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Maturity degree and quality evaluation are important for strawberry harvest, trade, and

consumption. Deep learning has been an efficient artificial intelligence tool for food

and agro-products. Hyperspectral imaging coupled with deep learning was applied

to determine the maturity degree and soluble solids content (SSC) of strawberries

with four maturity degrees. Hyperspectral image of each strawberry was obtained and

preprocessed, and the spectra were extracted from the images. One-dimension residual

neural network (1D ResNet) and three-dimension (3D) ResNet were built using 1D

spectra and 3D hyperspectral image as inputs for maturity degree evaluation. Good

performances were obtained for maturity identification, with the classification accuracy

over 84% for both 1D ResNet and 3D ResNet. The corresponding saliency maps showed

that the pigments related wavelengths and image regions contributed more to the

maturity identification. For SSC determination, 1D ResNet model was also built, with

the determination of coefficient (R2) over 0.55 of the training, validation, and testing

sets. The saliency maps of 1D ResNet for the SSC determination were also explored.

The overall results showed that deep learning could be used to identify strawberry

maturity degree and determine SSC. More efforts were needed to explore the use of

3D deep learning methods for the SSC determination. The close results of 1D ResNet

and 3D ResNet for classification indicated that more samples might be used to improve

the performances of 3D ResNet. The results in this study would help to develop 1D

and 3D deep learning models for fruit quality inspection and other researches using

hyperspectral imaging, providing efficient analysis approaches of fruit quality inspection

using hyperspectral imaging.
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INTRODUCTION

Strawberry, a kind of fruit cultivated worldwide, is favored
by consumers due to the unique characteristics, such
as characteristic aroma, sweetness, and rich in nutrition.
Strawberries are commonly eaten fresh, and they are sources
and ingredients of the other foods. Maturity is an important
quality index of fruits, related to eating quality, harvest,
storage, and trade. It has short shelf-life, and strawberries with
different maturity degree have different shelf-life. Fully matured
strawberries have the shortest shelf-life (Rahman et al., 2014).
Immature strawberries can become mature and over-mature
quickly. They are vulnerable to physical damage, especially
for the matured ones (Aliasgarian et al., 2015). Damaged
strawberries will become rotten. Generally, nearly-mature
strawberries are harvested and stored for trade. Exploring the
appropriate maturity degrees for harvest is of importance for the
growth management, storage, and trade.

As a matter of fact, it is easy for consumers to evaluate
the maturity of the strawberry by observing its color, which is
labor-cost and low-efficiency. Internal quality is another aspect
that consumers care about for strawberry, which is more difficult
to be estimated by observing the fruits. Researchers, planters,
and traders have tried to develop non-destructive and automatic
systems for the maturity and quality monitoring of strawberry.
Computer vision has been proved to be quite efficient for the
strawberry maturity determination, and it lacks the ability to
determine the internal quality (Xu and Zhang, 2007; He et al.,
2017; Oo and Aung, 2018). Near-infrared spectroscopy is a
technique that can determine internal quality of strawberries
(Shen et al., 2018; Mancini et al., 2020). However, near-infrared
spectroscopy lacks in spatial information of the samples.

By integrating the computer vision and spectroscopy

techniques, hyperspectral imaging has been utilized as a

non-destructive and rapid analytical technique in various fields,

such as nanoscale materials (Dong et al., 2018), plant seeds

(Feng et al., 2019a), agricultural and food products (Jia et al.,
2020), horticultural products (Lu et al., 2020), biological tissues
(Rehman and Qureshi, 2020), wound care (Saiko et al., 2020),
and fruits damage (He et al., 2021). Hyperspectral imaging has
also been proved as an effective analytical technique for the fruit
quality and safety inspection. Hussain et al. (2018) reviewed the
use of hyperspectral imaging for fruit ripening and maturity.
Lu et al. (2020) reviewed the use of hyperspectral imaging for
fruit color, physiological disorders, damages, maturity, etc.
He et al. (2021) reviewed the use of hyperspectral imaging
for fruits damage inspection. Moreover, researchers have
adopted hyperspectral imaging in strawberry for maturity and
quality determination. Zhang et al. (2016) used hyperspectral
imaging to evaluate the ripeness of strawberry. Elmasry et al.
(2007) used hyperspectral imaging to determine the moisture
content, total soluble solids, and acidity in strawberry. Liu
et al. (2018) used hyperspectral imaging to identify bruise and
fungi contamination in strawberries. Siedliska et al. (2018) used
hyperspectral imaging to detect fungal infections in strawberry.
Liu et al. (2019) used hyperspectral imaging to detect the decay
of postharvest strawberry. Shao et al. (2020) used hyperspectral

imaging to evaluate the strawberry ripeness. Weng et al. (2020)
used hyperspectral imaging to determine the soluble solid
content (SSC), pH, and vitamin C in strawberry. Hyperspectral
images can provide spectral and image information. Spectral
information can be used to determine the internal quality, and
image information can be used to determine the external quality.
Based on the information extracted from hyperspectral images,
calibration models can be built to determine the external and
internal quality.

Various machine learning methods have been used to
establish models for classification and regression issues based
on hyperspectral images. Deep learning is now a hot machine
learning method with rapid development due to its nature to
automatically learn the features from the data. Deep learning uses
multi-layer neural networks to learn features within each layer
via mathematical operations on input data. Deep learning can
deal with big data efficiently and has been successfully applied
in various fields, such as healthcare (Esteva et al., 2019), food
(Zhou et al., 2019), agriculture (Kamilaris and Prenafeta-Boldú,
2018), and medical imaging (Kim et al., 2019). Deep learning
has been used in hyperspectral image analysis. Due to the fact
that hyperspectral image is a three-dimension (3D) data cube,
one-dimension (1D), two-dimension (2D) and 3D data can be
extracted from hyperspectral images. The corresponding 1D
(Audebert et al., 2019; Zhang et al., 2020), 2D (Wang et al.,
2018; Audebert et al., 2019), and 3D (Audebert et al., 2019;
Nagasubramanian et al., 2019) deep learning models can be
developed for hyperspectral image analysis. Nowadays, deep
learning has been used in fruit quality and safety inspection by
hyperspectral imaging, such as bruises on winter jujube (Feng
et al., 2019b), strawberry ripeness (Gao et al., 2020), and early
decay on blueberry (Qiao et al., 2020).

There is redundant information in hyperspectral image, which
is irrelevant to the research objectives. It is important to identify
which information contributes more to the research objectives.
This will result in feature selection and extraction. Saliency map
is a widely used visualization method for deep learning to see
which information is more important for the models (Simonyan
et al., 2014). Most of the studies using saliency maps focus on the
classification issues. No studies have used saliency map for deep
learning regression models using hyperspectral images.

In this study, hyperspectral imaging coupled with deep
learning was used to identify the maturity degree of strawberry
and estimate the SSC of strawberry. Deep learning models using
1D spectra and 3D hyperspectral image were developed for
maturity evaluation. SSC was determined by 1D deep learning
model. Saliency maps were calculated for both the classification
and regression deep learning models. The performances of
1D deep learning model and 3D deep learning model for
classification were also compared.

MATERIALS AND METHODS

Sample Preparation
The fresh strawberries (cultivar: Hongyan) were harvested from
a local farm in Yuhang Disctrict, Hangzhou, Zhejiang Province,
China in January, 2021. The strawberries were washed and
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FIGURE 1 | Images of strawberries of the four maturity degree (D1: the portion

of the red color areas below 25%; D2: the portion of the red color areas

between 26 and 50%; D3: the portion of the red color areas between 51 and

75%; D4: the portion of the red color areas between 75 and 100%).

cleaned. The strawberries were visually and manually divided
into four maturity degrees according to the portion of the red
color areas, namely Degree 1 (D1: the portion of the red color
areas below 25%), Degree 2 (D2: the portion of the red color areas
between 26 and 50%), Degree 3 (D3: the portion of the red color
areas between 51 and 75%), and Degree 4 (D4: the portion of the
red color areas between 75 and 100%). Figure 1 shows the typical
samples of the four maturity degrees. After being harvested, the
strawberries were cleaned and stored at room temperature. Then,
hyperspectral images were acquired in the following day. For each
maturity degree, 204 strawberries were collected. The samples
were numbered, and 36 strawberries of each maturity degree
were picked for the measurement of SSC after hyperspectral
image acquisition.

Hyperspectral Image Acquisition
A laboratory based hyperspectral imaging system covering the
spectral range of 380–1,030 nm [the same in literature (Wang
et al., 2020)] was used to acquire hyperspectral images of
strawberries. To acquire hyperspectral images, the distance
between the lens and the sample plate, the camera exposure time
and the moving speed of the sample plate were adjusted as 25 cm,
0.04 s, and 3.3 mm/s. During the image acquisition procedure,
these parameters were kept the same. After image acquisition,
the raw hyperspectral images were corrected into the reflectance
hyperspectral images (Wang et al., 2020). In each hyperspectral
image, 12 strawberries were placed separately, and 17 images
were acquired for each maturity degree. For strawberries of

TABLE 1 | Statistical analysis of the measured SSC values of strawberries of

different maturity degrees (p < 0.05).

Maturity degree SSC (Brix◦)

D1* 8.23 ± 1.15c

D2 8.57 ± 0.8c

D3 9.58 ± 1.32b

D4 10.37 ± 1.71a

*D1: the portion of the red color areas below 25%; D2: the portion of the red color areas

between 26 and 50%; D3: the portion of the red color areas between 51 and 75%; D4:

the portion of the red color areas between 75 and 100%.

Lowercase letters (a–c) mean p < 0.05.

D1 and D2, the side containing more red parts were used for
hyperspectral image acquisition.

Hyperspectral Image Preprocessing and
Spectra Extraction
In this study, the hyperspectral images of each strawberry were
extracted from the original reflectance hyperspectral images. The
head and tail of hyperspectral images contained obvious noises
and only the hyperspectral images in the range of 441–947 nm
(400 wavebands) were used for further analysis. A Savitzky–
Golay smoothing filter was conducted on the hyperspectral
images to reduce the noises (Yan et al., 2021), and area
normalization was applied on the pixel-wise spectra to reduce the
influence of sample shape (Zhao et al., 2020). After preprocessing,
the average spectrum of each strawberry was extracted for further
analysis. Both 1D spectra and the preprocessed 3D hyperspectral
images were used for maturity degree classification, and 1D
spectra were used for SSC evaluation.

Determination of SSC Content
After hyperspectral image acquisition, 36 strawberries of each
maturity degree were used for the SSC measurement. Each
strawberry was manually squeezed with two pieces of gauze to
filter the solutions. Then a drop of solution (∼1ml) was used to
measure the SSC content using a portable digital refractometer
instrument (30 GS, Mettler-Toledo Company, Switzerland). The
refractometer was first calibrated before being used for further
measurement. Table 1 summarizes the statistical analysis of the
measured values of SSC of different maturity degrees.

As shown in Table 1, the average SSC values increased with
the maturity degree of the strawberries. The SSC values of
strawberries of maturity D1 and D2 did not have significant
differences. While they had significant differences with D3 and
D4, and D3 and D4 also had significant differences.

Deep Learning Models
The 1D spectra and 2D images can be processed by deep
learning models and conventional methods directly. However,
the 3D hyperspectral image cannot be processed by the
conventional methods directly. Unlike the conventional machine
learning methods that may not be flexible to deal with multi-
dimensional data, deep learning methods can be used to deal
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with multi-dimensional data effectively. Different deep learning
architectures can be designed to meet the demands.

Convolutional neural network (CNN) is one of the most
widely used deep learning architecture. In previous studies,
the CNN models have showed equivalent or even better
performances than the conventional methods for both the
classification and regression. Thus, we do not use the
conventional methods as a comparison in this study. After
trails, the Residual Network (ResNet) architectures were used
for the classification and regression using 1D spectra and 3D
hyperspectral images. ResNet is a widely used CNN architecture
(He et al., 2016), and it is mainly developed to deal with the
degradation problem on the deeper neural networks. ResNet
introduces residual blocks to solve this problem and construct
very deep neural networks.

Considering the computation amount of ResNet architectures,
the bottleneck block was designed as the residual block to reduce
the number of parameters that have little influence on the result
(Zhao et al., 2019). Since the output of the network layer close
to the input was related to shallow semantics, the larger size
and stride of the convolution kernel or pooling layer were set
to increase the receptive field, and then, the global features were
extracted. The size and stride of the network layer away from
the input were set to be relatively small, so that local features
were focused.

To avoid the inconvenience caused by different CNN
architectures, we developed the same ResNet architectures
for both regression and classification using 1D spectra. The
differences between classification and regression lay in the
loss function and dense layer. The architectures of ResNet
for regression and classification of 1D spectra are shown
in Figure 2A.

For 3D data, the ResNet architecture for classification is shown
in Figure 2B and it is similar as the ResNet architectures for 1D
spectra. We also attempted to use the 3D ResNet for the SSC
determination. It failed to obtain good performances due to the
high dimension data and small sample number.

For the used ResNet models, the output of each convolution
layer outside the bottleneck block was batch normalized and
flowed into the activation function, which was set as Rectified
Linear Unit (ReLU). Notably, the input of each convolution
layer in the bottleneck block was batch normalized and activated
by ReLU. After global average pooling, a dropout layer was
added in the dense layer, and the probability of dropout was
set at 0.3. Batch normalization was applied to all datasets before
training, and it was added after each convolutional layer and
before the dense layer. For classification, the loss function was
SoftmaxCrossEntropyLoss, the number of training epochs was
1,000, and the learning rate was 0.01. For regression, the loss
function was L2 Loss, the number of training epochs was 1,500,
and the learning rate was 0.0001. All the optimizers were set
to Adam.

Saliency Map
Saliency map is a visualization method in deep learning
(Simonyan et al., 2014). Salience map can reflect the contribution
of each data variable on the model performances. Saliency map

is generally used for classification, and it is calculated using
the correctly predicted samples. Generally, saliency map is used
for 2D data analysis to visualize the importance of pixels for
classification. It has been extended to multi-dimension data
analysis for different data sources. In this study, the saliency map
method proposed by Shen et al. (2018) was used, and the detailed
information of saliency map used in this study for maturity
degree identification can be found in Simonyan et al. (2014).

Figure 3 shows the computational graph of the propagation of
CNN. The input includes sample spectral data X and label Y, the
blue and red arrows represent the forward propagation direction,
and the output includes the predicted values y_hat and loss.
Notably, the reverse direction of the red arrow is the partial path
of the CNN gradient back propagation, which is the calculation
principle of saliency map. The saliency map corresponds to the
dimension size of the input data and to the basic unit of the input
data one by one.

In this study, the saliency map method is simply modified
for regression issues to determine the SSC. As for classification
issues, the saliency map is calculated using the correctly classified
samples. Similarly, for regression issues, we define the “correctly
predicted sample” to calculate the saliency map. The prediction
error rate is used to define as the ratio of differences between
the measured value and predicted value to the measured value.
The samples with prediction error rate in a certain range are
defined as “correctly predicted sample.” The main problem is
to determine the prediction error rate. The saliency map can be
calculated for each sample, and statistical analysis was conducted
on each data variable of all “correctly predicted” samples to
evaluate the contribution of each wavelength. In this study, L1-
norm was used for the wavelength contributions. The saliency
map calculation for 1D spectra and 3D hyperspectral image was
conducted according to Yan et al. (2021).

Software and Model Evaluation
Hyperspectral image of each strawberry was manually cut
from the hyperspectral images (containing 12 strawberries in
each image) using ENVI4.7 (ITT, Visual Information Solutions,
Boulder, CO, USA). For each strawberry, hyperspectral image
preprocessing and spectral extraction were conducted using
Matlab R2015b (The MathWorks, Natick, MA, USA). ResNet
models and saliencymapwere conducted on Python 3.6 using the
MXNET framework (Amazon, Seattle, Washington State, USA).
The performances of the classification models were evaluated by
the classification accuracy, which was the ratio of the number
of correctly classified samples and the number of total samples.
The performances of the regression models were evaluated by
the determination of coefficient (R2) and root mean square error
(RMSE) of the training, validation, and testing sets.

RESULTS

Spectral Profiles
The average spectra and the preprocessed spectra of the four
maturity degrees of strawberries are shown in Figure 4, as well
as the first derivative spectra of the average spectra. The average
spectra and the corresponding first derivative spectra showed that

Frontiers in Plant Science | www.frontiersin.org 4 September 2021 | Volume 12 | Article 736334

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Su et al. Hyperspectral Imaging for Strawberry

FIGURE 2 | ResNet architectures for 1D spectra (A) and residual neural network (ResNet) architectures for 3D hyperspectral image (B). The bottleneck block is

defined by three convolution layers.
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FIGURE 3 | Computational graph of the propagation of convolutional neural network (CNN).

FIGURE 4 | Average spectra of strawberries from different maturity degree (A)

and corresponding first derivative spectra (B).

there were differences in the spectral profiles of the strawberries
from different maturity degrees. The main differences existed
in the spectral region of 441–700 nm. The wavelength regions
between 441 and 700 nm were mainly related to the color
information (Tugnolo et al., 2020; Walsh et al., 2020), which
has been widely used for fruit maturity degree identification,
especially for the fruits with pigments changes during maturity.

Classification of Strawberry Maturity
Degree
Classification Results
To classify the maturity degree of strawberries, the category
values of the maturity degrees were assigned as 0 (D1), 1 (D2),

2 (D3), and 3 (D4). To verify the generalization ability of these
models, the samples were split into the training, validation, and
testing sets for both 1D spectra and 3D hyperspectral images. In
the study, 17 samples were randomly selected from each category,
and each sample was successively added to the validation set
and test set. The remaining samples were used as the training
set. The data sampling process was repeated five times, and
there was a one-to-one correspondence for each data set for
the 1D spectra and 3D hyperspectral images. The number of
samples in the training, validation, and testing sets was 136,
34, and 34, respectively. To establish 3D ResNet model, all
hyperspectral images were resized to 85 pixels × 85 pixels ×

400 wavebands.
Based on the 1D spectra and 3D hyperspectral images,

ResNet models were built using the architectures shown in

Figure 2. Table 2 shows the results of 1D ResNet model and

3D ResNet model. In fact, Table 2 shows the most balanced
results of these models in the five repeated random data sampling
process (the prediction results of these model in each data
set have little fluctuation, and the results of the other four
data sampling processes are shown in Supplementary Table 1.
Notably, 1D ResNet model and 3D ResNet model showed
the most balanced results in the same data sampling process
(the samples for 1D ResNet and 3D ResNet were the same
in each sampling process). It was reasonable to believe that
the sample distribution of each data set was similar in this
data sampling process. Good performances were obtained for
the maturity degree identification. As shown in Table 2 and
Supplementary Table 1, similar trends are observed for the
classification of strawberry samples with different datasets. For
1D and 3D ResNet model, high classification accuracy can be
found in the training, validation, and testing sets. For both
1D ResNet and 3D ResNet, the strawberries of D4 could be
accurately differentiated from the other three maturity degrees.
A small number of strawberries of D1 can be identified as
D2. However, strawberries of D2 were more likely to be
misclassified as D1 and D3, strawberries of D3 were more
likely to be misclassified as D2. Indeed, the samples of each
degree cover a wide range of red color percentages. The
samples with close color percentages had a higher possibility
to be misclassified. It should be some samples were close and
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TABLE 2 | Confusion matrix of 1D and 3D ResNet model for strawberry maturity degree identification.

Sample set 1D ResNet 3D ResNet

D1 D2 D3 D4 Accuracy D1 D2 D3 D4 Accuracy

Training D1 131 5 0 0 135 1 0 0

D2 3 121 12 0 4 132 0 0

D3 0 8 128 0 0 8 125 3

D4 0 0 0 136 0 0 0 136

Overall 94.85% 97.06%

Validation D1 32 2 0 0 33 1 0 0

D2 0 27 7 0 3 26 5 0

D3 0 6 27 1 1 7 23 3

D4 0 0 0 34 0 0 0 34

Overall 88.24% 85.29%

Testing D1 29 5 0 0 33 1 0 0

D2 4 26 4 0 5 26 3 0

D3 0 5 28 1 0 8 24 2

D4 0 0 0 34 0 0 1 33

Overall 86.03% 85.29%

FIGURE 5 | Visualization of the wavelength contribution of the testing set by

1D ResNet.

belong to two different maturity degrees, which would result
in misclassification.

The classification results of 1D and 3D ResNet were
quite close. The ANOVA was conducted on the classification
accuracy of the three sets for the five times of modeling.
No significant differences could be found between 1D and
3D ResNet models at p < 0.01. Although, the hyperspectral
image of the strawberry provides more information than
the corresponding spectrum. The reason might be that the
number of samples was relatively small, the potential of deep
learning for feature learning from big data might not be
fully revealed.

FIGURE 6 | Visualization of the wavelength contribution of the testing set by

3D ResNet.

Saliency Maps of 1D ResNet and 3D ResNet for

Maturity Degree Identification
For strawberry maturity degree identification, the testing
sets of 1D spectra were used for the visualization of 1D
ResNet model. The models with results shown in Table 2

were used for visualization. Based on the correctly classified
samples of different maturity degrees, the cumulative
contribution of each wavelength was calculated, and they
were normalized so that the sum of the contribution of all
wavelengths was 1. Figure 5 shows the visualization of the
cumulative contribution of wavelengths of samples correctly
classified in the testing sets by 1D ResNet. As shown in
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Figure 5, the wavelengths in the ranges of 441–464, 490–
513, 589–663, 688–726, and 883–947 nm showed a relatively
higher contribution.

As for 3D hyperspectral image data, the visualization results
of the wavelength contribution are shown in Figure 6. Based
on the correctly classified samples of different maturity degrees,
the cumulative contribution of each wavelength was calculated
and normalized. As shown in Figure 6, in general, the 3D
ResNet model was more sensitive to the spectral range of
560–680 nm. It could be noted that for each maturity degree
of strawberries, the wavelength contribution showed different
trends. As for D1, the wavelengths in the spectral range of 701–
947 nm showed higher contributions than the spectral range
of 560–680 nm. The wavelengths in the spectral range of 701–
947 nm also showed a high contribution for strawberries of
D1 and D2.

In 3D ResNet visualization, the visualization results of the

two samples of each maturity degree are randomly presented

in Figure 7. In Figure 7, the colors in the colorbar indicated

the corresponding contribution values of each pixel in the
hyperspectral images. The colors in the colorbar from the

bottom to the top represented the values from low to high.
For strawberries of D1, the green parts contributed more to the
classification. For strawberries of D2, the parts with the light
red color contributed more to the classification. For strawberries
of D3, the red parts contributed more to the classification. For
strawberries of D4, the dark red parts seemed to contribute
more to the classification. As for 3D ResNet visualization, the
results showed that 3D ResNet was able to learn informative
features for the classification of different maturity degrees
of strawberries.

Determination of SSC
Results of SSC Determination
In general, 1D deep learning model was more frequently used
for the purpose of evaluating the quality of food and agro-
products quality. In this study, 1D ResNet model was also used
to determine SSC in strawberries. Before modeling with the
samples, outliers (12 samples) were removed from the sample
set by a partial least square based method (He et al., 2019).
Considering the spectral and biochemical properties (SSC) of the
samples, SPXY method was used to maintain the appropriate

FIGURE 7 | The saliency maps of two randomly selected hyperspectral images of the testing sets of each maturity degree based on 3D ResNet. Colors in the

colorbar indicated the corresponding contribution values of each pixel in the hyperspectral images. The colors in the colorbar from the bottom to the top represented

the values from low to high.
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FIGURE 8 | Prediction results of SSC using 1D ResNet. (A) Results of the

training set, (B) results of the validation set, (C) results of the testing set. R2c,

R2v, and R2p mean the R2 of training, validation, and testing, respectively.

RMSEC, RMSEV, and RMSEP mean the root mean square error (RMSE) of

training, validation and testing, respectively.

distribution of samples in each data set (Wei et al., 2020). The
training set, validation set, and test set were composed of 88,
22, and 22 samples, respectively. Figure 8 shows the results of
the 1D ResNet for SSC determination. The results showed that
the performances of 1D ResNet for SSC determination were not
good enough compared with previous studies (Amodio et al.,
2017; Chen et al., 2017; Shen et al., 2018; Mancini et al., 2020;
Weng et al., 2020). The R2 of the three sets were all over 0.55,
indicating that the improvements on the performances should
be conducted in future studies. We have also tried to use 3D
ResNet for SSC determination, and we failed to obtain good
performances (the results were not shown) due to the high
dimensionality of hyperspectral image and the small number
of samples.

Saliency Maps of 1D ResNet for Regression
Based on the idea of the vitalization of deep learning models
for classification, the saliency maps for regression issues
were explored. The saliency maps for classification were
calculated using the correctly classified samples. Thus,
for regression issues, we defined the “correctly predicted
samples” by using the prediction error rate. The prediction
error rate was defined as the ratio of differences between
the measured value and predicted value to the measured
value. No criteria could be found for the prediction error
rate. In this study, we defined the samples with a prediction
error rate of 5 and 10% as “correctly predicted samples”
for saliency map calculation and comparison. Figures 9A,B

show the visualization of 1D ResNet model with a prediction
error rate of 5 and 10%. In Figure 9A, the wavelengths
in the range of 700–720 nm showed higher contributions,
followed by the wavelengths in the range of 810–840,
880–940, and 580–600 nm. In Figure 9B, similar results as
Figure 9A could be found for the prediction error rate of
10%. Some of the wavelengths in these regions could be
found in literature (Choi et al., 2017; Li et al., 2020) for the
SSC determination.

DISCUSSION

Fruit maturity is a concerned issue for planter, trader, and
consumers. Hyperspectral imaging has been proved to be an
effective technique for fruit maturity and quality evaluation.
In this study, good performances were obtained for strawberry
maturity degree evaluation, and the evaluation of SSC values was
not so good.

As for fruit maturity evaluation by hyperspectral imaging,
spectral features (Zhang et al., 2016; Shao et al., 2020), image
features (Elmasry et al., 2007; Zhang et al., 2016; Gao et al.,
2020), and the fusion of these features were used as inputs
of classification models (Zhang et al., 2016; Khodabakhshian
and Emadi, 2017). The spectral features were the most widely
used. The fusion of spectral features and image features from
hyperspectral images generally obtained good performances
(Zhang et al., 2016; Khodabakhshian and Emadi, 2017). In
this study, in addition to the spectra of the 1D ResNet, the
hyperspectral images were used as inputs of 3D ResNet, without
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FIGURE 9 | Visualization of the wavelength contribution of the testing set for

the soluble solids content (SSC) determination by 1D ResNet using samples

with prediction error rate of 5% (A) and prediction error rate of 10% (B). The

prediction error rate means the ratio of differences between measured value

and predicted value to the measured value.

extracting the spectral features and image features separately in
advance. As for maturity evaluation, good performances were
obtained for both 1D spectra and 3D hyperspectral image.
Better training performances were obtained by 3D ResNet, while
worse validation and testing performances were obtained by 3D
ResNet. The results indicated that both 1D CNN and 3D CNN
could be used to identify the maturity degree of strawberries.
The ANOVA of the classification accuracy of the three sets
for the five times of modeling showed that there were no
significant differences (p<0.01) on the performances between
1D and 3D ResNet models. Indeed, the training of 3D CNN
took much more time and computation cost than that of 1D
CNN, and the prediction using 3D CNN was fast (∼0.0156 s in
this study).

As for hyperspectral image for fruit SSC determination, the
spectral features, image features, and the fusion of spectral
features and image features have also been used (Fan et al., 2016;
Weng et al., 2020; Huang et al., 2021; Pang et al., 2021). In

addition to 1D spectra of 1D ResNet, 3D hyperspectral images
with more spectral and image features could be used to establish
3D ResNet model, without the use of pre-extracted spectral
features and image features. After trials in this study, we failed to
use 3D ResNet for the SSC determination, due to the fact that the
dimension of hyperspectral image was high and the number of
the used samples was small. Indeed, the prediction performances
of SSC were not good enough. In some studies, the results
of SSC determination using visible/near infrared spectroscopy
and hyperspectral imaging were also not good enough (Leiva-
Valenzuela et al., 2014; Pu et al., 2015; Li et al., 2016; Anisur
et al., 2017; Ekramirad et al., 2017). Indeed, our results for the
SSC determination of strawberries were not as good as those
for strawberries SSC determination using visible/near-infrared
spectroscopy and hyperspectral imaging (Amodio et al., 2017;
Chen et al., 2017; Shen et al., 2018; Mancini et al., 2020; Weng
et al., 2020). In all, the prediction results of fruit SSC varied, and
more efforts were needed to improve the performances of the SSC
determination of strawberries based on this study.

This study illustrated the feasibility of deep learning
approaches for strawberry maturity and quality evaluation.
For maturity evaluation, the computation cost of 3D ResNet
was significantly more than that of 1D ResNet. Although
hyperspectral images contained more information, the potential
of 3D ResNet for feature learning from the hyperspectral images
might have not been fully revealed with the small number of
samples. On the other hand, only one variety of strawberries
was studied. It was important to develop models for the different
varieties of strawberry in the future.

Beyond the modeling procedures, the saliency map method
was used to visualize the important information relating
to the classification and regression. By using saliency map
methods, the important spectral regions and important pixels
in the hyperspectral image for maturity and SSC evaluation
could be explored. For maturity identification, the wavelength
contribution of 1D and 3D ResNet showed differences.
The wavelengths with higher contribution matched with the
wavelengths with larger differences in the first derivative spectra.
The wavelengths in the range of 589–663 nm contributed more
for both 1D and 3D ResNet. All these wavelengths were related
to the pigments (color) information (Tugnolo et al., 2020; Walsh
et al., 2020). Moreover, for 3D ResNet visualization in Figure 7,
it could be found that the pixels with higher contributions were
related to the parts with different color information.

The saliency map methods are generally used for classification
issues. However, based on its principles, it might be able to
extend the saliency map to the regression issues. In this study,
the saliency maps of 1D ResNet estimation were calculated. The
wavelengths that contributed more to the SSC determination lay
in the spectral regions of 700–720, 810–840, 880–940, and 580–
600 nm. The saliencymaps for the regression could be conducted.
Themain problemwas that samples could be used to calculate the
saliency maps. In this study, we used the prediction error rate to
identify the “correctly predicted samples.” More efforts should be
conducted to extend the saliency map and similar methods to the
regression issues.
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CONCLUSION

Hyperspectral imaging coupled with deep learning approaches
were used to classify strawberries from different maturity degrees
and estimate the SSC in strawberries. Both 1D spectra and 3D
hyperspectral images were used to establish the ResNet models
for maturity degree identification, and 1D spectra were used
for the SSC estimation. Good performances were obtained for
maturity degree identification, with the classification accuracy
over 90% in the training set and classification accuracy over
84% in the validation and testing sets for both 1D and 3D
ResNet. For SSC determination, the performances of 1D ResNet
were not good enough, with R2c, R2v, and R2p ∼0.55. For
classification, 1D and 3D ResNet showed close results, and the
computation cost of 3D ResNet was more than that of 1D
ResNet. The results indicated that 1D spectra were able to identify
strawberry maturity degree and determine SSC with a small
number of samples. With more samples, the potential of 3D
ResNetmight be fully revealed due to the feature learning abilities
of deep learning in big data analysis. The saliency maps of
wavelengths and pixels in 1D and 3D ResNet showed that the
pigments related information (color information) contributed
more for maturity degree identification in strawberry using the
hyperspectral imaging. The saliency maps of 1D ResNet for the
SSC determination were also explored, and the wavelengths in the
spectral range of 700–720, 810–840, 880–940, and 580–600 nm
contributed more for the SSC determination in this study. The
overall results showed that the hyperspectral imaging combined
with deep learning approaches could be used to identify maturity
degree and predict SSC of strawberry. More efforts should be
made to improve the performances of SSC prediction. The 3D
deep learning models could be used for the hyperspectral image
analysis of fruits and it could be extended to other food and agro-
products quality inspection, although it did not outperform the
1D deep learning models with a small number of samples. The
use of 3D deep learning models using hyperspectral images for

regression should be further investigated with more samples and
effective dimensionality reduction algorithms.
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