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Increasing the number of environments for phenotyping of crop lines in earlier stages of 
breeding programs can improve selection accuracy. However, this is often not feasible 
due to cost. In our study, we investigated a sparse phenotyping method that does not 
test all entries in all environments, but instead capitalizes on genomic prediction to predict 
missing phenotypes in additional environments without extra phenotyping expenditure. 
The breeders’ main interest – response to selection – was directly simulated to evaluate 
the effectiveness of the sparse genomic phenotyping method in a wheat and a rice data 
set. Whether sparse phenotyping resulted in more selection response depended on the 
correlations of phenotypes between environments. The sparse phenotyping method 
consistently showed statistically significant higher responses to selection, compared to 
complete phenotyping, when the majority of completely phenotyped environments were 
negatively (wheat) or lowly positively (rice) correlated and any extension environment was 
highly positively correlated with any of the completely phenotyped environments. When 
all environments were positively correlated (wheat) or any highly positively correlated 
environments existed (wheat and rice), sparse phenotyping did not improved response. 
Our results indicate that genomics-based sparse phenotyping can improve selection 
response in the middle stages of crop breeding programs.

Keywords: sparse phenotyping, genomic prediction, multi-environment trials, response to selection, correlations 
between environments

INTRODUCTION

Genomic selection is a promising tool to assist plant breeding by accelerating selection gain 
per unit time (Endelman et  al., 2014; Slater et  al., 2016; Crossa et  al., 2017; Voss-Fels et  al., 
2019). In crop breeding programs, there is a consensus that genomic selection should be applied 
in the early stages as phenotyping intensity during this period is low, especially for grain yield 
and hard-to-measure traits (Endelman et  al., 2014; He et  al., 2016). However, this genomic 
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selection strategy depends on an independent and robust 
reference population, normally consisting of historical data 
collected across several years (Dawson et  al., 2013; Rutkoski 
et  al., 2015; Jarquin et  al., 2016).

Another way to deploy genomic selection in breeding is 
through phenotype imputation (Hori et  al., 2016), which does 
not require an independent reference population. In the middle 
stages of breeding programs (e.g., sometimes referred to as 
stages one or two), crop lines are regularly phenotyped in 
only a few environments. Increasing the number of testing 
environments during these stages with genomic selection could 
markedly boost selection accuracy, compared to the advanced 
stages where most selection candidates are intensively tested 
in many environments (He et  al., 2016). However, budget and 
seed availability constraints make complete phenotyping of all 
selection candidates in many environments impractical earlier 
in the breeding program. Nevertheless, the phenotype imputation 
scheme proposed by Hori et  al. (2016) suggests that lines do 
not need to be  tested in each environment, i.e., sparse 
phenotyping. Instead, the phenotype of lines in untested 
environments is reliably predicted using methods such as multi-
environment genomic prediction approaches based on the 
remaining observations in tested environments. Consequently, 
a multi-environment trial (MET) with more testing environments 
could improve overall selection accuracy.

Traditionally, the correlation between the best linear unbiased 
estimation (BLUE) of genetic value and the genomic estimated 
genetic value (GEGV) is used to evaluate genomic prediction 
accuracy (Heslot et  al., 2012; Rutkoski et  al., 2015; He et  al., 
2016; Jarquin et  al., 2016). BLUEs are assumed to be  the best 
benchmark of GEGV because they are derived directly from 
per se performance, which is trusted by plant breeders. However, 
the true genetic value is unknown and whether BLUE or GEGV 
is closer to the true genetic value is difficult to establish. Thus, 
rather than prediction accuracy, the focus could be  on the 
actual breeders’ interest, e.g., the response to selection, which 
can be  inferred from a simulation-based approach (Piepho 
and Möhring, 2007) to directly evaluate the effectiveness of 
genomic selection. To our knowledge, no study has applied 
this approach to assess the effectiveness of genomic selection.

Our study utilized an Australian pre-breeding wheat 
population and a publicly available rice pureline population, 
both with complete and orthogonal phenotypic records of grain 
yield across 3 years and two sowing times, to investigate the 
potential of genomics-assisted sparse phenotyping to improve 
selection response in the context of multi-environment trials. 
We  also investigate the relationship among environments and 
how this affects the effectiveness of the proposed genomics-
assisted sparse phenotyping method.

MATERIALS AND METHODS

Wheat Data Set
The wheat grain yield data set used in this study originated 
from the data set used in He et  al. (2019), which consisted 
of five individual data sets including 1,351 genotypes.  

The genotypes were evaluated from year 2012 to 2017 with 
two times of sowing (TOS) per year at Narrabri in north-
western New South Wales, Australia. The randomized complete 
block design with two replicates was applied to measure five 
agronomic traits incl. Grain yield, plant height, protein content, 
screenings percentage, and thousand kernel weight. The 
experiments in the current study were based on 189 lines 
consistently tested from year 2015 to 2017 at two TOS per 
year. These lines composed an orthogonal data set with a 
dimension of 189 lines and six environments.

Phenotypic analysis was implemented for each data set to 
derive the repeatability estimate per environment (year–TOS 
combination) and best linear unbiased estimates (BLUEs) per 
line in each environment, as described in He et  al. (2019). 
Specifically, the phenotypic data of each environment were 
analyzed using a mixed linear model. The field design relevant 
effects such as range, row, and replicates as well as residual 
effect were all designated as random effects which followed 
an identical and independent normal distribution. Genetic 
effects were in tandem treated as fix and random to derive 
the best linear unbiased estimates (BLUE) and repeatability of 
each environment. Another mixed linear model based on BLUE 
of the 189 genotypes in each environment was fitted to estimate 
the heritability of grain yield, which was formulated as 
y 1 Z r Z ln r l= + + +m ,ee  where n is the number of BLUE values, 
y  is n-dimensional vector of genotype BLUEs across 
environments, m  is the common intercept, 1n is a n-dimensional 
vector of ones, r is the vector of environment effects, l is the 
vector of genetic effects of genotypes, Zr and Zl are incidence 
matrices for r and l, and ε is the random residual. Effects r, 
l, and ε were fitted as random effects following identical and 
independent normal distributions. The heritability of grain yield 
was estimated using formula: 1

2
2

-
c

ls
, where c  is the mean 

variance of a difference between two best linear unbiased predictions 
(BLUP) of genetic effects of genotypes (Cullis et  al., 2006).

The genotypic data of the 189 lines used in this study were 
drawn from the genotypic data of 1,351 wheat lines fingerprinted 
with 41,666 90 K single nucleotide polymorphisms (SNP) in 
He et  al. (2019). As the number of genotypes was reduced, 
SNPs were refiltered by removing those with a minor allele 
frequency of less than 0.05, which left 32,800 SNP for subsequent 
analyses. The genetic diversity of the 189 genotypes was inspected 
based on a cluster analysis using Rogers’ distance (Roger, 1972) 
estimated by the 32,800 SNP. The correlation between 
environments was estimated by Pearson correlation coefficient 
between the BLUEs of the 189 genotypes in 
different environments.

Rice Data Set
The publicly available rice data set (Spindel et al., 2015) included 
358 rice lines phenotyped for six agronomic traits across 4 years 
and two seasons, i.e., eight environments (year–season 
combinations). As in wheat, phenotypic analyses included 
estimation of repeatability per environment and BLUEs per 
line. Based on the BLUEs, we  selected six environments with 
the greatest range in correlations between environments out 
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of the total eight environments to evaluate the effectiveness 
of the sparse phenotyping method. Finally, 160 lines were 
available with orthogonal yield phenotypic data in all six 
environments. Genotyping-by-sequencing (GBS) genotypes for 
108,024 SNPs were quality controlled as follows. Low-quality 
SNPs with MAF less than 0.05 and call rate less than 0.9 
were removed. Eventually, 46,232 SNPs were available for the 
160 used lines. The correlation between environments was 
estimated by Pearson correlation coefficient between the BLUEs 
of the 160 genotypic lines in different environments.

Multi-Environment Genomic Prediction 
Model
A multi-environment genomic prediction model explicitly 
describing genotype-by-environment interactions was used:
 y 1 Z v Z g gv emn v g= + + + +m

where m is the number of environments, n is the number of 
genotypes, y is a m × n vector of BLUEs of genotypes in each 
environment, m  is the common intercept, v is the m-dimensional 
vector of environment main effect, g is the n-dimensional 
vector of additive genetic main effect of genotypes, gv is the 
m × n vector of genotype-by-environment interaction effects, e 
is the random residual, Zv is the incidence matrices for v, 
and Zg is the incidence matrices for g. We assumed v 0 I~ N , vs

2( ) ,  
g 0 G~ N , gs

2( ), gv Z GZ Z Zg g v v~ N , gv0
2′ ′



( ) s , and 

e 0 I~ N , es
2( ) , where   is the Hadamard product of matrices, 

sg
2 , sgv2 ,  and se2 are their variance components, respectively, 

for genotype, genotype-by-environment interaction effects, and 
random residual. G is the genomic relationship matrix proposed 
by VanRaden (2008) constructed based on SNP genotypic 
profiles. The genomic prediction model was run in R (R Core 
Team, 2016) using the BGLR package (de los Campos and 
Pérez-Rodríguez, 2016). Iteration times were fixed to 30,000, 
and the first 5,000 times were set as burn-in.

Sparse Phenotyping Method
We compared the selection response of the complete phenotyping 
trial in fewer environments with a sparse genomic phenotyping 
method in additional environments. In this sense, all possible 
combinations of three environments out of the total six 
environments were used as the complete phenotyping trials, 
which retained total phenotypic values (BLUEs per environment). 
Phenotypic values in combinations of four, five, and six 
environments (there is just one combination using all six 
environments) were proportionally masked to create the sparse 
phenotyping trials. The percentage of phenotypic values retained 
in the 4-, 5-, and 6-environment combinations was 75, 60, 
and 50%, respectively, which made the phenotyping intensity 
in all 3-, 4-, 5-, and 6-environment combinations equivalent. 
Thus, the number of BLUEs and the amount of phenotype 
data collected was the same in all scenarios. There were 20 
different combinations of three environments out of the total 
six environments. Each 3-environment combination was extended 
to three 4- or 5-environment combinations by including one 

or two environments from the remaining three environments. 
According to the phenotyping proportions (75, 60, and 50%) 
of 4-, 5-, and 6-environment combinations, phenotypic values 
in each 4-, 5-, and 6-environment combination were randomly 
masked one hundred times according to the cross-validation 
strategy two (CV2) in He et  al. (2019). Specifically in this 
study, each genotype has six environment-specific BLUEs. 
We  first attempted to randomly mask one BLUE of genotypes 
in the 4-, 5-, and 6-environment combinations to make the 
phenotyping proportions the same as the 3-environment complete 
phenotyping trial. If masking one BLUE was insufficient to 
meet the required phenotyping proportion, another BLUE of 
genotypes was masked until the required phenotyping proportion 
was reached.

Response to Selection
The genomic prediction model, also known as a mixed linear 
model, can be used to directly estimate the response to selection 
through a simulation-based approach following Piepho and 
Möhring (2007). Briefly, the multi-environment genomic 
prediction model was fitted using phenotypic records of complete 
phenotyping trial (3-environment combination) and phenotypic 
records of sparse phenotyping trials (4-, 5-, and 6-environment 
combinations). We  were mainly interested in the relationship 
between the true genetic main effect g and its best linear 
unbiased prediction (BLUP) g , because the selection was based 
on the BLUP, while the response of selection was determined 
by the true values. In fact, the joint distribution of g and g  
is multivariate normal and the corresponding variance–covariance 
matrix WW=








var

g
g

 can be  derived from the mixed model 

equations. Then, WW  was eigendecomposed as WW LL GGGG= ′ ′D D = , 
where D is the matrix of eigenvectors and Λ is the diagonal 
matrix of eigenvalues, GG LL= D . The vector combining the 

true and predicted genetic main effects w g
g

=











 could 

be  simulated by w z= GG , where z is a 2n-dimensional vector 
of independent standard normal deviates because 
var var varw z z( )= ( )= ( ) = =′ ′GG GG GG GGGG WW  as desired.

For each 3-environment complete phenotyping trial, the 
responses to selection under varying selection ratios 
(corresponding to different selection intensities) ranging from 
10 to 90% with a gap of 10% were simulated 10,000 times. 
In each simulation run, the vector w combining the true and 
predicted genetic main effects was simulated and a subset of 
genotypes (Sq) with top p% (p = 10–90) of g  was selected. 
The response to selection of the simulation run (qth) was 

calculated as R
g

S
q

i S
i

q

q=
( )
∈∑

#
, where # Sq( )  is the size of Sq. 

For each selection ratio (10–90%), the average value of response 
to selection of the 10,000 runs was finally used as the achieved 
responses to selections of the complete phenotyping trial, i.e., 

R

R
q

q

= =∑ 1

10000

10000
. The responses to selections of each extended 
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4-, 5-, and 6-environment sparse genomic phenotyping trial 
scenario were simulated in the same manner based on only 
unmasked phenotypic values. The effectiveness of genomic 
selection was determined by comparing the achieved selection 
response between each complete phenotyping trial and its 
extended different sparse phenotyping trials. The difference 
between the achieved response of the complete phenotyping 
scenarios and responses from one hundred replicates of the 
corresponding extended sparse phenotyping scenarios (with 
random phenotype masking) under each selection ratio (10–90%) 
was statistically tested with Student’s t tests.

RESULTS

Phenotypic Data and Population Structure
For the wheat data set, the overall heritability of grain yield 
was 0.38 and repeatability of each environment was above 
0.4, indicating that the phenotypic data were of high quality 
(Figure  1A). The distribution of BLUEs in different 
environments was asymptotically normal (Figure 1B). Several 
large families were identified by clustering analysis and 
linkages existed across families (Supplementary Figure  1). 
The Rogers’ distance values between any pair of genotypes 
ranged from 0.01 to 0.53. For the rice data set, the overall 
heritability was 0.83 and repeatability of each environment 
was over 0.4 (Supplementary Figure  2A). The distribution 
of BLUEs across different environments was near normal 
(Supplementary Figure  2B).

Correlations Between Environments
In the wheat data set, pairwise correlations ranged from −0.35 
to 0.84 among the six environments (Figure  2). Among the 
3-environment combinations, five combinations showed all 
positive pairwise correlations. Each 3-environment combination 
displayed at least one positive pairwise correlation 
(Supplementary Table  1). Inspecting the pairwise correlations 
within the twenty 3-environment combinations, four groupings 
became clear: (1) one pair of environments had high positive 
correlation 0.84, i.e., combinations 1–4; (2) environments where 
all pairwise correlations were positive, i.e., combinations 5, 11, 
and 19; (3) one pair of environments had negative correlations, 
i.e., combinations 6–7, 12–13, and 17–18; and (4) two pairs 
of environments had negative correlations, i.e., combinations 
8–10, 14–16, and 20 (Supplementary Table  1).

In the rice data set, correlations of pairs of environments 
varied from 0.05 to 0.67 (Supplementary Figure  3). Among 
the 3-environment combinations, in one combination all 
correlations were below 0.18 and four combinations had one 
highly positive correlation of 0.67 (Supplementary Figure  3). 
Based on the pairwise correlations within the twenty 
3-environment combinations, there were four distinct groupings: 
(1) one pair of environments with high positive correlation 
0.67, i.e., combinations 10, 16, 19, 20; (2) all pairwise correlations 
moderately positive above 0.18, i.e., combinations 12, 13, 17, 
18; (3) one pair of environments lowly positively correlated 
below 0.18, i.e., combinations 3, 4, 6–9, 11, 14, 15; and (4) 
more than one pair of environments lowly positively correlated 
below 0.18, i.e., 1, 2, 5 (Supplementary Figure  3).

A B

FIGURE 1 | Wheat – (A) heritability of grain yield and repeatability in each environment. The highest and lowest repeatability of specific environments 
evaluated in different data sets are shown in two grayscales; (B) distribution of best linear unbiased estimate (BLUE) of genotypes in different 
environments.
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Simulated Response to Selection
For the wheat data set, twenty-one 4-environment combinations 
with sparse phenotyping applied had statistically significant 
higher responses to selection, compared to their equivalent 
3-environment combination with complete phenotyping under 
each selection ratio, i.e., 10–90% (Figure  3). Most of the 
combinations contained one negative correlation between the 
three base environments with complete phenotypic records and 
one highly positive correlation (0.84) between the extension 
environment and the base environments (Figure  3). For the 
5- and 6-environment combinations, there were twenty-three 
and seven sparse combinations showing higher response, 
respectively (Figures  4, 5). One negative correlation between 
the base environments and one highly positive correlation 
between expansion environment and base environments were 
also observed in the 5- and 6-environment combinations 
(Figures 4, 5). Comparison of the responses of all 3-environment 
combinations and their extended 4-, 5-, and 6-environment 
combinations identified five 3-environment combinations where 
the sparse phenotyping combinations did not result in a 
significantly higher response than the corresponding full 
3-environment scenarios (combinations 1–4, 19; 
Supplementary Table  2). For most 3-environment complete 
phenotyping combinations, the responses achieved by the 
extended 4-environment sparse phenotyping scenarios were the 
highest compared to the 5- and 6-environment combinations 
(Figure  6).

For the rice data set, twenty-five 4-environment combinations 
sparse phenotyping scenarios showed statistically significant 
higher responses to selection than their corresponding 
3-environment complete phenotyping combination under each 
selection ratio, i.e., 10–90% (Supplementary Figure  4). Most 
of these included two lowly positive correlations (<0.18) within 
the three complete phenotyping environments and/or one highly 
positive correlation (0.67) between the extended environment 
and one complete phenotyping environment 

(Supplementary Figure  4). For the 5- and 6-environment 
combinations, there were twenty-one and seven combinations, 
respectively, displaying higher response 
(Supplementary Figures  5, 6). Again, one highly positive 
correlation between the expansion environment and base 
environments and at least two lowly positive correlations within 
the base environments were observed in the 5- and 6-environment 
combinations (Supplementary Figures 5, 6). The 3-environment 
combinations with one highly positive correlation, i.e., group 1, 
showed no improved response from sparse phenotyping 
(Supplementary Figures 4–6). The responses of 4-environment 
sparse combination with one extended environment tended to 
be higher than those of 5- and 6-environment sparse combinations 
(Supplementary Figure  7).

DISCUSSION

Our study investigated the potential of a genomics-assisted 
sparse phenotyping method via simulated selection responses 
based on a wheat and a rice data set. Results of both data 
sets showed that the sparse phenotyping can lead to a similar 
or greater response and provides information on genotype 
performance in more environments, compared to fully replicated 
trials. As the level of phenotyping (i.e., the number of 
observations) was the same in all scenarios, the advantage of 
sparse phenotyping was achieved with a similar budget. While 
families existed in the populations, our sparse phenotyping 
method tested each genotype in at least one environment. 
Consequently, as all genotypes were included in the reference 
set, the families did not introduce bias due to relatedness 
discrepancy to genomic prediction in the different phenotype 
masking scenarios.

Inclusion of Environment Correlation in 
Genomic Prediction Model Reduces the 
Benefit of Genomics-Assisted Sparse 
Phenotyping
In our study, a basic multi-environment genomic prediction 
model considering environments independent was used to 
simulate response to selection. Nevertheless, a sophisticated 
model that accommodates correlation between environments 
seems more reasonable in theory and more suited to 
be  implemented. Jarquin et  al. (2014) and Saint Pierre et  al. 
(2016) demonstrated using environmental descriptors such as 
weather data to describe environmental relationship could 
improve genomic prediction accuracy. However, such 
environmental data are not always available. Martini et  al. 
(2020) proposed to straightforwardly use phenotypic correlation 
of overlapped genotypes in different environments to specify 
the environmental relationship matrix. Thus, we  also tested 
the effectiveness of the model in the wheat data set using 
correlation between BLUEs of unmasked genotypes in both 
environments to compile the environmental relationship matrix. 
Results showed that the sophisticated model including 
environmental correlation reduced the number of cases where FIGURE 2 | Wheat – pairwise correlation between environments.
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the sparse phenotyping method displayed significantly higher 
response than complete phenotyping, as compared to the basic 
model (Supplementary Figures  8–10). This may be  attributed 

to the number of genotypes used in our study being insufficient 
to reliably estimate the environmental relationship matrix 
(Martini et  al., 2020). For the sparse phenotyping scenarios, 

FIGURE 4 | Wheat – 3-environment combinations with complete phenotypic values showing statistically significant (p < 0.05) lower response to selection than their 
extended 5-environment combinations using genomics-assisted sparse phenotyping. Labels of horizontal axis are the scenario numbers of 3-environment 
combinations. Black dots represent correlation coefficients between the three base environments with complete phenotypic values. Triangles with different colors 
indicate correlation coefficients between separate added environments, i.e., the first or second added environment, and base environments.

FIGURE 3 | Wheat – 3-environment combinations with complete phenotypic values showing statistically significant (p < 0.05) lower response to selection than their 
extended 4-environment combinations using genomics-assisted sparse phenotyping. Labels of horizontal axis are the scenario numbers of 3-environment 
combinations. Black dots represent correlation coefficients between the three base environments with complete phenotypic values. Red triangles indicate correlation 
coefficients between the added environment and base environments.
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the number of genotypes that can be  used to estimate 
environmental relationship matrix, i.e., unmasked genotypes 
in both environments, would decrease even more. Particularly, 
when a total six environments were used, there was only one 
combination in which the sparse phenotyping performed 
significantly better (Supplementary Figure 10). This is because 
when the number of expansion environments increased, the 
number of unmasked genotypes with phenotypes in all 
environments reduced (Supplementary Figure  11), leading to 
a reduction in the reliability of correlation estimates. Alternatively, 
a more sophisticated model with unstructured environment 
covariances was also fitted (Burgueño et  al., 2012). However, 
the phenotypic variance–covariance matrix was not always 
invertible when the sparse phenotyping pattern changed. Based 
on these results, we  recommend to use the basic multi-
environment genomic prediction model to compare the 
effectiveness of sparse and complete phenotyping strategies 
unless there are adequate common genotypes in different 
environments available to reliably estimate the environmental 
relationship matrix.

Effectiveness of Sparse Phenotyping 
Could Be Further Improved by Selective 
Phenotyping
Our study used a simple stochastic masking design to simulate 
the sparse phenotyping patterns on the basis that each genotype 
was tested in at least one environment. However, a more 

sophisticated selective phenotyping design could help improve 
the effectiveness of sparse phenotyping (Heslot and Feoktistov, 
2020; Jarquin et  al., 2020). Jarquin et  al. (2020) proposed to 
completely phenotype a small proportion of genotypes in all 
environments to facilitate the estimation of environmental 
variance. As a result, substantial savings of phenotyping cost 
can be achieved while a high prediction accuracy was maintained. 
Heslot and Feoktistov (2020) demonstrated that precisely selecting 
a subset of genotypes for phenotyping based on relatedness 
could optimize the estimation of marker effect and tremendously 
increase prediction accuracy compared to randomly selecting 
a subset with equal size. This suggests that the unit of selection 
could shift to alleles being sufficiently replicated across 
environments. Therefore, instead of phenotyping each line in 
at least one environment, selecting a subset of lines would 
capitalize on genetic relationship and adding emphasis by testing 
some individuals in more environments to boost the overall 
phenotyping intensity could in turn further improve the 
effectiveness of sparse phenotyping. In this sense, further studies 
are needed to substantiate the merit of selective phenotyping 
design on promoting simulated response to selection of 
sparse phenotyping.

The Benefit of Sparse Phenotyping Can 
Be Anticipated From Correlations Between 
Environments
The correlations between environments in the wheat data set 
included high (e.g., 0.84), moderate (e.g., 0.32 and 0.38), low 
(e.g., 0.04 and 0.06), and negative (e.g., −0.28 and −0.35), 
which is representative of the types of environments encountered 
in plant breeding. These four groupings of 3-environment 
combinations are illustrated in Table  1 and can be  used to 
understand when sparse phenotyping can be  beneficial.

Group  1 had a highly positive correlation (0.84) between 
environments and the sparse phenotyping method did not 
result in additional selection response, regardless of the number 
of expansion environments added (Table  1; Figures  3–5).

In group 2, all pairwise correlations were positive and when 
the extended environment was highly positively correlated (0.84) 
with any of the complete phenotyping environments, sparse 
phenotyping was always superior (Table  1; Figure  3; 
Supplementary Tables 1, 2). However, this superiority was 
not maintained when additional environment(s) were included 
that were only poorly correlated with the complete phenotyping 
environments (Figures  4, 5; Supplementary Tables 1, 2). As 
there was no expansion environment with a high positive 
correlation (0.84) with the complete phenotyping environments 
in combinations 1–4, it was not possible to determine whether 
adding such a highly positively correlated expansion environment 
would be  beneficial or not. It is therefore possible the efficacy 
of sparse phenotyping is actually very similar in groups 1 and 2.

Group  3 had two pairs of environments with a positive 
correlation and one pair with a negative correlation. Here, the 
sparse phenotyping method consistently resulted in an additional 
selection response when the expansion environment was highly 
positively correlated (0.84) or even when several expansion 

FIGURE 5 | Wheat – 3-environment combinations with complete phenotypic 
values showing statistically significant (p < 0.05) lower response to selection 
than using total six environments with genomics-assisted sparse 
phenotyping. Labels of horizontal axis are the scenario numbers of 
3-environment combinations. Black dots represent correlation coefficients 
between the three base environments with complete phenotypic values. 
Triangles with different colors indicate correlation coefficients between 
separate added environments, i.e., the first, second, or third added 
environment, and base environments.
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environments were moderately positively correlated with the 
complete phenotyping environments (Table  1; Figures  3, 4; 
Supplementary Tables 1, 2). This suggests that the robustness 
of group  3 is less than groups 1 and 2, and the superiority 
of including two expansion environments in group  3 depends 
on the relationship between the two expansion environments. 
In combination 17–18, no expansion environment was highly 
positively correlated with any of the complete phenotyping 
environments. However, two expansion environments were 
highly correlated (0.84), i.e., Year2015_TOS1 and Year2015_TOS3, 
and each was moderately positively correlated with one of the 
complete phenotyping environments, which made sparse 
phenotyping superior (Figure  4; Supplementary Table  2). In 
contrast, their per se 4-environment sparse phenotyping scenario 
did not show superiority (Figure  3; Supplementary Table  2).

For group 4, where one pair of environments had a positive 
correlation and two pairs a negative correlation, i.e., combinations 
8–10, 14–16, and 20, sparse phenotyping resulted in a greater 
response when one expansion environment was highly correlated 
(0.84) or all expansion environments had moderate positive 
correlations with the complete phenotyping environments 
(Table  1; Figures  3–5; Supplementary Tables 1, 2). In some 
cases, such as combination 16 and 20, even one extended 
environment with a moderate positive correlation with the 
complete phenotyping environments was superior (Table  1; 
Figure 3). This suggests that when environments are dissimilar, 
the sparse phenotyping method is particularly useful; a finding 

corroborated by the largest number of superior 5- and 
6-environment combinations in group  4 (Figures  4, 5).

The relationship between correlations of environments and 
the benefit of sparse phenotyping was confirmed in the rice 
data set even though the range of correlations between 
environments was not as great as that observed in wheat.

Breeders are advised to consider the expected phenotypic 
correlation between environments when deciding whether 
genomics-assisted sparse phenotyping is of value. For instance, 
inspecting the correlations between environments observed in 
the wheat data set shown in Table  1, when the environments 
projected for complete phenotyping contain a highly positive 
correlation, the sparse phenotyping method does not increase 
selection response. For any other combination of complete 
phenotyping environments, adding one expansion environment 
that is positively highly correlated with any of the complete 
phenotyping environments will always be  beneficial. When 
most complete phenotyping environments are negatively 
correlated, including more (≤3) expansion environments also 
consistently improved the response as long as one positive 
highly correlated expansion environment was added. It is worth 
noting that while adding one highly positively correlated 
expansion environment was of benefit, breeders could choose 
this environment for complete phenotyping if some prior 
knowledge was available, which would revert the combination 
to group  1. Nevertheless, adding positive correlation sparse 
phenotyping scenarios was generally of benefit (group  4, 

FIGURE 6 | Wheat – responses to selection of 4-environment (one extended environment), 5-environment (two extended environments) and 6-environment (three 
extended environments) sparse phenotyping combinations belonging to each 3-environment complete phenotyping combination. Labels of horizontal axis are the 
scenario numbers of 3-environment combinations.
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Figure  3). However, in practice, breeders tend to choose 
environments that are distinct to select germplasm that are 
widely adapted.

It is also worth noting that the sparse phenotyping scenarios 
with less testing environments, e.g., one extended environment 
(4-environment combination) showed higher responses to selection 
than those with more environments, e.g., two and three extended 
environments (5- and 6-environment combinations; Figure  6; 
Supplementary Figure 7), which in part contradicts the experience 
on regular complete phenotyping that more testing environments 
imply higher selection accuracy and response to selection. 
Therefore, breeders may want to use one expansion environment 
when applying the sparse phenotyping approach as it would 
lead to a higher response. This would also facilitate the selection 
of extended environments as sparse phenotyping with more than 
one extended environment needs consideration of correlations 
between extended environments, which complicates the efficacy 
of the sparse phenotyping method.

Finally, although the budgets of the sparse phenotyping 
method with different number of expansion environments are 
theoretically identical, the actual cost would rise if the number 
of environments was increased, regardless of size. Hence, breeders 
should assess the practicality of the genomics-assisted sparse 
phenotyping approach based on both the relationship between 
testing environments and complexity of breeding 
program deployment.

CONCLUSION

Our study demonstrated that a genomics-assisted sparse 
phenotyping method can improve selection response for crop 

breeding, especially at the middle stages of a breeding program 
when multi-environment trials are not feasible due to cost. 
The sparse phenotyping approach was optimal when most of 
the complete phenotyping environments were negatively or 
lowly positively correlated and at least one of the extension 
environments was positively highly correlated with any of the 
complete phenotyping environment.
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TABLE 1 | Wheat – grouping of 3-environment combinations according to their utility of genomics-assisted sparse phenotyping over complete phenotyping.

Group Complete phenotyping 
group correlation 
characteristics

Complete 
phenotyping three-
environment 
combinations

Genomic sparse phenotyping better?

Plus 1 sparse environment Plus 2 sparse environments Plus 3 sparse 
environments

1
One highly positive 
correlation

1, 2, 3, 4 No No No

2 All correlations positive 5, 11, 19

Yes, when additional environment 
was positively highly correlated 
with the complete phenotyping 
environment

No No

3 One negative correlation 6, 7, 12, 13, 17, 18

Yes, when additional environment 
was positively highly correlated 
with the complete phenotyping 
environment

Yes, when additional environments 
were positively highly or moderately 
correlated with the complete 
phenotyping environment, where the 
two moderately correlated 
environments need to be highly 
correlated

No

4 Two negative correlations 8, 9, 10, 14, 15, 16, 20

Yes, when additional environment 
was positively highly correlated 
with any or positively correlated 
with all complete phenotyping 
environments

Yes, when one additional 
environment was positively highly 
correlated with the complete 
phenotyping environment

Yes, when one additional 
environment was positively 
highly correlated with the 
complete phenotyping 
environment
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