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Plants modify their internal states to adapt to environmental stresses. Under environmental 
stress conditions, plants restrict their growth and development and activate defense 
responses. Abscisic acid (ABA) is a major phytohormone that plays a crucial role in the 
osmotic stress response. In osmotic stress adaptation, plants regulate stomatal closure, 
osmoprotectant production, and gene expression. Here, we isolated CaPRR2 – encoding 
a pseudo response regulator protein – from the leaves of pepper plants (Capsicum 
annuum). After exposure to ABA and environmental stresses, such as drought and salt 
stresses, CaPRR2 expression in pepper leaves was significantly altered. Under drought 
and salt stress conditions, CaPRR2-silenced pepper plants exhibited enhanced osmotic 
stress tolerance, characterized by an enhanced ABA-induced stomatal closing and high 
MDA and proline contents, compared to the control pepper plants. Taken together, our 
data indicate that CaPRR2 negatively regulates osmotic stress tolerance.

Keywords: abscisic acid, drought stress, high salinity, pepper, stomata

INTRODUCTION

Plants are sessile organisms; hence, they develop stress response mechanisms to adapt to 
various environmental stresses. Osmotic stresses, such as drought and salinity, disrupt homeostasis 
and cause functional and structural damage to proteins, resulting in fatal injury to cells (Wang 
et  al., 2003; Golldack et  al., 2014; Zhao et  al., 2021). Plants enhance their osmotic tolerance 
by adjusting physiological and molecular processes, such as osmotic adjustment and antioxidant 
production, in response to stress conditions (Ma et  al., 2020). During drought stress, plants 
regulate water status and alter gene expression via osmotic stress response signaling (Osakabe 
et al., 2011). Abscisic acid (ABA) is a key phytohormone that regulates osmotic stress responses, 
including physiological and molecular changes (Fujita et  al., 2011). Under high-salt stress 
conditions, plants perceive salt and import sodium. Perception leads to early signaling responses, 
such as the activation of K+ transport and Ca2+ signaling as well as the induction of reactive 
oxygen species (ROS). Additionally, plants regulate hormone levels and gene expression. 
Consequently, adaptive responses occur, and plants are able to survive under osmotic stress 
conditions (van Zelm et  al., 2020). Osmotic adjustment through ions occurs via the alteration 
of the K+/Na+ balance in roots and shoots (Almeida et al., 2017). Moreover, osmotic adjustment 
via organic solutes occurs through the synthesis and accumulation of organic solutes in the 
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cytoplasm (Quero et  al., 2014). Plants alleviate ion toxicity by 
reestablishing cell turgor and driving the gradient for water 
uptake to minimize damage. However, these processes inhibit 
plant growth and development.

Two-component signaling systems (TCSs) function in 
various signal transduction pathways in many prokaryotes 
and a few eukaryotes, which simply consist of two elements: 
histidine protein kinase and a response regulator protein 
(Stock et  al., 2000; Satbhai et  al., 2011). In plant, several 
components of TCSs are found to be  involved in plant 
hormone, stress, and light signaling (Hwang et  al., 2002; 
Mizuno, 2005). Among them, the pseudo-response regulators 
(PRR), one of the three types of response regulator proteins, 
contain an atypical receiver domain; in Arabidopsis, nine 
PRRs does not have the phosphor-accepting Aspartic acid 
residue which is conserved in receiver domain of response 
regulator protein (Hwang et al., 2002; Mizuno, 2005). Within 
this type genes, PRR2 have been proven to have no phospho-
accepting activity in its receiver domain (Makino et  al., 
2002). PRR2 contains a Myb-like DNA-binding domain (also 
referred to GARP domain) at the C-terminus, together with 
atypical receiver domain at the N-terminus (Hwang et  al., 
2002). Unlike other PRRs involved in the circadian clock 
mechanism (Mizuno and Nakamichi, 2005), biological function 
of PRR2 remains largely unknown. Recent studies have 
revealed that in Arabidopsis PRR2 functions as a positive 
regulator of plant immunity by enhancing salicylic acid (SA) 
biosynthesis and SA signaling responses (Cheval et al., 2017). 
This PRR2 transcript expression increased in response to 
inoculation with Pseudomonas syringae and SA treatment. 
Moreover, prr2 knockdown and overexpression mutants 
exhibited altered susceptibility to P. syringae, induction of 
defense marker genes, and altered PR1 protein levels and 
SA content (Cheval et  al., 2017). Arabidopsis PRR2 has 
been isolated an interacting partner of calmodulin-like protein 
9 (CML9; Perochon et al., 2010). CML9 gene, rapidly induced 
by both biotic and abiotic stress such as cold and drought, 
is associated with salt tolerance through modulation of 
ABA-mediating pathway (Magnan et  al., 2008), providing 
the potential for its interacting partner PRR2 to be  involved 
in response to abiotic stress. However, the precise function 
of PRR2 still remains unknown.

In the present study, we isolated CaPRR2 (Capsicum annuum 
Pseudo-Response Regulator 2), a homolog of Arabidopsis PRR2, 
and investigated its functional involvement in pepper plants 
in response to drought and salt stress. The CaPRR2 protein 
contains an MYB domain at its C-terminus. CaPRR2 transcripts 
were induced or repressed in response to various stress treatments, 
and CaPRR2 was localized in the nucleus by the MYB domain. 
We used loss-of-function genetic studies to examine the functional 
roles of CaPRR2  in response to exogenous ABA and osmotic 
stress treatments. CaPRR2-silenced pepper plants exhibited 
enhanced ABA sensitivity and abiotic stress-tolerant phenotypes. 
Moreover, under drought and high salinity conditions, CaPRR2 
knockdown pepper plants showed high expression levels of 
osmotic response genes. Taken together, our data indicate that 
CaPRR2 negatively regulates osmotic stress resistance.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Korean red pepper (C. annuum L., cv. Nockwang) and tobacco 
(Nicotiana benthamiana) seeds were sown in loam, sand, and 
a compost mix of soil (vermiculite, perlite, and, peat moss, 
2:3:5, v/v/v; 1:1:1, v/v/v). Plants were placed in growth room 
at 24 ± 1°C with 60% relative moisture under white fluorescent 
light (130 μmol photons·m−2·s−1) with a 16-h light/8-h dark cycle.

Virus-Induced Gene Silencing
To generate the CaPRR2-silenced pepper plants, a tobacco rattle 
virus (TRV)-based virus-induced gene silencing (VIGS) technique 
was employed, as described by Lim et  al. (2018). Using the 
VIGS tool,1 two 300-bp fragments of the CaPRR2 cDNA, 
CaPRR2 N1 (1,052–1,351), and CaPRR2 N2 (1,361–1,660) were 
designed to avoid off-target of silencing; each region was 
subsequently amplified by PCR using the primers XbaI-CaPRR2 
N1 (5ʹ-TCTAGATGAAAGTAGAAGGCCTGACAA-3ʹ) and XhoI-
CaPRR2 N1 (5ʹ-CTCGAGTCTCGGGTGGTTGCCAT-3ʹ) or 
XbaI-CaPRR2 N2 (5ʹ-TCTAGAGGAATCCTCACTCTGGACT
GTAT-3ʹ) and XhoI-CaPRR2 N2 (5ʹ-CTCGAG 
GAGAACCGTTGATGCGTG-3ʹ). Agrobacterium tumefaciens 
strain GV3101 carrying pTRV1 and pTRV2:CaPRR2 N1, 
pTRV2:CaPRR2 N2, or pTRV2:00 as a negative control was 
co-infiltrated into the fully expanded cotyledons of pepper 
plants (OD600 = 0.2 for each construct). Infected plants were 
placed in a growth room and maintained under the growth 
conditions described above for growth and spread of the virus.

RNA Isolation and Quantitative Reverse 
Transcription-Polymerase Chain Reaction
Total RNA isolation and reverse transcription-polymerase chain 
reaction (RT-PCR) analyses were performed as described 
previously with some modifications (Lim and Lee, 2016; Lim 
et  al., 2018). Pepper leaves at six-leaf stage were treated with 
ABA (100 μM), H2O2 (100 mM), mannitol (600 mM), low 
temperature (10°C), NaCl (200 mM), or drought stresses. cDNA 
was synthesized using harvested pepper leaves by a Transcript 
First Strand cDNA Synthesis kit (Roche, Indianapolis, IN, 
United States). The cDNA synthesized for quantitative real-time 
polymerase chain reaction (qRT-PCR) assay was amplified in 
a CFX96 Touch™ Real-Time PCR detection system (Bio-Rad, 
Hercules, CA, United States) using iQ™SYBR Green Supermix 
and specific primers (Supplementary Table S1). The relative 
expression level of each gene was calculated using the ∆∆Ct 
method as previously described (Livak and Schmittgen, 2001). 
The pepper Actin1 (CaACT1) gene was used for normalization 
(Lim and Lee, 2016).

In silico Analysis
Using the deduced amino acid sequence of CaPRR2 gene as 
query, its isoelectric point and a molecular weight were calculated 

1�http://vigs.solgenomics.net
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in web tool Expasy Compute pI/MW.2 Protein sequences of 
CaPRR2-homologous genes from other plant species were 
obtained through BLASTP search and were used for multiple 
sequence alignment analysis using web tool Clustal Omega.3 
The phylogenetic tree analysis was conducted using MEGA 
software (version 7.0) with the neighbor-joining method.

Subcellular Localization
To determine the subcellular location of CaPRR2, the full-
length coding sequence (1–557) and fragments of CaPRR2 
(1–151, 152–291, 292–451, 452–557, and 332–451 bp) without 
the stop codon were inserted into the p326GFP vector. The 
GV3101 strain of Agrobacterium tumefaciens containing each 
construct was mixed with strain p19 (1:1 ratio; OD600 = 0.5) 
and co-inoculated into fully expanded leaves of 5-week-old 
N. benthamiana. After 2 days, the green fluorescent protein 
(GFP) signals were detected under a confocal microscope (510 
UV/Vis Meta; Zeiss) equipped with LSM Image Browser software.

Drought Treatment
Three-week-old control and CaPRR2-silenced pepper plants 
were subjected to drought stress by withholding water for 
14 days. The survival rate was measured by counting the plant 
number resumed their growth 2 days after re-watering. To 
determine the water loss, the first and second leaves were 
detached from both pepper plants. The fresh weights of the 
detached leaves were measured hourly. For the analysis of the 
relative water content (RWC), the first leaves were detached 
from 3-week-old pepper plants of each line, and the fresh 
weight (FW) was measured. The leaves were incubated under 
turgid conditions for 8 h, and the turgid weight (TW) was 
measured. The dry weight (DW) was measured after drying 
in a 60°C dry oven for 4 days. The RWC of each plant line 
was calculated using the formula [RWC = (FW − DW)/
(TW − DW) × 100]. For qRT-PCR analysis, 3-week-old 
TRV2:CaPRR2 and TRV2:00 plants were carefully removed 
from the soil and subjected to drought stress. After 6 h, the 
first and second leaves of each plant line were harvested, and 
total RNA was isolated. The experiments were repeated 
three times.

Thermal Imaging and Stomatal Aperture 
Bioassay
Measurements of the leaf temperature and stomatal pore size 
were performed as previously described (Lim and Lee, 2016). 
Six-leaf stage pepper plants were used for the thermal image 
analysis. Thermal images were taken before and after treatment 
with 0 and 100 μM ABA for 6 h using an infrared camera 
(FLIR system; T420), and leaf temperature was measured with 
FLIR Tools + version 5.2 software.

TRV2:CaPRR2 and TRV2:00 leaf peels of the first and second 
leaves were floated on stomatal opening solution (SOS: 10 mM 
CaCl2, 10 mM MES-KOH, pH 6.15, and 50 mM KCl) under 

2�https://web.expasy.org/compute_pi/
3�https://www.ebi.ac.uk/Tools/msa/clustalo/

light conditions for 2.5 h. After 2.5 h, the leaf peels were 
transferred to fresh SOS containing 0 and 20 μM ABA and 
incubated for an additional 2.5 h. For measurement of the 
stomatal apertures, 100 stomata per sample were observed 
under a Nikon Eclipse 80i microscope. Each experiment was 
performed independently three times.

Salt Treatment
Three-week-old CaPRR2-silenced and control pepper plants 
were hydroponically subjected to salt stress using water containing 
200 mM NaCl. The survival rate was calculated by counting 
the number of plants 4 days after salt stress treatment. To 
determine the chlorophyll content, various concentrations of 
NaCl solution were applied to the leaf discs of TRV2:CaPRR2 
and TRV2:00 plants. Five days after salt stress treatment, the 
leaf disc chlorophyll content was measured 
spectrophotometrically, as described previously (Lim et  al., 
2015). For qRT-PCR analysis, 3-week-old TRV2:CaPRR2 and 
TRV2:00 plants were hydroponically subjected to salt stress 
using water containing 200 mM NaCl. After 6 h, the first and 
second leaves of each plant line were harvested, and total 
RNA was isolated. All experiments were repeated three times.

Measurement of Proline and 
Malondialdehyde Contents
Three-week-old CaPRR2-silenced and control pepper plants 
were subjected to salt stress by hydroponically incubating them 
to various concentrations of NaCl solution. Proline contents 
of harvested leaf samples were determined by a ninhydrin-
based colorimetric assay at 520 nm as described by Abrahám 
et al. (2010). Malondialdehyde (MDA) contents were measured 
by thiobarbituric acid (TBA) assay as previously described 
(Heath and Packer, 1968; Lim et  al., 2015).

Statistical Analyses
Statistically significant differences between genotypes were 
determined using Student’s t test. Results were considered 
significant at p < 0.05.

RESULTS

Isolation of the CaPRR2 Gene
To isolate PRR genes from pepper plants, we conducted BLASTP 
search using amino acid sequences of nine Arabidopsis PRR 
(APRR) genes as queries and found 12 gene loci for putative 
CaPRR in pepper plants. To determine their genetic relation, 
we  performed a phylogenetic tree analysis with the deduced 
amino acid sequences of 12 CaPRR genes and 9 APRR genes 
and found that these genes were simply clustered into two 
groups (Figure  1A). There were one or two candidate genes 
of PRR homolog, corresponding to APRR1, APRR2, APRR3, 
APRR5, APRR7, and APRR9, in the pepper genome. Of the 
APRRs, it has been suggested that APRR2 may be  associated 
with plant responses to abiotic stress, such as salt and drought, 
based on the interaction with CML9 (Perochon et  al., 2010). 
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Hence, we selected CA06g13040 as APRR2 homolog for further 
study and named CaPRR2; in protein sequence, CA06g13040 
shares 48.2% identity/59.5 similarity with APRR2, but 
CA00g25810 shares 44% identity/55.7% similarity. The CaPRR2 
gene consists of a 1,674-bp open reading frame, encoding 557 
amino acid residues with an isoelectric point of 6.17 and a 
molecular weight of 61.81 kDa. Multiple sequence alignment 
analysis revealed high amino acid sequence identity (48.2–85.1%) 
and similarity (59.4–89.3%) between CaPRR2 and other plant 
PRR2 proteins (Supplementary Figure S1). CaPRR2 contains 
a highly conserved cheY-homologous receiver domain and an 
MYB-like DNA-binding domain.

To investigate the organ-specific expression of CaPRR2, 
we  examined CaPRR2 transcript levels in various pepper plant 
tissues using quantitative RT-PCR analysis. At the seedling 
and mature stages, CaPRR2 was strongly expressed in young 
leaf and stem, and compared to these organs, the others, such 
as root, flower, and green fruit, had <50% expression levels 
(Figure 1B). To investigate whether CaPRR2 is associated with 
the environmental stress response, we  examined the induction 
of CaPRR2 transcripts after exposure to ABA, drought, H2O2, 
mannitol, NaCl, and low temperature (Figure 1C). The CaPRR2 
transcripts tended to decrease 3 h after exposure to ABA, 
drought, and mannitol by low than 50%. In response to H2O2 

A

B

C

FIGURE 1  |  Expression patterns of the CaPRR2 gene. (A) Phylogenetic tree analysis of the CaPRR2 protein and its homologous proteins in Arabidopsis thaliana. 
Using a BLAST search with CaPRR2 as query, protein sequences of A. thaliana were retrieved. For multiple sequence alignment, the web tool Clustal Omega3 was 
used with the default settings. The phylogenetic tree was generated using MEGA X software on the basis of multiple alignments of CaPRR2 and its homologous 
proteins from A. thaliana in ClustalW2. (B) Tissue-specific expression of CaPRR2 in various pepper plant tissues at the seedling and mature stages. YL, young leaf; 
RT, root; ST, stem; CT, cotyledon; FEL, fully expanded leaf; PT, petiole; TR, tap root; LR, lateral root; FL, flower; FRT, fruit. (C) Expression patterns of CaPRR2 in the 
leaves of pepper plants exposed to abscisic acid (ABA; 100 μM), drought, H2O2 (100 mM), mannitol (600 mM), NaCl (200 mM), or low temperature (10°C). The 
pepper Actin1 (CaACT1) gene was used as an internal control. Data represent the mean ± SE of three independent experiments; asterisks indicate significant 
difference compared with the untreated control (0 h; Student’s test; p < 0.05).
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and NaCl treatment, the CaPRR2 expression levels were peaked 
(1.6 to 2-fold) at 12 h. Low-temperature exposure led to gradual 
induction of CaPRR2, particularly at 12 h, with 5-fold increase. 
These results suggest that CaPRR2 may be  involved in the 
abiotic stress signaling.

Subcellular Localization of the CaPRR2 
Protein by the MYB Domain
To investigate the subcellular localization of CaPRR2  in plant 
cells, the GFP reporter gene was fused to the C-terminal region 
of CaPRR2 under the control of the 35S promoter 
(Pro35S:CaPRR2-GFP), and the GFP-fused proteins were 
transiently expressed in the epidermal cells of N. benthamiana. 
Using the nuclear marker, diamidino-2-phenylindole, we showed 
that the GFP signals were localized in the nucleus (Figure 2A). 
To investigate the domain that determines CaPRR2 localization 
in the nucleus, we  fractionated CaPRR2 and observed the 
localization of the resulting constructs (Figure 2B). The deletion 
construct carrying the MYB domain (292–451 amino acid 
residues) was localized only in the nucleus. To verify whether 
the MYB domain is associated with CaPRR2 localization in 
the nucleus, we fractionated this construct, except for the MYB 
domain (322–451 amino acid residues; Figure 2C). The resulting 
construct was localized in the nucleus and the cytoplasm. These 
results suggest that CaPRR2 is localized in the nucleus by the 
MYB domain and functions in the nucleus.

Enhanced Drought Tolerance of CaPRR2-
Silenced Pepper Plants
The expression levels of CaPRR2 varied according to different 
stress treatments; hence, CaPRR2 is likely involved in abiotic 
stress signaling. We  performed a phenotypic analysis of pepper 
plants using VIGS assays (Figures  3, 4). First, we  generated two 
VIGS constructs – CaPRR2 N1 (1,052–1,351 bp) and CaPRR2 
N2 (1,361–1,660 bp) – in the CaPRR2 gene. Using RT-PCR 
analysis, we  verified that the expression levels of CaPRR2 were 
significantly lower in the CaPRR2-silenced pepper plants 
(TRV2:CaPRR2 N1 and TRV2:CaPRR2 N2) than in the control 
pepper plants (TRV2:00; Supplementary Figure S2). To examine 
the drought response of CaPRR2-silenced pepper plants, 
we  withheld the watering of TRV2:CaPRR2 and TRV2:00 plants 
for 14 days and then re-watered the plants for 2 days (Figure 3A). 
Under well-watered and drought stress conditions, we  observed 
no phenotypic differences between both plant lines (Figure  3A, 
left panel). However, after re-watering for 2 days, TRV2:CaPRR2 
pepper plants showed a less wilted phenotype than TRV2:00 
plants (Figure 3A, right panel). The survival rates of TRV2:CaPRR2 
and TRV2:00 pepper plants were 58.3–61.1 and 30.5%, respectively 
(Figure 3B). We wondered whether this drought-tolerant phenotype 
of CaPRR2-silenced pepper plants is derived from alteration of 
water status. Since leaf relative water content is widely used as 
an indicator of water stress in plants, we  monitored a change 
in the relative water content from TRV2:CaPRR2 and TRV2:00 
plants in response to drought stress. As shown in Figure  3C, 
TRV2:CaPRR2 plant lines displayed significantly higher relative 
water content at all time points after drought treatment than 

TRV2:00 plants. We  also evaluated the transpirational water loss 
by measuring the leaf fresh weights of TRV2:CaPRR2 and TRV2:00 
pepper plants. At various time points after detachment, the 
transpirational water loss was significantly lower in TRV2:CaPRR2 
than in TRV2:00 plants, consistent with a decrease in the relative 
water content (Figure  3D).

More the 99% of total water loss from leaf occurs through 
stomata (Kane et  al., 2020). Plants close stomata in response to 
water deficit, and it is well-known that phytohormone ABA is 
involved in this process (Cutler et  al., 2010). Based on these, 
we  hypothesized that the drought-tolerant phenotype displayed 
by CaPRR2-silenced pepper plants may be caused by altered ABA 
sensitivity. To prove this, we  measured leaf temperatures and 

A

B

C

FIGURE 2  |  Nuclear localization of CaPRR2 by the MYB domain. (A) Nuclear 
localization of the CaPRR2-green fluorescent protein (GFP) fusion proteins in 
the epidermal cells of Nicotiana benthamiana. (B) Subcellular localization of 
the fractionated CaPRR2s in the epidermal cells of N. benthamiana. 
(C) Subcellular localization of the fractionated CaPRR2s containing the MYB 
domain in the epidermal cells of N. benthamiana. Cells were stained with 
4ʹ,6-diamidino-2-phenylindole (DAPI) for nuclear localization. White 
bar = 10 μm.
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stomatal apertures before and after ABA treatment. At 6 h after 
ABA treatment, leaf temperatures were significantly higher in 
TRV2:CaPRR2 than in TRV2:00 plants (Figures 3E,F). Moreover, 
at 3 h after ABA treatment, stomatal apertures of TRV2:CaPRR2 
were significantly smaller than those of TRV2:00 plants 
(Figures 3G,H). Taken together, these results revealed that CaPRR2 
functions as a negative regulator of drought stress by regulating 
ABA-induced stomatal closing.

Enhanced Tolerance of CaPRR2-Silenced 
Pepper Plants to Salt Stress
Next, we  explored whether the biological role of CaPRR2 is 
associated with the response to salt stress. To conduct phenotypic 
analyses under salt stress conditions, 3-week-old TRV2:CaPRR2 
and TRV2:00 plants were subjected to salt stress by hydroponically 
growing them in 200 mM NaCl solution. In the absence of 
NaCl, we  observed no phenotypic differences between 

A

E

F

H

B C

D
G

FIGURE 3  |  Enhanced drought tolerance of CaPRR2-silenced pepper plants. (A) Drought sensitivity of CaPRR2-silenced (TRV2:CaPRR2) and control (TRV2:00) 
pepper plants. Three-week-old plants of each line were exposed to drought stress by withholding watering for 14 days. After re-watering for 2 days, the 
representative images were taken. (B) Survival rates of pepper plants after re-watering. Data represent the mean ± SE of three biological replicates, each evaluating 
20 plants. (C) Relative water contents of TRV2:CaPRR2 and TRV2:00 plants exposed to drought stress. (D) Transpirational water loss from the leaves of 
TRV2:CaPRR2 and TRV2:00 plants. Leaves were detached and the fresh weights of each line were measured at the indicated time points. (E,F) Enhanced leaf 
temperatures of CaPRR2-silenced (TRV2:CaPRR2) and control (TRV2:00) pepper plants in response to abscisic acid (ABA) treatment. Thermal images of CaPRR2-
silenced and control pepper plants before and after ABA treatment (E). Average leaf temperatures of CaPRR2-silenced and control pepper plants before and after 
ABA treatment (F). (G,H) Stomatal apertures of CaPRR2-silenced (TRV2:CaPRR2) and control (TRV2:00) pepper plants in first and second leaf peels incubated in 
stomatal opening solution containing 0 μM or 20 μM ABA. Stomatal pore images of CaPRR2-silenced and control pepper plants. (G) Stomatal apertures (width/
length) of CaPRR2-silenced and control pepper plants (H).
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TRV2:CaPRR2 and TRV2:00 plants (Figure  4A, left panel). 
However, when both plant lines were subjected to salt stress 
for 5 days, TRV2:CaPRR2 exhibited a less wilted phenotype 
than TRV2:00 plants (Figure  4A, right panel). The survival 
rates of TRV2:CaPRR2 were 66.6–75%, whereas only 33.3% 
of TRV2:00 plants resumed their growth (Figure 4B). As shown 
in Figure  4A, salt stress triggered leaf senescence; the leaves 
of both plant lines treated with salt stress turned to pale yellow, 
compared to the non-treated plants. To evaluate this difference 
quantitatively, we  compared the chlorophyll content between 
TRV2:CaPRR2 and TRV2:00 plants using leaf discs from plants 
exposed to salt stress (Figure  4C). Consistent with the salt-
tolerant phenotype, TRV2:CaPRR2 plants exhibited significantly 

higher chlorophyll contents than TRV2:00 plants (Figure  4D). 
Plants resist osmotic stress by induced salt stress through 
production of various osmoprotectants, including proline (Nuccio 
et al., 1999). Measurement of proline content from TRV2:CaPRR2 
and TRV2:00 plants treated with salt stress revealed that proline 
content after treatment was significantly higher in TRV2:CaPRR2 
than in TRV2:00 (Figure 4E). Salt stress can induce membrane 
lipid peroxidation (Katsuhara et  al., 2005); hence, we  also 
measured MDA contents from TRV2:CaPRR2 and TRV2:00 
plants under salt stress conditions. MDA was highly accumulated 
in both plant lines by salt stress, but TRV2:CaPRR2 had lower 
MDA contents than TRV2:00 (Figure 4F). These results indicate 
that CaPRR2 plays a negative role in salt tolerance.

A

C

B

D

E

F

FIGURE 4  |  Enhanced tolerance of CaPRR2-silenced pepper plants to salt stress. (A) Salt-tolerant phenotypes of TRV2:CaPRR2 and TRV2:00 pepper plants. 
Three-week-old plants of each line were hydroponically subjected to salt stress using water containing 200 mM NaCl. After salt stress treatment for 4 days, 
representative images were taken. (B) Survival rates of TRV2:CaPRR2 and TRV2:00 pepper plants. (C) Chlorophyll contents of TRV2:CaPRR2 and TRV2:00 plant 
leaf discs in various concentrations of NaCl solution. After salt stress treatment for 5 days, representative images were taken. (D) Percentage chlorophyll contents of 
TRV2:CaPRR2 and TRV2:00 plant leaf discs in NaCl solution. The chlorophyll content in non-treated TRV2:00 plants was set to 100%. (E) Proline contents of 
TRV2:CaPRR2 and TRV2:00 plants under salt stress. (F) Malondialdehyde (MDA) contents of TRV2:CaPRR2 and TRV2:00 plants exposed to salt stress.
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Expression Levels of Stress-Induced 
Genes in CaPRR2-Silenced Pepper Plants 
Under Stress Conditions
Several previous studies have suggested that stress-related genes 
regulate osmotic tolerance (Zhang et  al., 2006; Tran et  al., 2007; 
Aubert et  al., 2010). When the expression levels of stress-related 
genes are altered, osmotic tolerance increases or decreases. CaPRR2 
expression was negatively correlated with drought and salt tolerance. 
We wondered how silencing of CaPRR2 gene affects the expression 
levels of stress-related genes in response to drought and salt stress. 
To test this, we  performed qRT-PCR analysis of stress-related 
genes – including CaNCED3, CaOSR1, and CaRAB18 – in the 
leaves of pepper plants that had been subjected to drought and 
salt stress (Figure  5). After drought stress treatment, CaOSR1 
and CaRAB18 genes in TRV2:CaPRR2 leaves showed approximately 
1.7- to 2.6-fold and 1.5- to 1.8-fold increase, respectively, compared 
to those in TRV2:00 leaves. Similarly, salt stress significantly 
induced these genes; its levels were >2.5-fold higher in TRV2:CaPRR2 
than in TRV2:00. In contrast, CaNCED3 expression was significantly 
induced by the drought treatment but not by the NaCl treatment. 
Drought stress induced expression level of CaNCED3 to 1.5- to 
2-fold in TRV2:CaPRR2 compared to in TRV2:00. These data 

suggest that a reduced expression of CaPRR2 affects the expression 
levels of stress-related genes, and this likely affects the osmotic 
stress response.

DISCUSSION

Plants are affected by diverse environmental stress conditions. 
Drought, salinity, and extreme temperatures induce osmotic 
stress in plant cells and limit crop yield. Plants have developed 
special defense mechanisms to adapt to these stress conditions. 
Plants manipulate their physiological and chemical properties 
according to the external environment. One of the well-known 
osmotic stress defense mechanisms is the regulation of gene 
expression through transcription factors (Xiong and Zhu, 2002). 
However, many aspects of this mechanism remain to 
be  elucidated. In plants, PRRs are involved in a wide range 
of plant responses, including the regulation of circadian rhythm, 
fruit pigmentation and ripening, accumulation of carotenoids, 
and plant immunity (Nakamichi et  al., 2010; Pan et  al., 2013; 
Cheval et  al., 2017). However, it is unclear whether PRRs are 
involved in the abiotic stress responses of plants. In the present 

FIGURE 5  |  Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of stress-responsive genes in the leaves of TRV2:CaPRR2 plants. The expression 
levels of stress-responsive genes were analyzed in the leaves of pepper plants subjected to drought and salt stress. The relative expression levels (ΔΔCT) of each 
gene were normalized to that of pepper Actin1 as an internal control gene. The expression level of each gene at 0 h was set to 1.0. All data represent the 
mean ± standard error of three independent experiments. At least 16 plants per line per experiment were used. Asterisks indicate significant difference between 
TRV2:CaPRR2 and TRV2:00 plants (Student’s t test; p < 0.05).
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study, we  identified the pepper pseudo-response regulator 
CaPRR2 and revealed that CaPRR2 negatively regulates the 
osmotic stress response.

In phylogenetic tree analysis, CaPRR2/CA06g13040 is highly 
closed to APRR2 among Arabidopsis thaliana PRRs (Figure 1A). 
CA03g29830, CA10g11870, CA03g21230, CA12g12510, and 
CA10g05550 are putatively corresponding to APRR1, APRR3, 
APRR5, APRR7, and APRR9, respectively, involved in circadian 
rhythm (Matsushika et al., 2000; Makino et al., 2002; Nakamichi 
et  al., 2010). Interaction of APRR2 with CML9 provides the 
possibility of functional involvement of APPR2 in abiotic stresses 
(Perochon et  al., 2010). Based on these, we  predicted that 
CaPRR2 could have a functionally similar role to APRR2. Prior 
to investigating functional role of CaPRR2, we analyzed organ-
specific expression of CaPRR2 in pepper plants. Expression of 
CaPRR2 was highly induced in young leaf and stem in both 
seedling and mature stages, compared to the other organs 
(Figure  1B), suggesting that CaPRR2 functions in young leaf 
and stem. Especially, we  used pepper leaves for investigating 
alteration of CaPRR2 expression in response to various stress 
factors, including ABA, drought, H2O2, mannitol, NaCl, and 
low temperature (Figure  1C). CaPRR2 showed two distinct 
expression patterns; ABA, drought, and mannitol decreased 
CaPRR2 expression, whereas H2O2, NaCl, and low temperature 
increased expression. The data suggest that CaPRR2 expression 
may be  suppressed by cellular dehydration, probably mediated 
by ABA. In addition, it provides the possibility that CaPRR2 
is functionally involved in abiotic stress signaling. Moreover, 
CaPRR2 has an MYB domain in the C-terminal region, and 
this domain is necessary for its localization in the nucleus 
(Figure  2), like APPR2 (Perochon et  al., 2010). In plants, 
MYB transcription factors generally have DNA-binding activity 
and are associated with protein-protein interactions. They play 
an important role in biotic and abiotic stress responses. For 
example, MYB transcription factors regulate the synthesis and 
accumulation of UV-B-absorbing compounds (Jin et  al., 2000; 
Fornale et al., 2014). Moreover, MYB transcription factors play 
a role in drought tolerance by affecting the expression of 
downstream genes in ABA-dependent and ABA-independent 
pathways (Roy, 2016). These findings provide the possibility 
that CaPRR2 may function in various environmental stress 
responses, especially in nucleus.

To investigate functional role of CaPRR2  in plant responses 
to drought and salt stress, we generated CaPRR2-silenced pepper 
plants using VIGS technique due to low transformation efficiency. 
In response to drought stress, CaPRR2-silenced pepper plants 
showed enhanced tolerance, compared with the control plants 
(Figure  3). Especially, silencing of CaPRR2 gene was shown 
to be  suppressed water loss through stomata, given the higher 
leaf relative moisture content, lower transparent water loss, 
and small pore size compared to the control pepper plant. 
Under drought stress conditions, ABA promotes stomatal closure, 
leading to reduced water loss (Cutler et al., 2010; Kim et  al., 
2010). Compared with the control plants, CaPRR2-silenced 
pepper plants displayed an ABA-sensitive phenotype characterized 
by significantly higher leaf temperatures and significantly smaller 
stomatal apertures (Figures  3E–H), suggesting that CaPRR2 

negatively regulates drought stress probably by regulating 
ABA-induced stomatal closing. Similar to drought, salt stress 
can induce osmotic stress in plants cells. High-salt levels induce 
ion imbalance, thereby disrupting the homeostasis of the water 
potential in cells (Zhu, 2001). On the salt treatment, CaPRR2-
silenced pepper plants showed salt-tolerant phenotype than 
control plants (Figures  4A,B), characterized by significantly 
higher chlorophyll and proline contents (Figures  4D,E) and 
significantly lower MDA content (Figure 4F). Salt stress induces 
leaf senescence, leading leaf yellowing and decreased chlorophyll 
content, but many of these regulatory mechanisms still remained 
unclear (Munns and Tester, 2008; Dong et  al., 2021). In salt-
stressed plants, this low chlorophyll content has been considered 
a typical symptom of oxidative stress (Smirnoff, 1996). 
Measurement of MDA, a stable product of lipid peroxidation, 
is also considered as an indicator of oxidative damage (Del 
Rio et  al., 2005). MDA is accumulated by salt stress and a 
change in its level indicates cell membrane damage and leakage 
under stress condition (Katsuhara et  al., 2005). Furthermore, 
proline content is shown to have positive correlation with 
tolerance to abiotic stresses such as salinity (Ashraf and Foolad, 
2007). Under salt stress condition, proline, most common 
endogenous osmolyte, is accumulated and proline functions 
as osmoprotectant and antioxidant, protecting cells against 
oxidative stress damage that causes lipid peroxidation (Hayat 
et al., 2012; Hasanuzzaman et al., 2020). Exogenous application 
of proline has been reported to improve salt stress in various 
plant species, including maize (Heuer, 2003; El Moukhtari 
et al., 2020). Based on these, we propose that CaPRR2-silenced 
pepper plants may be  tolerant to salt stress by alleviating cell 
damage induced by oxidative stress. Taken together, CaPRR2 
negatively regulates the osmotic stress response.

The expression levels of stress-responsive genes are also 
related to environmental stress tolerance (Fujita et  al., 2011). 
We  measured the relative expression levels of stress-responsive 
genes – including CaNCED3, CaOSR1, and CaRAB18 – in 
CaPRR2-silenced and control pepper plants after exposure to 
drought and salt stress. Under drought and high-salt stress 
conditions, the expression levels of CaOSR1 and CaRAB18 
were significantly higher in CaPRR2-silenced pepper plants 
than in the control pepper plants (Figure 5). However, CaNCED3 
expression was significantly induced by drought but not by 
the high-salt treatment. Upon drought, NCED3 expression and 
ABA synthesis in various plant tissues increases, leading to 
the activation of ABA-dependent signaling (Iuchi et  al., 2001). 
Moreover, NCED3 positively modulates the expression of stress-
responsive genes, which are associated with plant defense 
responses to environmental stress (Urano et al., 2009). Therefore, 
upregulation of NCED3 presumably affects the defense response 
to drought stress. In Arabidopsis, NCED3 gene is strongly 
induced by salt stress, but it is also observed in even ABA-deficient 
mutants, meaning that NaCl-induced NCED3 gene is independent 
on ABA and dependent on NaCl (Barrero et  al., 2006). 
Unexpectedly, salt stress triggered slight, but not statistically 
significant, induction of CaNCED3 in both CaPRR2-silenced 
pepper plants than in the control pepper plants. In fact, 
CaNCED3 was isolated on a basis of sequence homology with 
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Arabidopsis NCED3 and is not fully characterized in pepper 
plants. Therefore, we  did not exclude the possibility that the 
time point used in this study is not suitable for analysis of 
NCED3 gene induction by salt stress, which will be  solved in 
further study. These data indicate that CaPRR2 directly or 
indirectly regulates the expression levels of these genes and 
functions upstream of these genes in the osmotic stress  
response.

In conclusion, we have demonstrated that CaPRR2 negatively 
regulates osmotic stress responses through biochemical and 
molecular changes. We were unable to identify the downstream 
target genes regulated by CaPRR2; hence, further studies to 
identify the downstream target genes controlled by CaPRR2 
and to elucidate the signaling pathway involved in the CaPRR2-
mediated regulation of the osmotic stress response are required. 
Nevertheless, our findings provide valuable insights into the 
plant adaptive response to osmotic stress.
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