USA, http://www.qgis.org). Then, six spectral vegetation indices
(VIs) were carefully selected based on their significance in
relation to certain plant physiology features in wheat (Table 1).
In addition, the leaf area index (LAI) was measured using a
portable ceptometer (AccuPAR model LP-80, decagon devices
Inc., Pullman, WA, USA) from 13:00 to 15:00 (local time) on
each image acquisition date in 64 different plots of each set of
landrace and modern set. Then, the LAI was estimated for each
plot in the whole collection through the MTVI2, following the
methodology described by Rufo et al. (2021) and Gomez-Candon

et al. (2021). All VIs were assessed in 2017 and 2018 through UAV
multispectral images at two growth stages: (1) when all the plots
reached anthesis (A) (VI_A) and (2) postanthesis (PA) at the milk
and dough developmental stages (VI_PA).

Genotyping
The panel was genotyped with 13,177 SNP markers using the
Illumina Infinium 15K Wheat SNP Array at Trait Genetics
GmbH (Gatersleben, Germany), and 11,196 markers were
ordered according to the SNP map developed by Wang et al.
(2014). To reduce the risk of errors in further analyses, markers
and accessions were analyzed for the presence of duplicated
patterns and missing values. After excluding markers with more
than 25% missing values and with a minor allele frequency
(MAF) lower than 5%, a total of 10,090 SNPs were used for
mapping purposes.

Statistical Analyses
Phenotypic data were fitted to a linear mixed model considering
the check cultivars as the fixed effect, and the row and column
number and accessions as random in the model for each
environment following the MIXED procedure of the SAS-STAT
statistical package (SAS Institute Inc., Cary, NC, USA).

y = xβ + zγ + ε

where β is an unknown vector of fixed-effects parameters with
known designmatrix x, γ is an unknown vector of random-effects
parameters with known design matrix z, and ε is an unknown
random error vector whose elements are no longer required to be
independent and homogeneous. Restricted maximum likelihood
(REML) was used to estimate the variance components and
to produce the best linear unbiased predictors (BLUPs) for
agronomic traits and VIs (Supplementary Table 2).

To assess the differences between years and genetic
subpopulations, one-way ANOVAs were conducted for the
whole collection. The broad sensed heritability (H2) was
estimated following Knapp et al. (1985).

H2
=

σ 2
G

σ 2
G + σ 2

E + σ 2
GE

where σ 2
G is the genotypic variance, σ 2

E is the variance due to the
environmental (year) effect, and σ 2

GE is the is the variance for the
interaction of genotype with environment.

Least squares means were calculated and compared using
the Tukey’s HSD test. Pearson’s correlation coefficients were
calculated among the evaluated traits. Mean phenotypic values
across the 3 years were used to perform a hierarchical cluster
analysis by the Ward method (Ward, 1963). Analyses of
variance and mean differences were carried out using the JMP
v14.2.0 statistical package (SAS Institute, Inc., Cary, NC, USA),
considering a significance level of alpha= 0.05.

Marker Trait Associations
A GWAS with 10,090 SNP markers was conducted on the
whole germplasm collection using Tassel 5.0 software (Bradbury
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TABLE 1 | Spectral vegetation indices assessed in this study.

Vegetation index Band center (nm) Spectral band References

Structural indices

Normalized Difference Vegetation Index (NDVI) 790, 660 NIR, Red Rouse et al., 1974

Renormalized Difference Vegetation Index (RDVI) 790, 660 NIR, Red Roujean and Breon, 1995

Improved Soil Adjusted Vegetation Index (MSAVI) 790, 660 NIR, Red Qi et al., 1994

Modified Triangular Vegetation Index (MTVI2) 790, 660, 550 NIR, Red, Green Haboudane et al., 2004

Green Normalized Difference Vegetation Index (GNDVI) 790, 550 NIR, Green Gitelson et al., 1996

Chlorophyll indices

Transformed CARI/Optimized Soil adjusted Vegetation Index (TCARI/OSAVI) 790, 735, 660, 550 NIR, Red Edge, Red, Green Haboudane et al., 2002

et al., 2007) for all agronomic and VI traits per year and
across the three growing seasons. A mixed linear model (MLM)
was fitted using a principal component analysis (PCA) matrix
with six principal components as the fixed effect and a kinship
(k) matrix as the random effect (PCA + K model) at the
optimum compression level based on the groups defined by the
kinshipmatrix. Compression levels range from “no compression”
(compression = 1) when each genotype belongs to its own
group, to “maximum compression” (compression = n) when all
genotypes belong to the same group. In addition, the (A) date
was incorporated as a cofactor in the analysis, as reported in
previous studies (Crowell et al., 2016; Condorelli et al., 2018;
Soriano et al., 2021). Manhattan plots were generated using the
R script, CMplot (https://github.com/YinLiLin/CMplot). A false
discovery rate (FDR) threshold (Benjamini and Hochberg, 1995)
was established at –log10 p > 4.8 (p < 0.05), using 3,696 markers
according to the results of the linkage disequilibrium (LD) decay
(Rufo et al., 2019). Besides, a frequently used threshold was
established at –log10 P> 3, as previously reported in the literature
(Wang et al., 2014, 2020; Condorelli et al., 2018; Mangini et al.,
2018; Sukumaran et al., 2018). Confidence intervals (CIs) for
MTAs were estimated for each chromosome according to the LD
decay reported by Rufo et al. (2019) using the formula reported
by Chardon et al. (2004).

S2i =

(

CI

3.92

)2

where CI corresponded with the LD decay for each chromosome.
To simplify the MTA information, the associations were grouped
into QTL hotspots. To define a hotspot, the density of MTAs
along the chromosome was calculated as the QTL overview index
(Chardon et al., 2004) for each cM of the genetic map reported by
Wang et al. (2014).

U =

nbQTL
nbE

Total length of map

where nbQTL is the number of QTLs and nbE is the total number
of experiments.

Gene Annotation and in silico Gene
Expression Analysis
Gene annotation for the target region of QTL hotspots was
performed using the gene models for high-confidence genes
reported for the wheat genome sequence (IWGSC, 2018),
available at https://wheat-urgi.versailles.inra.fr/Seq-Repository/
Annotations. Physical distances were estimated using the genetic
distances from the markers flanking the CIs of each QTL hotspot.

In silico expression analysis and the identification of
upregulated gene models were carried out using the RNA-seq
data available at http://www.wheat-expression.com/ (Ramírez-
González et al., 2018) for the following studies: (1) drought
and heat stress time-course in seedlings, (2) spikes with water
stress, and (3) seedlings with polyethylene glycol (PEG) to
simulate drought.

Gene Ontology (GO) data were retrieved from the high-
confidence gene annotation at https://wheat-urgi.versailles.inra.
fr/Seq-Repository/Annotations.

RESULTS

Environmental Conditions
The experimental site has a typical Mediterranean climate
characterized by an irregular pattern of yearly rainfall
distribution, low temperatures in winter that rise sharply in
spring, and high temperatures continuing until the end of the
crop cycle. Figure 1 represents a graphical summary of the
rainfall and maximum and minimum temperatures during the
crop cycle across the 3 years of field trials and the average of the
last 15 years. Although precipitation values were representative
of long-term data from the region for each growing season,
the year 2017 was considered exceptionally dry due to the low
rainfall received. The year 2018 was characterized as the wettest
from December (sowing) to June (physiological maturity) with
269mm of rainfall, whereas the first and second growing seasons
with 207 and 105mm, respectively, of rainfall were rather dry,
suffering severe water scarcity during the grain filling period
with only 5mm of precipitation.

Phenotypic Analyses
A summary of the genetic variation is shown in Table 2,
Supplementary Table 3 for agronomic and vegetation indices
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FIGURE 1 | Monthly rainfall (mm) and minimum (Tmin) and maximum (Tmax) temperatures during the growth cycle of each growing season.

(VIs)-related traits. Agronomic traits showed coefficients of
variation (CV) ranging from 36.6% for grain yield to 6.3% for
days to anthesis (A). VIs showed higher CVs during postanthesis
(PA) with values at A ranging from 17.4% for leaf area
index (LAI) to 2.1% for normalized difference vegetation index
(NDVI), and PA ranging from 54.0% for LAI to 15.3% for green
normalized difference vegetation index (GNDVI). Agronomic
traits showed higher values for heritability than VI for most of
the traits. For the agronomic traits, heritability ranged from 0.9
for yield to 0.1 for green area (GA), whereas for VIs, heritability
ranged between 0.41 and 0.05 for TCARI/OSAVI and RDVI,
respectively at A, and between 0.46 and 0.03 for TCARI/OSAVI
and MTVI, 2 respectively during PA.

The results of ANOVAs for the agronomic traits measured
during the three growing seasons are shown in Table 3. The
percentage of variability explained by year was the highest for
GA (81.6%) and GS65 (67.9%), while the sum of squares of
subpopulation (SP) was the highest for yield (76.5%), NGm2

(65.0%), harvest index (HI) (62.6%), plant height (PH) (61.4%),
and GS87 (59.0%). Finally, the highest percentage explained by
the interaction between year and SP was found fo rbiomass,
NSm2 and thousand kernel weight (TKW), reaching 86.2,
84.9, and 71.0%, respectively. Significant differences were found
between SPs for all traits. The year and the year× SP interactions
were also significant for all traits, except for HI.

Table 4 shows the results of the ANOVA for the VIs and LAI
estimated through theMTVI2 at the A and PA stages during 2017
and 2018. Differences between SPs and between years, as well as
the year× SP interaction, were statistically significant for all traits
in both years. The sum of squares of the year accounted for 1.3%
(NDVI) to 92.9% (RDVI) of the variation at A, whereas at PA, the

percentages ranged from 10.0% (TCARI/OSAVI) to 92.3% (LAI).
The percentages of the total variation explained by SP ranged
from 2.3% (RDVI) to 11.0% (TCARI/OSAVI) at A, while they
ranged from 1.0% (MTVI2) to 11.2% (TCARI/OSAVI) PA. Year
was the most important criterion for explaining the variations
in LAI, RDVI, MSAVI, MTVI2, and GNDVI in the two growth
stages. SP explained the least percent of variation at both growth
stages for all traits. The year x SP interaction accounted for
4.8% (RDVI) to 89.9% (NDVI) of the model variance at A, with
the highest values for NDVI and TCARI/OSAVI. The variance
explained by the year × SP interaction at PA ranged from 6.6%
(LAI) to 78.8% (TCARI/OSAVI).

The mean values of phenotypic traits for each year and SP
are shown in Table 5. Yearly means showed that the highest
yield was in 2016, a year in which the yield components NSm2,
NGm2, and TKW reached intermediate values between those
obtained in the two subsequent years. The shortest duration
of the preanthesis period and the longest grain filling duration
(GFD) were also observed in 2016. On the other hand, the lowest
yield, NSm2 and NGm2, the heaviest grains and the shortest GFD
were observed in 2017. The GA reached the highest value in 2016,
which was characterized as the wettest year during the period
from January–March, i.e., the stem elongation stage, when the
trait was measured. In contrast, 2017 was the driest year in the
same period, which showed the lowest value for GA. In 2017, PH
showed maximum values but biomass showed the lowest values
at maturity. Finally, in 2018, biomass, the number of spikes, and
grains per unit area showed high values, and the cycle until A was
the longest.

Significant differences in agronomic traits between SPs
highlighted the division of the whole set into landraces and
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TABLE 2 | Summary statistics of the agronomic traits, leaf area index (LAI), and VIs.

Yield HI Biomass NSm2 NGm2 TKW PH GA GS65 GFD

Min 0.5 0.1 4.2 200 1,122 12.7 70.2 16.2 132 18

Max 14.4 0.9 33.9 973.3 51,548 58.8 163.7 56.6 180 71

Mean 7.7 0.4 17.2 541.9 20,199 38.7 105.2 35.8 158.2 34

SD 2.8 0.1 3.9 115.4 7,087 6.6 18 9 10 5.3

CV (%) 36.6 22.2 22.7 21.3 35.1 17.1 17.1 25 6.3 15.7

h2 0.9 0.8 0.4 0.5 0.8 0.6 0.8 0.1 0.3 0.5

LAI NDVI RDVI MSAVI MTVI2 TCARI/OSAVI GNDVI

Anthesis

Min 0.1 0.8 0.55 0.61 0.67 −7.26 0.77

Max 7.67 1 0.87 0.95 1 0.22 0.94

Mean 5.53 0.94 0.69 0.8 0.88 −0.23 0.87

SD 0.96 0.02 0.09 0.11 0.12 0.02 0.03

CV (%) 17.4 2.1 13 13.7 13.6 8.7 3.4

h2 0.18 0.4 0.05 0.05 0.13 0.41 0.13

Postanthesis

Min 0.72 0.48 0.29 0.28 0.24 −3.89 0.5

Max 6.62 0.95 0.76 0.86 0.86 0.44 0.92

Mean 3.26 0.77 0.54 0.61 0.6 −0.03 0.72

SD 1.76 0.13 0.13 0.18 0.21 0.01 0.11

CV (%) 54 16.9 24.1 29.5 35 40 15.3

h2 0.04 0.08 0.06 0.04 0.03 0.46 0.09

SD, standard deviation; CV, coefficient of variability; h2, heritability; GS65, number of days from sowing to anthesis (A); GFD, grain filling duration; HI, harvest index; NSm2, number of

spikes per square meter; NGm2, number of grains per square meter; TKW, thousand kernel weight; PH, plant height; GA, green area.

TABLE 3 | Analysis of variance for grain yield, harvest index (HI), biomass, number of spikes per square meter (NSm2), number of grains per square meter (NGm2),

thousand kernel weight (TKW), plant height (PH), green area (GA), number of days from sowing to anthesis (A) (GS65), and grain filling duration (GFD, GS87) for the three

years of field trials.

SS (%) Yield HI Biomass NSm2 NGm2 TKW PH GA GS65 GFD

Year 1.3** 0.1 5.2** 8.0** 6.5** 10.5** 2.6** 81.6** 67.9** 8.7**

SP 76.5** 62.6** 8.6** 7.1** 65.0** 18.5** 61.4** 2.2** 30.4** 59.0**

Year × SP 22.2** 37.3 86.2** 84.9* 28.5** 71.0* 36.0** 16.2** 1.7** 32.3**

SS, sum of squares; SP, subpopulation.

*p < 0.01; **p < 0.001.

modern cultivars (Table 5). Modern SPs (SP4, SP5, and SP6)
showed higher values of grain yield and yield components, HI,
and biomass than landrace SPs. The highest value for grain yield
was observed for SP4, in agreement with its higher number of
spikes and grains per unit area. The SP4 showed the lowest grain
weight among modern SPs but was not significantly different
from the heaviest grains observed in landraces (SP1 and SP2).
As expected, landraces were taller than modern cultivars. The
SP3 showed the lowest value for GA. For phenology, SP2 took
the longest time to reach the A stage, whereas SP6 took the
shortest time. In contrast, the GFD was the shortest for SP2
and the longest for SP6. Modern SPs showed a longer GFD
than landraces.

The mean values of the VIs and LAI (estimated by MTVI2)
at A and at PA for 2017 and 2018 and the different SPs are

shown in Table 6. All traits had higher values at A, except
for TCARI/OSAVI. For all traits, differences between years
were statistically significant at the two stages. The LAI, RDVI,
and MSAVI showed the highest mean values in 2018. The
mean values for TCARI/OSAVI were the highest in 2017.
The year 2017 showed the highest values of MTVI2 and
GNDVI at A, but these VIs and NDVI were minimal at PA
the same year. Due to saturation of the reflectance, NDVI
became insensitive at high LAI values (LAI > 3) in both years
at A. LAI, NDVI, RDVI, MSAVI, and MTVI2 significantly
differed between landrace and modern cultivar SPs at A, with
higher values being recorded in the landraces. However, no
pattern was found for VI traits among SPs PA. SP2 and SP4
had higher mean values for all traits PA, with the exception
of TCARI/OSAVI.
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TABLE 4 | Analyses of variance for the LAI estimated through MTVI2 and all the VIs calculated at the anthesis (A) and postanthesis (PA) stages in 2017 and 2018.

SS (%) LAI NDVI RDVI MSAVI MTVI2 TCARI/OSAVI GNDVI

Anthesis

Year 62.6** 1.3* 92.9** 88.6** 71.1** 15.6** 67.7**

SP 8.9** 8.8** 2.3** 2.7** 8.9** 11.0** 8.0**

Year × SP 28.5** 89.9** 4.8** 8.7** 20.0** 73.4** 24.3**

Postanthesis

Year 92.3** 85.3** 88.2** 90.8** 91.8** 10.0** 83.4**

SP 1.1** 2.9** 2.2** 1.4** 1.0** 11.2** 4.8**

Year × SP 6.6** 11.8** 9.6** 7.8** 7.2** 78.8** 11.8**

SS, % of the sum of squares; SP, subpopulation.

*p < 0.01; **p < 0.001.

TABLE 5 | Mean values of grain yield, harvest index (HI), biomass, number of spikes per unit area (NSm2), number of grains per unit area (NGm2), thousand kernel weight

(TKW), plant height (PH), green area (GA), number of days from sowing to anthesis (A) (GS65), and grain filling duration (GFD, GS87) in a set of 170 landraces and 184

modern cultivars of bread wheat for each growing season and genetic subpopulation.

Yield (t/ha) HI Biomass (t/ha) NSm2 NGm2 TKW (g) PH (cm) GS65 GA GFD

2016 8.0a 0.35a 17.5a 532b 20836a 38.6b 105.8b 150c 46.7a 36a

2017 7.4c 0.36a 16.1b 509b 17877b 41.3a 108.4a 155b 26.6c 32c

2018 7.9b 0.36a 18.1a 583a 21966a 36.2c 101.6c 169a 35.8b 34b

SP1 5.2e 0.29b 16.6c 556ab 14065de 38.2bc 120.4a 159b 37.5a 33 c

SP2 5.9d 0.30b 16.7c 534b 15354d 39.2b 121.9a 163a 35.9bc 31c

SP3 4.4f 0.29b 14.9d 569ab 13613e 32.6d 114.9b 159b 33.5d 33c

SP4 10.8a 0.44a 18.5a 568a 28045a 39.3b 87.1d 158b 35.7c 35b

SP5 9.2b 0.43a 18.0abc 475c 21872b 43.2a 92.1cd 160b 37.9a 35b

SP6 9.7b 0.42a 18.0ab 493c 23877b 42.0a 95.7c 152c 38.1a 37a

AD 6.7c 0.31b 17.1bc 550ab 18414c 36.9c 111.4b 157b 36.8ab 35b

Data for each subpopulation represent the mean values across the 3 years. Different letters at each growing season or subpopulation indicate significant differences at p ≤ 0.01 using

Tukey’s honest significant difference test.

SP1, West Mediterranean landraces; SP2, North Mediterranean landraces; SP3, East Mediterranean landraces; SP$, Modern cultivars from France and Italy; SP5, Modern cultivars

from Balkans; SP6, Modern cultivars from CIMMYT and ICARDA; AD, admixed genotypes.

Correlation coefficients between agronomic traits, VIs, and
LAI were calculated (Figure 2), showing highly significant
coefficients among agronomic traits as yield with NGm2 (r =

0.90) and PH (r = −0.71). Interestingly, when analyzed VIs-
related traits against agronomic traits, highly significant
coefficients (r > 0.61) were found between GS65 and
RDVI, MTVI2, GNDVI, LAI, NDVI_PA, and MSAVI_PA,
and between GA and MSAVI, GNDVI, LAI, MTVI2, and
RDVI_A. In addition, NGm2 and PH showed a moderate
significant correlation with GNDVI_PA and NDVI_A,
respectively (r = 0.46).

To quantify the relation between trait variation and
population structure, multiple linear regressions were carried out
between population structure (qi) coefficients (Rufo et al., 2019)
(Table 7) and phenotypic performance for landrace and modern
sets separately and both sets were combined. The landrace
R2 values ranged from 0.10 for MSAVI_A to 0.39 for GA,
while the modern R2 values ranged from 0.10 for MTVI2_A
to 0.64 for GNDVI_A. When the regressions were conducted
on the combined data set, the R2 values ranged from 0.11 for

biomass to 0.60 for NGm2. The traits yield and GNDVI_PA
showed high R2 values (>0.35) for each set separately and
for the combined set. The highest R2 values were found in
modern set regressions for GNDVI_A, GNDVI_PA, NDVI_PA,
and GS65. Among the components of yield, thousand kernel
weight (TKW) showed the highest R2 values in landrace set
regressions, while in modern set regressions, NGm2 showed the
highest R2 values.

The bidimensional clustering shown in Figure 3 represents
the relationships among accessions and their mean phenotypic
performances (3 years for agronomic traits and 2 years for VIs).
The horizontal cluster grouped accessions according to their
phenotypic similarity based on the traits in the vertical cluster.
Horizontal clustering separated two main clusters: Cluster A was
composed only of landraces and Cluster B included modern
cultivars and two landraces: cv “TRI 11548” from Iraq and cv
“1170” from Turkey. Cluster A was characterized by lower yield
and yield components, except NSm2, lower biomass, a shorter
GFD but longer GS65, and taller plants than Cluster B, but
Cluster A had higher values for VIs at A except for GNDVI_A.

Frontiers in Plant Science | www.frontiersin.org 7 September 2021 | Volume 12 | Article 735192

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Rufo et al. QTL Hotspots Rainfed Wheat

TABLE 6 | Mean values of the LAI estimated by MTVI2 and all the VIs at anthesis (A) and postanthesis (PA) stages in 2017 and 2018 as well as for each genetic

subpopulation and the group of admixed genotypes from a set of 170 landraces and 184 modern bread wheat cultivars.

LAI NDVI RDVI MSAVI MTVI2 TCARI/OSAVI GNDVI

Anthesis

2017 4.77b 0.95a 0.59b 0.70b 0.78a 0.03a 0.9a

2018 6.29a 0.94a 0.78a 0.91a 0.98b −0.51b 0.84b

SP1 5.88a 0.96a 0.71a 0.83a 0.92a −0.08a 0.87b

SP2 5.86a 0.96a 0.71a 0.83ab 0.92ab −0.08a 0.87b

SP3 5.75a 0.95ab 0.69b 0.81c 0.91ab −0.02a 0.87b

SP4 5.27b 0.94bc 0.67c 0.78d 0.85c −0.63b 0.89a

SP5 5.24b 0.93c 0.67c 0.78d 0.84c −0.21a 0.87bc

SP6 5.20b 0.94c 0.67c 0.78d 0.84c −0.21a 0.86c

AD 5.70a 0.95a 0.69b 0.81bc 0.90b −0.09a 0.87b

Postanthesis

2017 1.56b 0.65b 0.42b 0.43b 0.39b 0.07a 0.62b

2018 4.95a 0.89a 0.67a 0.79a 0.8a −0.13b 0.82a

SP1 3.21bc 0.76b 0.56ab 0.62ab 0.61ab 0.06ab 0.70cd

SP2 3.32b 0.80a 0.57a 0.64a 0.64a −0.08c 0.73b

SP3 2.91d 0.74cd 0.54c 0.60b 0.59bc 0.14a 0.68d

SP4 3.50a 0.79a 0.55bc 0.62b 0.60b −0.20d 0.75a

SP5 3.36ab 0.77bc 0.53c 0.60b 0.59bc −0.01abc 0.73b

SP6 3.13c 0.74d 0.51d 0.57c 0.57c 0.03abc 0.70c

AD 3.20bc 0.76bc 0.54c 0.60b 0.59b −0.01bc 0.71c

Years followed by different letters indicate significant differences at p ≤ 0.01 using Tukey’s honest significant difference test.

SP1, West Mediterranean landraces; SP2, North Mediterranean landraces; SP3, East Mediterranean landraces; SP4, Modern cultivars from France and Italy; SP5, Modern cultivars

from Balkans; SP6, Modern cultivars from CIMMYT and ICARDA; AD, admixed.

Each of these two clusters was separated into two subclusters,
A1 and A2 for landraces and B1 and B2 for modern
cultivars. Subcluster A1 was represented mainly by south
Mediterranean landraces (77%), including those from the east
and west regions, whereas Subcluster A2 contained most of
the north Mediterranean landraces (62%). East Mediterranean
landraces were in a single cluster within A1, whereas west
Mediterranean landraces were distributed in other clusters within
A1. Differences among subclusters, A1 and A2 were due to
higher NSm2 and TCARIOSAVI_PA in A1 and longer cycles
until anthesis in A2, along with higher values for GA and
VIs at PA. Regarding modern cultivars, Subcluster B1 was
composed mainly of genotypes carrying the CIMMYT/ICARDA
genetic background (SP6) (62%) and included the two landraces
allocated to Cluster B mentioned above. Moreover, Subcluster
B2 included 91% of the cultivars from SP4 (French and Italian
modern cultivars). Most of the modern Balkan cultivars (SP5)
were grouped in Subcluster B1. Subcluster B1 was characterized
by higher TCARIOSAVI_PA and GA, whereas Subcluster B2 was
characterized by higher NSm2, GNDVI_A and the rest of the VIs
assessed in PA.

Marker-Trait Associations
A summary of the results of the genome-wide association
study (GWAS) for all traits per year and for the mean values
across years is reported in Figure 4. Due to the low number
of marker trait associations (MTAs) showing significance above

a false discovery rate (FDR) threshold at –log10 P > 4.8, a
common threshold of –log10 P > 3, as reported in the literature
(Wang et al., 2017, 2020; Condorelli et al., 2018; Mangini et al.,
2018; Sukumaran et al., 2018), reported a total of 2,579 MTAs
(Supplementary Table 4). Manhattan plots for each of the traits
and year are represented in Supplementary Figure 1. The year
2017 presented the highest number of MTAs, 74% of the total
number of MTAs, whereas 2018 and the mean across years
presented the lowest number of MTAs, 3 and 4%, respectively
(Figure 4A). During 2016, only MTAs related to agronomic
traits were reported, accounting for 19% of the total MTAs
across years, as no multispectral images were captured during
that year.

The number of MTAs per chromosome for all years and for
the mean values across years ranged from 9 on chromosome 4D
to 354 on chromosome 1B (Figure 4B). Genome B accounted for
48% of the total MTAs, followed by genomes A and D with 41
and 11%, respectively. The percentage ofMTAswith a phenotypic
variance explained (PVE) lower than 0.10 was 97.5%, which
agreed with the highly quantitative nature of the analyzed traits
(Figure 4C).

A total of 815MTAs were identified for seven agronomic traits
(Supplementary Table 5). Yield showed the highest number of
MTAs (368), most of them (268) from 2016, whereas only one
association was found for NSm2 with the mean across years.
MTAs for TKWwere foundmainly during 2016 (96%), and those
for PH were found mainly during 2017 (68%).
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FIGURE 2 | Pearson correlations between agronomic traits, vegetation indices (VIs), and LAI+. GS65, number of days from sowing to A. GFD, grain filling duration;

HI, harvest index; NSm2, number of spikes per square meter; NGm2, number of grains per square meter; TKW, thousand kernel weight; LAI, leaf area index; PH,

plant height; GA, green area; A, anthesis; PA, postanthesis. Significant correlations at P < 0.0001 were established for r > 0.45 and r < −0.45.

A total of 1,764 MTAs over –log10 P > 3 were identified
for 15 VI traits (Supplementary Table 5). Among them, 1,718
were detected a tor before A of green area (GA), and only 46
MTAs were identified at PA. Ninety-six percent of theMTAs were
identified during 2017, which was the year characterized by the
lowest rainfall. TCARIOSAVI_A was the trait with the highest
number of MTAs (1,243), followed by MTVI2_A with 350.

To identify the genomic regions mostly involved in trait
variation, QTL hotspots were identified using the QTL overview
index defined by Chardon et al. (2004) for each cM of the genetic
map reported by Wang et al. (2014). Confidence intervals (CIs)
were calculated using the linkage disequilibrium (LD) decay for
each chromosome reported by Rufo et al. (2019).

A total of 209 peaks were identified using the mean of the
overview index across the 21 chromosomes (0.7) as the threshold,
whereas using a high threshold (3.5), a total of 41 peaks were
detected (Figure 5). These 41 peaks were reduced to 28 QTL
hotspots (Supplementary Table 6), 12 in genomes A and B and 4
in genome D. To simplify the search for candidate genes (CGs),
quantitative trait loci (QTL) hotspots were excluded when (1) the
centromere was included within the hotspot or the CI was higher
than 35Mb and (2) MTAs corresponded only to 1 year of field
experiments. Eleven QTL hotspots grouping 295MTAs remained
for subsequent analysis (Table 8). As shown in Figure 5, hotspots
defined by the QTL overview index correspond to genome
regions with a higher number of MTAs.

In silico Analysis of CGs
A search for CGs to study the relative gene expression
levels under abiotic stress conditions and different tissues
and developmental stages was performed within the QTL
hotspot regions reported in Table 8 using the positions of
flanking markers in the “Chinese Spring” reference genome
(IWGSC, 2018) at https://wheat-urgi.versailles.inra.fr/Tools/
JBrowse. A total of 1,342 gene models were detected, and to
classify this information, Gene Ontology (GO) for 1,025 of
the gene models (76%) was downloaded from https://wheat-
urgi.versailles.inra.fr/Seq-Repository/Annotations (Figure 6;
Supplementary Table 7). Seven hundred ninety-one CGs were
classified according tomolecular function (MF), 183 according to
biological process (BP), and 51 according to cellular component
(CC). The most represented CGs according to molecular
function were “protein binding” (31%), “protein kinase activity”
(13%), and “nucleic acid binding” (11%). According to BP, 30%
of the CGs were involved in “defense response” and 19% in
“transport.” Finally, according to CG, 27% of the product of
CGs were in the nucleus, 22% in the membrane, and 14% in the
cytoplasm and cell wall.

Subsequently, a search for differentially expressed genes
(DEGs) under three abiotic stress conditions as reported
in http://www.wheat-expression.com was carried out. These
conditions included (1) drought and heat stress time-course
in seedlings, (2) spikes with water stress, and (3) seedlings
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TABLE 7 | Relationship between trait variation and population structure (q-values)

for landrace and modern sets separately and the combined set.

Trait R2 LR vs. MOD R2 LR R2 MOD

N = 354 N = 170 N = 184

GS65 – – 0.47

GFD – – 0.16

Yield 0.59 0.37 0.43

HI 0.47 – -

Biomass 0.11 – –

NSm2 – 0.12 0.18

NGm2 0.60 – 0.42

TKW – 0.34 0.11

LAI_A 0.20 – –

NDVI_A – – –

RDVI_A 0.20 – –

MSAVI_A 0.22 0.10 –

MTVI2_A 0.29 – 0.10

TCARI/OSAVI_A 0.19 – 0.13

GNDVI_A 0.39 – 0.64

LAI_PA 0.20 – 0.39

NDVI_PA 0.14 0.23 0.50

RDVI_PA – 0.11 0.40

MSAVI_PA – 0.13 0.44

MTVI2_PA – 0.11 0.39

TCARI/OSAVI_PA 0.20 0.17 0.17

GNDVI_PA 0.51 0.39 0.60

PH 0.48 – 0.33

GA – 0.39 –

GS65, number of days from sowing to anthesis; GFD, grain filling duration; HI, harvest

index; NSm2, number of spikes per square meter; NGm2, number of grains per square

meter; TKW, thousand kernel weight; LAI, leaf area index; PH, plant height; GA, green area;

A, anthesis; PA, postanthesis; LR, landrace; MOD, modern; N, number of genotypes.

treated with polyethylene glycol (PEG) to simulate drought,
and DEGs were analyzed in four tissues (roots, shoots/leaves,
spikes, and grains) during different developmental phases
(seedling, vegetative, and reproductive). A total of 12 CGs
that were upregulated under abiotic stress were found in six
QTL hotspots and 46 were found downregulated in 10 QTL
hotspots (Figure 7).

Among the different upregulated DEGs, a defensin in hotspot
QTL1A.1 showed the highest expression under abiotic stress
conditions and was expressed in most of the tissues and all
the developmental phases; it also showed the highest expression
levels for each of the phases. All DEGs reported expression in the
spikes with a range from 0.02 tpm for cytochrome b in QTL1B.2
to 3.48 tpm for defensin in QTL1A.1. Only four DEGs were
expressed in the roots and five in the leaves/shoots and grain.
Only zinc finger protein-like 1 in QTL2A.2 was expressed in
all four plant tissues, showing the highest expression in roots.
Regarding the developmental phase, no expression was reported
in any stage for two DEGs, cytochrome b in QTL1B.2 and enoyl-
[acyl-carrier-protein] reductase in QTL3D.1. The reproductive
phase had the highest number of DEGs (nine out of 10 showing

expression), whereas 6 were expressed in the seedlings and only
four were expressed during the vegetative phase.

Among the downregulated DEGs, the hotspot QTL1B.2
showed the highest number of downregulated DEGS (16),
whereas QTL2A.2 did not show any of them. Three DEGs
showed expression in all tissues, whereas any of them
were downregulated in all of tissues. About six DEGs were
expressed only in roots under non-stressed conditions, three
in leaves/shoots, seven in spikes, and nine in grains, whereas
DEGs non-expressed under abiotic stress in only one tissue
corresponded to one in roots and six in grains. According to the
developmental phase, 12 DEGs were expressed in all of them,
whereas any DEG was downregulated in all of them. One DEG
was expressed only in the seedling stage at normal conditions,
whereas two were expressed only in the vegetative and 22 in the
reproductive stages.

DISCUSSION

The current study was conducted under typical Mediterranean
environmental conditions, with a pattern of increasing
temperatures during the spring and an irregular distribution of
rainfall across years. A genome-wide association study (GWAS)
panel of 354 bread wheat genotypes, including Mediterranean
landraces and modern cultivars, was grown for 3 years under
these conditions in northeastern Spain. Given that the decrease in
the genetic diversity of wheat occurred during the second half of
the twentieth century, associated with the introduction of high-
yielding semidwarf cultivars (Autrique et al., 1996), landraces
are considered a natural reservoir of genetic variation within
the species and an invaluable source of new alleles to widen the
genetic variability in breeding populations, particularly for traits
regulating adaptation to suboptimal environments (Lopes et al.,
2015). Recent studies have demonstrated the scarce use of wheat
landraces in breeding programs in the past, as suggested by the
high genetic diversity and defined population structure among
landrace and modern cultivar subpopulations (Soriano et al.,
2016; Rufo et al., 2019).

Phenotypic Performance
The high heritability reported for the agronomic traits, reaching
0.9 for yield and 0.8 for HI, NGm2 and PH indicated that genetic
differentiation among landraces and modern cultivars played a
predominant role in determining the variation for these traits.

The ANOVAs showed a large effect of subpopulation (SP)
on the phenotypic expression of the agronomic traits, whereas
year showed the largest effect for most of the VIs, followed
by the year × SP interaction, with the SP effect being the
lowest. The variability in agronomic traits was mostly caused
by the different agronomic performances of wheat landraces
and modern cultivars, as reported in previous studies (Soriano
et al., 2016; Royo et al., 2020). On the other hand, the high year
effect on VIs was likely due to the contrasting water availabilities
during the 2 years in which images were acquired by unmanned
aerial vehicles (UAVs) in the experimental fields. This was not an
unexpected result given that the decrease in the rate of growth
of wheat caused by drought stress results in a severe reduction
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FIGURE 3 | Bidimensional clustering showing the phenotypic relationships between the 354 bread wheat genotypes based on the analyzed traits indicated in the

vertical cluster at bottom. Red and green colors in the columns indicate high and low values, respectively. Dark, higher values; light, lower values; white, intermediate

values.

in total aboveground biomass (Royo et al., 2004; Casadesús and
Villegas, 2014).

Yearly variation in weather conditions, particularly water
input, resulted in a yield range from 7.4 t/ha in 2017, the driest
year, to 7.9 and 8.0 t/ha during the years with higher rainfall.
Even with the low water input, the average experimental yields
were higher than expected in a severe drought environment. The
number of spikes and grains per unit area were the highest in
2018, the wettest year, but were the lowest in 2017. Grain weight
showed the opposite pattern, suggesting that under drier and
hotter conditions, cultivars filled their grains at a higher rate (1.29
g/day in 2017 and 1.06 g/day in 2016 and 2018), thus showing
a shorter grain filling duration (GFD) in 2017. The high yields
recorded, considering the rainfed conditions of the field trials,

could be attributed to the high soil fertility (∼3% of organic
matter) and the superficial subsoil water layer at this site (Royo
et al., 2021).

From a genetic viewpoint, a clear separation was observed
between landraces and modern cultivars for most of the
agronomic traits, which can be attributed to the improvement
achieved by breeding. As expected, the yield was negatively
correlated to plant height (PH) as reported previously by
Royo et al. (2020). Among landraces, those from northern
Mediterranean countries characterized by high rainfall and lower
temperatures (Royo et al., 2014) showed higher yields due to an
increase in the number of grains per unit area and grain weight.
These genotypes showed longer cycles until A and a shorter
grain filling duration, although this last trait was not statistically
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FIGURE 4 | Summary of MTAs. (A) Percentage of MTAs per year and trait. (B) Number of MTAs per chromosome. (C) Phenotypic variance explained (PVE). MTAs,

marker–trait associations; HI, harvest index; LAI, leaf area index estimated by MTVI2; NSm2, number of spikes per square meter; NGm2, number of grains per square

meter; TKW, thousand kernel weight (g); PH, plant height; GA, green area from emergence until the first node; A, anthesis stage; PA, postanthesis.

significant. Landraces from the eastern Mediterranean countries
showed lower yields, a lower number of grains, and lighter
grains but an increase in the number of spikes per unit area

compared with landraces from the northern Mediterranean
countries. Similar results for the east Mediterranean landraces
were previously reported in durum wheat by Soriano et al.
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TABLE 8 | QTL hotspots identified for agronomic and remotely sensed VI-related traits.

QTL hotspot Position (cM) MTAs Max

-logP

Env Number of

traits

Left marker Position (bp) Right marker Position

(bp)

CI

(Mb)

QTL1A.1 24-29-31 18 18.4 2 2 BS00056550_51 7294564 Kukri_c29655_239 9579957 2.3

QTL1B.2 107-114-124 52 6.8 4 6 BS00072791_51 629262942 RFL_Contig2971_282 652455350 23.2

QTL2A.2 149-151-153 25 5.5 2 6 IAAV880 755788335 Tdurum_contig50839_593 758514679 2.7

QTL2D.1 39-41-45 29 6.2 2 6 Kukri_c16477_181 61979485 BS00067584_51 79416689 17.4

QTL3A.2 176-177-178 9 5.9 2 5 Excalibur_c77321_69 737299578 Tdurum_contig31235_99 739397160 2.1

QTL3D.1 142-143-144 32 7.0 2 5 Kukri_rep_c87658_1436 613696030 wsnp_Ex_c13629_21411429 609166802 4.5

QTL4A.2 150-151-153 8 5.3 2 5 Excalibur_c74390_108 733915685 RAC875_c11702_1015 739524596 5.6

QTL5B.2 54-61-64 51 6.2 3 6 BobWHIte_c47103_84 457342562 BS00039492_51 487602616 30.3

QTL5B.3 68-69-69 10 5.4 3 3 GENE-3574_643 519148851 TA002629-0202 526576640 7.4

QTL5B.4 159-161-163 21 18.2 3 8 wsnp_Ku_c3151_5892200 680852782 RAC875_c278_1801 683143220 2.3

QTL7A.1 110-114-119 40 6.5 2 4 BS00024786_51 79542753 Kukri_rep_c101532_1046 84767559 5.2

QTL hotspot Traits

QTL1A.1 GNDVI_A, TCARI/OSAVI_A

QTL1B.2 Yield, HI, MTVI2_A, PH, TCARI/OSAVI_A, TKW

QTL2A.2 Yield, HI, LAI_A, MTVI2_A, TCARI/OSAVI_A, TKW

QTL2D.1 Yield, MSAVI_A, MTVI2_A, PH, RDVI_A, TCARI/OSAVI_A

QTL3A.2 Yield, LAI_PA, MTVI2_A, PH, TCARI/OSAVI_A

QTL3D.1 Yield, LAI_PA, MTVI2_A, PH, TCARI/OSAVI_A

QTL4A.2 Yield, MSAVI_A, PH, RDVI_A, TCARI/OSAVI_A

QTL5B.2 Yield, HI, MSAVI_A, RDVI_A, TCARI/OSAVI_A, TKW

QTL5B.3 Yield, HI, TCARI/OSAVI_A

QTL5B.4 Yield, HI, LAI_A, MSAVI_A, MTVI2_A, PH, RDVI_A, TCARI/OSAVI_A

QTL7A.1 Yield, MTVI2_A, PH, TCARI/OSAVI_A

Positions are indicated in centimorgans (cMs) and base pairs (bp).

MTAs, marker trait associations; Env, number of environments; CI, confidence interval; HI, harvest index; TKW, thousand kernel weight; LAI, leaf area index; PH, plant height; A, anthesis;

and PA, postanthesis.

(2018) and Roselló et al. (2019b), suggesting an adaptation of
landraces from this area to warmer environments, which has
been associated with the allelic constitution of vernalization
and photoperiod genes (Royo et al., 2020). The results of the
current study are in agreement with the previous research
reporting a tendency for wheat to increase the number of ear-
bearing tillers as an adaptation strategy under heat stress (Hütsch
et al., 2019) and to increase the number of spikes per unit
area in genotypes adapted to dry and warm areas compared
to genotypes adapted to wetter and colder areas (Royo et al.,
2014, 2020). Among modern cultivars, significant differences
were mainly found between SP4 (cultivars from France and Italy)
and the other two SPs (Balkans and CIMMYT-ICARDA-derived
germplasm). These results suggest that breeding in France and
Italy was in the direction of increasing yield by increasing the
number of spikes and grains per unit area, whereas the other SPs
showed higher thousand kernel weight (TKW). In addition, the
regression results of the modern set suggested a high impact of
genetic population structure on the number of grains per unit
area. Cultivars derived fromCIMMYT and ICARDA germplasms
reached A earlier, up to 8 days earlier compared with Balkan
cultivars and 6 days earlier compared to French and Italian

cultivars, which was in line with the high R2 values obtained in
the relation between the modern set structure and GS65. This
earliness can help these cultivars from warmer regions avoid heat
stress at the end of flowering.

All traits related to high-throughput phenotyping (HTP)
showed significant differences between years before and after
anthesis (A), showing higher values for most of the VIs in 2018
than in the previous year. These higher values agree with the
rainfall recorded for both years, which was significantly lower
in 2017 than in 2018, mostly during the grain filling period.
Furthermore, the difference in the mean values between growth
stages was much higher in 2017. This result could be explained
by the water scarcity particularly affecting the PA stage, which
results in an important loss of chlorophyll content during the
grain filling period; therefore, VIs using bands mostly placed in
the near-infrared (NIR) and green regions showed lower values
(Adamsen et al., 1999). It was supported by the high and positive
correlations values between GA and GNDVI and LAI at post
A stage, which was the case in 2018. Even though water stress
affects the growth of wheat, the effects are higher during the grain
filling duration (GFD) (Moragues et al., 2006). Thus, the leaf area
index (LAI) and green normalized difference vegetation index
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FIGURE 5 | QTL overview index. The index values are represented along

chromosomes as a blue line. Yellow and red dashed lines represent the

thresholds for average (0.7) and higher values (3.5), respectively. Green bars

below the QTL overview index represent the number of significant MTAs per

10 cM (–log10 P > 3). QTL, quantitative trait loci; MTAs, marker–trait

associations.

(GNDVI) values decreased at the end of the growing cycle due to
a low chlorophyll content associated with senescence during the
grain filling period (Rufo et al., 2021). In addition, Gitelson et al.
(2002) reported that the sensitivity of the green band was higher
than that of the red band when the vegetation fraction was more
than 60%, so vegetation indices using green wavelengths perform
better at high LAI values, which in wheat under Mediterranean
conditions are the highest at booting (Aparicio et al., 2000; Royo
et al., 2004; Kyratzis et al., 2017; Rufo et al., 2021). This agreed
with the high and positive correlation values between GS65 and
GNDVI and LAI, indicating that more days until A provides
a high green LAI at postanthesis (PA) stage in wet years as
2018. TCARI/OSAVI had higher PA for both years. This agreed
with the results of Zarco-Tejada et al. (2005), who reported that
in advanced growth stages, chlorophyll indices, such as TCARI
performed better due to being less sensitive to the loss of turgor
and leaf drop. In fact, these authors also stated that the different
patterns of the indices across growth stages suggested that
chlorophyll-related indices are more suitable closer to harvest,
while structural indices related to canopy light scattering and
growth are better for early stages.

Differences in the mean values of SPs were found in the
two growth stages, with the highest values mainly found at A
based on the differences among years, thus highlighting the
effect of PA senescence on the chlorophyll content. Landraces
and modern cultivars showed significant differences in the
LAI and structural vegetation indices (VIs) at A, and these
values were higher in the landraces. As reported in previous

studies in durum wheat (García Del Moral et al., 2005; Soriano
et al., 2018), landraces are characterized by their tolerance to
water scarcity and their superior water use efficiency before A
compared to modern cultivars (Subira et al., 2015). The SPs
showing the highest mean values for the LAI and VIs at PA were
those including landraces from the north of the Mediterranean
basin (SP2) and modern cultivars from France and Italy (SP4).
Landraces from SP2 are better adapted to colder and wetter
environments than landraces originating in the southern part
of the Mediterranean basin. This adaptation pattern has been
associated with the greatest early soil coverage and more
aboveground biomass along the whole cycle length (Royo et al.,
2014, 2021). For this reason, the canopy remains green much
longer in landraces from the northern Mediterranean countries
than in those from the southern Mediterranean countries
(Royo et al., 2014). The same pattern was found in modern
cultivars, with GNDVI values remaining higher than those
of landraces after A and being significantly different among
modern subpopulations. These results agreed with those from
the relationship between structure and GNDVI_PA, where the
modern set showed the highest R2 values according to the
differences found in GNDVI mean values among modern SPs.
These results and the capacity to discern between landrace
and modern SPs regarding the VI values at A proved the
accuracy of HTP in characterizing populations. Several studies
have stated the potential of remote sensing for assessing
agronomic traits by screening hundreds of plots in a short period
of time, minimizing replications (Araus et al., 2018; Gracia-
Romero et al., 2019; Juliana et al., 2019). Furthermore, various
authors have stressed the suitability of using VIs measured
early in the season for grain yield forecasting (Aparicio et al.,
2000).

Bidimensional clustering was helpful to jointly visualize
the results obtained by Tukey’s tests. Moreover, clustering
of agronomic and HTP data revealed similarity with the
separation obtained by Rufo et al. (2019) using SNP markers
and SPs defined based on the structured collection. In both
the cases, a clear differentiation among landraces and modern
cultivars was observed, which resulted in separation into two
main clusters. Within the landrace cluster, A separation was
observed between landraces from the northern and southern
Mediterranean countries, thus including landraces from SP2 in
one cluster and those from SP1 and SP3 in the other cluster,
with different groupings among them. Modern cultivars of
SP6 (CIMMYT-ICARDA) clustered separately from the French
and Italian cultivars (SP4), whereas modern cultivars from the
Balkans grouped mostly with SP6. Although these two SPs
were separated genetically, no significant differences were found
for the agronomic traits, except for phenology, and regarding
the VIs, no differences were found at A. Two landraces (TRI
11548 and 1170) were included within modern cultivars from
CIMMYT-ICARDA and the Balkans. These two landraces were
characterized by a longer GFD, higher HI, and lower number of
spikes per unit area than the average for landraces. Landrace TRI
11548 from Iraq also showed higher yield and grain weight than
other landraces, so it probably resulted from a selection made in
an early landrace population.

Frontiers in Plant Science | www.frontiersin.org 14 September 2021 | Volume 12 | Article 735192

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Rufo et al. QTL Hotspots Rainfed Wheat

FIGURE 6 | Gene Ontology (GO) classification of gene models within QTL hotspots. (A) GO hierarchy. (B) Molecular function. (C) Biological process. (D) Cellular

component.

Marker Trait Associations
Dissecting the genetic basis of complex traits in plant
breeding is essential to tackle molecular-based approaches
for crop improvement. Several efforts have been previously
made to identify quantitative trait loci (QTLs) and marker–
trait associations (MTAs) associated with traits of interest
to carry out marker-assisted selection (MAS) approaches
and the introgression of alleles of commercial interest in
adapted phenotypes.

The highest number of MTAs related to agronomic traits
was found in 2016, while 96% of MTAs related to VIs, GA,
and the LAI were identified in 2017. It has been reported
that under contrasting conditions, the G × E interaction could
affect the identification of stable associations among different
environments (Mwadzingeni et al., 2017), which could explain
the difference in the number of significant associations among
the 3 years of field trials. The highest number of associations
for yield and TKW in 2016 could be due to the moderate
amount of water input (rainfall) during the spring, together
with the longest grain filling duration, as reported in previous
studies where grain weight predominantly enhanced yield in wet
environments (García Del Moral et al., 2003; Moragues et al.,
2006; Royo et al., 2006). Moreover, Royo et al. (2020) found that

genotypes with longer GFDs could have greater opportunities
to increase grain weight in favorable growing seasons than in
warmer and drier seasons. The elevated number of VI-related
MTAs found in the driest year (2017) could be explained by the
higher variability in traits related to leaf biochemical properties
or canopy structural attributes within the set of genotypes grown
in environments with water scarcity (Rufo et al., 2021). The
highest number of MTAs was identified for PH in 2017, when the
coefficients of variation (CV) was higher for this trait. Qaseem
et al. (2019) suggested that taller genotypes under drought stress
could increase yield accumulation and convert more assimilates
into grain. Of the 1,764 MTAs detected for VIs, 1,718 were
found at A, with 1,243 for TCARI/OSAVI. This result could be
explained by the significant differences found between landraces
and modern SPs at A for traits related to HTP. The highest
variability was foundwhen comparing SP4with the rest of the SPs
for TCARI/OSAVI, which could explain the elevated number of
MTAs for this trait. The distribution of theMTAs across genomes
agreed with the results of Rufo et al. (2020), with a similar number
in the A and B genomes (41 and 48%, respectively) and the
remaining 11% in the D genome. These results are consistent
with those of previous studies (Chao et al., 2010; Wang et al.,
2014; Gao et al., 2015), which attributed these values to the lower
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FIGURE 7 | Upregulated and downregulated CGs under abiotic stress conditions in four tissues and three developmental phases. Values are based on log2 tpm.

CGs, candidate genes; tpm, transcripts per million.

genetic diversity and higher LD found in the D genome of bread
wheat compared with genomes A and B (Rufo et al., 2019).

QTL Hotspots
To reduce the complexity of the high number of identified
MTAs, QTL hotspots were defined using the QTL overview index
proposed by Chardon et al. (2004). Although this statistic was
initially used for classical biparental QTL analysis, we adapted
it to GWAS using the confidence intervals (CIs) of the MTAs
as the distance of LD decay for each of the chromosomes. As
reported in Figure 5, QTL hotspots defined by the high-value
threshold of the overview index corresponded to genome regions
with a higher MTA density, thus supporting the suitability of
this approach in GWAS. To identify genome regions previously
mapped in locations similar to our QTL hotspots and to detect
new loci controlling agronomic traits and VIs, a comparison with
previous GWAS studies and/or meta-QTL analysis reporting
yield- and VI-related traits was conducted. Seven of the 11 QTL
hotspots have been described previously in the literature. When
compared with the meta-QTL analysis reported by Liu et al.
(2020) in bread wheat, the QTL hotspots QTL1B.2 and QTL2D.1

were located at similar positions as MQTL1B.7 and MQTL1B.8
and MQTL2D.3 and MQTL2D.4, respectively, controlling grain
yield, grain number, and TKW under drought and heat stress.
QTL1B.2 was also in the homologous region of QTL IWB50693
in durum wheat controlling spike length (Anuarbek et al.,
2020), QSN.caas-1BL controlling NSm2 identified by Gao et al.
(2015) in bread wheat and IWB3330 controlling the normalized
chlorophyll pigment ratio index (NCPI) identified by Gizaw
et al. (2018) in bread wheat. Gao et al. (2015) also found three
QTLs for TKW, chlorophyll content, and NDVI located in a
common region with the hotspot QTL5B.2. This QTL hotspot
was also detected in a similar region as QTL yield/root_5B.1
controlling grain yield and shoot length identified by Rufo et al.
(2020). QTL1B.2 and QTL5B.2 were found to have homology
with several studies. This was an expected result, since they were
the longest hotspots including the highest number of MTAs. The
genomic regions for QTL hotspots QTL5B.4 and QTL7A.1 were
also found in common with three QTLs identified by Anuarbek
et al. (2020) controlling the number of fertile spikes and TKW in
durum wheat under rainfed conditions. Hotspots QTL1A.1 and
QTL2A.2 shared a common position with mtaq-1A.2 reported by
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Roselló et al. (2019a) in durum wheat and QTL yield/root_2A2
identified by Rufo et al. (2020) in bread wheat, respectively,
controlling root-related traits and grain yield in bread wheat.

The detection of these regions in common with other studies
opens the opportunity to a pyramid of different QTLs with
pleiotropic effects in future breeding approaches. Moreover, the
use of the reference genome sequence makes it possible to rapidly
identify common molecular markers to be used in MAS.

Candidate Genes
Gene annotation from the “Chinese spring” reference genome
sequence (IWGSC, 2018) allowed us to identify 1,342 gene
models within the 11 QTL hotspots. Candidate gene (CG)
mining was performed by searching for differentially expressed
genes (DEGs) upregulated and downregulated under drought
conditions in different tissues and developmental stages through
in silico analysis at http://www.wheat-expression.com.

Four CGs that were upregulated under drought stress have
been previously reported in the literature to be involved
in stress resistance. Among them, in QTL hotspot 1A.1, a
defensin protein (TraesCS1A01G013600) was found to show
the highest expression under drought stress. According to
Kumar et al. (2019), although defensins are mainly involved in
antifungal responses, the defensin gene Ca-AFP from chickpea in
transgenic Arabidopsis plants was overexpressed under drought
stress and induced a higher germination rate, root length, and
plant biomass. Two gene models enhancing drought and heat
stress tolerance were found in QTL hotspot 2A.2: the gene
model TraesCS2A01G550300 encoding a zinc finger protein,
as reported by (Yoon et al., 2014) in poplar, and the gene
model TraesCS2A01G552400 encoding a MYB transcription
factor, which was described by Zhao et al. (2018). TaMYB31
from wheat is transcriptionally induced by drought stress in
transgenic Arabidopsis plants (Zhao et al., 2018). Finally, in
QTL hotspot 5B.2, a squamosa-binding protein was identified
(TraesCS5B01G286000). These protein families have been found
to be involved in several biological processes. Cao et al. (2019),
in expression studies of the Squamosa binding protein from
wheat TaSPL16, found that this gene was highly expressed in
young panicles but expressed at low levels in seeds, in agreement
with the expression profile of TraesCS5B01G286000 found in
our study. The ectopic expression of TaSPL16 in Arabidopsis
produced a delay in the emergence of vegetative leaves and early
flowering and affected yield-related traits. Other gene models
upregulated under drought stress, as reported in the RNA-seq
analysis from Ramírez-González et al. (2018), such as NADH-
quinone oxido reductase, cytochrome b, histone deacetylase
2, RNA-binding protein, enoyl-[acyl-carrier-protein] reductase,
double-stranded RNA binding protein 3, and histone-lysine
N-methyltransferase, have not been related to drought stress
tolerance in the literature, and further experiments are required
to assess their expression under drought stress conditions. On
the other side, 46 gene models were shown to be downregulated
under drought stress. However, the decrease in the expression
level seems to be more associated with the breakdown of the
physiological functions due to drought than a causal effect in
response to the stress.

CONCLUSIONS

The use of local landraces in breeding programs is considered
a valuable approach to broadening the genetic variability of
crops lost during the breeding process and improving traits
of commercial importance. The results reported in the present
study evidenced the selection for grain yield, HI, NG m2, and
GNDVI_PA during the breeding process.Whereas differentiation
among landraces were found for agronomic and VIs (grain
yield, TKW, GNDVI_PA, and GA), in modern cultivars SPs
differentiation weremainly due to GS65, GNDVI, andNDVI_PA.
The use of a statistical approach as the QTL overview index
for the definition of QTL hotspots resulted successful for the
identification of consensus genome regions including most of
the stable marker trait associations across years. The results of
this study will be useful for our wheat breeding program by
the selection of the appropriate genotypes carrying favorable
alleles for the differential traits that will be useful for designing
new crosses.

Using in silico approaches allowed gene mining in QTL
hotspots, thus facilitating CG identification.
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