
ORIGINAL RESEARCH
published: 22 October 2021

doi: 10.3389/fpls.2021.737919

Frontiers in Plant Science | www.frontiersin.org 1 October 2021 | Volume 12 | Article 737919

Edited by:

Kun Lu,

Southwest University, China

Reviewed by:

Cheng-Ruei Lee,

National Taiwan University, Taiwan

Sukhjiwan Kaur,

Agriculture Victoria, Australia

*Correspondence:

Anete Pereira de Souza

anete@unicamp.br

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Plant Breeding,

a section of the journal

Frontiers in Plant Science

Received: 07 July 2021

Accepted: 20 September 2021

Published: 22 October 2021

Citation:

Martins FB, Moraes ACL, Aono AH,

Ferreira RCU, Chiari L, Simeão RM,

Barrios SCL, Santos MF, Jank L, do

Valle CB, Vigna BBZ and de Souza AP

(2021) A Semi-Automated SNP-Based

Approach for Contaminant

Identification in Biparental Polyploid

Populations of Tropical Forage

Grasses. Front. Plant Sci. 12:737919.

doi: 10.3389/fpls.2021.737919

A Semi-Automated SNP-Based
Approach for Contaminant
Identification in Biparental Polyploid
Populations of Tropical Forage
Grasses
Felipe Bitencourt Martins 1†, Aline Costa Lima Moraes 1†, Alexandre Hild Aono 1,

Rebecca Caroline Ulbricht Ferreira 1, Lucimara Chiari 2, Rosangela Maria Simeão 2,

Sanzio Carvalho Lima Barrios 2, Mateus Figueiredo Santos 2, Liana Jank 2,

Cacilda Borges do Valle 2, Bianca Baccili Zanotto Vigna 3 and Anete Pereira de Souza 1,4*

1Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil,
2 Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil, 3 Embrapa Pecuária Sudeste,

Brazilian Agricultural Research Corporation, São Paulo, Brazil, 4Department of Plant Biology, Biology Institute, University of

Campinas (UNICAMP), São Paulo, Brazil

Artificial hybridization plays a fundamental role in plant breeding programs since

it generates new genotypic combinations that can result in desirable phenotypes.

Depending on the species and mode of reproduction, controlled crosses may be

challenging, and contaminating individuals can be introduced accidentally. In this context,

the identification of such contaminants is important to avoid compromising further

selection cycles, as well as genetic and genomic studies. The main objective of this

work was to propose an automated multivariate methodology for the detection and

classification of putative contaminants, including apomictic clones (ACs), self-fertilized

individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid

progenies of tropical forage grasses. We established a pipeline to identify contaminants

in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide

polymorphism (SNP) markers by integrating principal component analysis (PCA),

genotypic analysis (GA) measures based on Mendelian segregation, and clustering

analysis (CA). The combination of these methods allowed for the correct identification

of all contaminants in all simulated progenies and the detection of putative contaminants

in three real progenies of tropical forage grasses, providing an easy and promising

methodology for the identification of contaminants in biparental progenies of tetraploid

and hexaploid species. The proposed pipeline was made available through the polyCID

Shiny app and can be easily coupled with traditional genetic approaches, such as linkage

map construction, thereby increasing the efficiency of breeding programs.
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INTRODUCTION

The concept of artificial crossings to generate experimental
plant populations was introduced scientifically in the historical
work of Mendel (1866) and became a fundamental tool for
genetics studies and breeding programs, maximizing genetic
gains by the selection of superior genotypes (Bourke et al.,
2018). Although this concept is well-known and applied in
important crops (Goulet et al., 2017), there are few commercial
cultivars of tropical forage grasses originating from artificial
hybridization (Azevedo et al., 2019). Perennial tropical forage
grasses are recognized worldwide for their economic importance
as food for beef and dairy cattle in the tropical and subtropical
regions (Pereira et al., 2018a; ABIEC, 2020). In addition to the
recently initiated breeding programs and long selection cycles,
some intrinsic biological characteristics, including different
reproductive modes (sexual and facultative apomixis), levels
of ploidy, and self-incompatibility (SI) within and between
the species, are challenges faced by breeders when performing
controlled crosses using these plants (Lutts et al., 1991; Jank et al.,
2011; Pereira et al., 2018a; Worthington et al., 2019).

Apomixis is a type of asexual reproduction through seeds
that produces a progeny which is genetically identical to the
maternal plant (Bicknell, 2004; Hand and Koltunow, 2014). Thus,
to explore the genetic diversity of polyploid apomictic forage
grasses, controlled crosses are performed between sexual and
apomictic (pollen donor) parents with contrasting traits and
the same ploidy level. In most species, the ploidy of the sexual
plants does not match with the ploidy of the apomictic plants;
this way, it is necessary the artificial polyploidization (usually
chromosome duplication) of the sexual ones to perform the
crosses at the same ploidy level (Pinheiro et al., 2000; Simioni
and Valle, 2009; Acuña et al., 2019). However, because of the
reproductive system of these plants, during the crosses, some
individuals are also generated by foreign pollen or by self-
fertilization of female parents. Some of these scenarios can also
occur in other species, such as sugarcane, eucalyptus, sainfoin,
and lettuce (Santos et al., 2014; Subashini et al., 2014; Kempf et al.,
2015; Patella et al., 2019). Also, if facultative apomictic plants
(i.e., apomictic plants in which sexual reproduction events are
also observed) are used as females, they simultaneously generate
hybrid by crossings and clones by apomixis (Smith, 1972).
Contamination by physical admixture during seed harvesting
and handling is also possible, especially when crosses are
performed in the field, as these species are mostly anemophilous

Abbreviations: AC, Apomictic clone; CA, Clustering analysis; FC, Full

contaminant; GA, Genotype analysis; GBS, Genotyping-by-sequencing; HP,

Hybrid progeny; HS, Half-sibling; IBD, Identity-by-descent; MRAC, mean

rate of ACs correctly identified; MRC, Mean rate of contaminants (correctly

identified); MRCC, Mean rate of cross-contaminants (HSs/FCs) correctly

identified; MRH, Mean rate of hybrids correctly identified; MRSP, Mean rate

of SPs correctly identified; NIPALS, Non-linear iterative partial least squares;

NGS, Next-generation-sequencing; P1/Parent 1, Female parent for simulated or

real population; P2/Parent 2, Male parent for simulated or real population; PC,

Principal component; PCA, Principal component analysis; PCR, Polymerase chain

reaction; QTL, Quantitative trait loci; RAPD, Random amplified polymorphic

DNA; SNP, Single nucleotide polymorphism; SP, Self-fertilization progeny of one

of the parents; SSR, Simple sequence repeats.

(i. e., the pollination of these species occurs by the wind)
(Bateman, 1947; Simeão et al., 2016a). In this context, it is
evident that controlled crosses may not avoid contamination,
compromising the attainment of pure hybrid progeny and,
consecutively, unbiased genetic and genomic methods, such
as segregation tests, linkage map construction, quantitative
trait locus (QTL) mapping and linkage disequilibrium analysis,
which are fundamental for understanding the genotype and its
relationship to the phenotype (Kemble et al., 2019).

Traditionally, hybrid identification has been performed on
the basis of morphological traits and microsatellite markers
(Santos et al., 2014; Jha et al., 2016; Zhao et al., 2017; Patella
et al., 2019). However, both methodologies have disadvantages.
Morphological traits are time-consuming and have low
throughput, with accuracies influenced by environmental factors
(Zhao et al., 2017), while developing microsatellite markers is an
expensive and time-consuming process that requires previously
obtained genomic sequence information and investment in
terms of designing locus-specific primers and optimizing PCR
conditions (Vieira et al., 2016). Moreover, size estimates across
alleles at each locus are imprecise, especially in polyploids,
such as tropical forage grasses, leading to frequent genotyping
errors (Guichoux et al., 2011; Hodel et al., 2016). Therefore,
there is a need to develop alternative methodologies using
molecular markers to quickly and efficiently distinguish true
hybrids resulting from the breeding program crosses from
those resulting from accidental selfing or contamination in
biparental populations.

Single nucleotide polymorphism (SNP) markers have been
shown to be an excellent tool for genomic studies in function
of their high-throughput nature, low error rates, and abundance
in eukaryote genomes (Helyar et al., 2011). Additionally,
genotyping methodologies based on next-generation sequencing
(NGS), such as genotyping-by-sequencing (GBS) proposed by
Elshire et al. (2011) and Poland et al. (2012), have been
demonstrated to be quick, affordable, and highly robust for
discovering and profiling a large number of SNP loci, even
in species with no genomic information available and large
genomes, such as polyploids (Elshire et al., 2011; Poland et al.,
2012; Ferreira et al., 2019; Deo et al., 2020; Mollinari et al.,
2020). In the last few years, many studies using SNP markers in
tropical forage grasses, mainly coupled with principal component
analysis (PCA) to investigate the structure of the progenies and
remove putative contaminants, have been published (Lara et al.,
2019; Deo et al., 2020; Zhang et al., 2020). Even though PCA
can be used to retain and explore most of the variations in
large SNP datasets through the first principal components (PCs)
(Jolliffe and Cadima, 2016), such a multivariate technique is not
appropriate for contaminant identification, which requires more
specific approaches, such as pedigree reconstruction, sibship and
parentage assignment.

The different methods for identifying the parents of a progeny
are based on exclusion (Zwart et al., 2016; McClure et al., 2018),
likelihood-based (Spielmann et al., 2015), and Bayesian (Christie
et al., 2013) techniques, using Mendel’s laws to infer relationships
between samples through genotyped loci (Thompson, 1975;
Thompson and Meagher, 1987). This evaluation is generally
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based on pairwise Mendelian segregation tests, comparing
individuals and generating different measures that account for
the similarity between a sample and one of the parents or for
a rate of unexpected genotypes in each sample considering the
genotypes of both parents. Therefore, such genotype analyses
(GAs) can be used to define what is not genotypically similar and
consecutively represents an experimental contaminant. In this
work, we propose to use GA measures for performing clustering
analyses (CAs) and automatically identifying contaminants in
forage grass biparental populations, grouping individuals based
on GA similarity measures instead of their raw SNP data.
Although CA of large SNP datasets has been extensively used to
discover patterns in population relatedness and structure (Gori
et al., 2016; Muniz et al., 2019; Yousefi-Mashouf et al., 2021), its
use for parentage assignment is not common because of the non-
specificity and constancy of the clusters, but has already been
combined with previously described techniques for parentage
and sibship inference in diploids (Ellis et al., 2018).

Instead of relying strictly on PCA for population analyses
and ad hoc decisions (Deo et al., 2020; Zhang et al., 2020),
we created an semi automated pipeline, combining GA and
CA that allow us not only to precisely identify but also
to list the types of contaminants in a biparental cross. For
this purpose, we simulated several biparental progenies with
contaminants to (1) identify dispersion patterns in a PCA
biplot that can suggest the presence of contaminants, (2)
create appropriate GA measures for contaminant identification
in polyploid forage grass samples, generating scores for all
individuals, and (3) integrate such scores in an automatic CA
to separate the real hybrids from the contaminants. These
steps led to the formulation of a unified methodology, which
we applied to biparental progenies of three different species
of tropical forage grasses: Megathyrsus maximus (Jacq.), syn.
Panicum maximum Jacq. (B. K. Simon & S. W. L. Jacobs),
Urochloa decumbens (Stapf), syn. Brachiaria decumbens Stapf (R.
D. Webster) and Urochloa humidicola (Rendle), syn. Brachiaria
humidicola (Rendle, Schweick) (Morrone and Zuloaga, 1992;
Torres-González and Morton, 2005). The implemented pipeline
was made available through a Shiny app and has a high potential
to be employed in pre-breeding stages, as well as in genomic
studies involving polyploid biparental progenies in general.

MATERIALS AND METHODS

The following sections describe the steps involved in the
generation of real and simulated data and their use to propose
a methodology for contaminant identification in biparental
crosses. First, the genotyping and allele dosage estimation
for biparental F1 populations of three tropical forage species
are presented (2.1, 2.2, and 2.3). Then, different biparental
crossings are simulated (2.4). Finally, contaminant identification
methodologies are applied to the simulated and real data (2.5, 2.6,
2.7, and 2.8).

Plant Material
Genotypic data were obtained from biparental F1 progenies of
Urochloa humidicola (a segmental allopolyploid, with 2n = 6x

= 36), Urochloa decumbens (a segmental allopolyploid, with
2n = 4x = 36), and Megathyrsus maximus (an autopolyploid,
with 2n = 4x = 32), three important species of tropical forage
grasses used in the pastures of tropical and subtropical areas.
All these intraspecific crossings were performed by the Brazilian
Agricultural Research Corporation (Embrapa) Gado de Corte,
located in Campo Grande, Mato Grosso do Sul, Brazil (20◦27′S,
54◦37′W, 530m), and are part of the breeding programs of this
research institution. Details about the crossing were described by
Deo et al. (2020) forM. maximus and by Barrios et al. (2013) for
U. decumbens. For U. humidicola, the crossings were manually
performed in controlled crosses in greenhouses at Embrapa.
Plants from the male genitor were cultivated in the field and
pollen grains were collected in the day of the crossings or in the
day before and stored overnight in a Petri plate in a refrigerator.
Plants from the female genitor were cultivated in pots in the
greenhouse and the inflorescences had the spikelets at anthesis
removed with a tweezer, only those remaining spikelets were
going to be opened in the next day. At the crossing day, the
spikelets at anthesis were pollinated with the collected pollen
grains and the inflorescences were covered with a paper bag
and identified. After dehiscence, the F1 seeds were collected and
processed until germination in trays and then planted in the field
in single plots.

The U. humidicola progeny consisted of 279 hybrids obtained
from a cross between the sexual accession H031 (CIAT 26146)
and the apomictic cultivar U. humidicola cv. BRS Tupi, as
described by Vigna et al. (2016). The cross betweenU. decumbens
D24/27 (sexual diploid accession tetraploidized by colchicine)
and the apomict U. decumbens cv. Basilisk generated a progeny
with 239 hybrids (Ferreira et al., 2019). Finally, the progeny
of M. maximus included 136 hybrids originating from a cross
between the sexual genotype S10 and M. maximus cv. Mombaça
(apomictic parent) (Deo et al., 2020). The apomixis in the
cultivars BRS Tupi, Basilisk, andMombaça is of the pseudogamic
aposporic types.

Genotyping-By-Sequencing Library
Preparation
Genotyping-by-sequencing (GBS) libraries of the U. decumbens
andM.maximus progenies were built and sequenced as described
by Ferreira et al. (2019) and Deo et al. (2020), respectively. For
the progeny of U. humidicola, DNA was extracted following
Vigna et al. (2016), and the GBS libraries were built according
to Poland et al. (2012), containing five replicates for each parent
and one for each hybrid. Genomic DNA (210 ng of DNA
per individual) was digested using a combination of a rarely
cutting enzyme (PstI) and a frequently cutting enzyme (MspI).
Subsequently, the libraries were sequenced as 150-bp single-end
reads using the High Output v2 Kit (Illumina, San Diego, CA,
USA) in the NextSeq 500 platform (Illumina, San Diego, CA,
USA). The quality of the resulting sequence data was evaluated
using the FastQC toolkit (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/).
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GBS-SNP Discovery and Allele Dosage
We analyzed the raw data of the three biparental progenies
using the Tassel-GBS pipeline (Glaubitz et al., 2014) modified for
polyploids (Pereira et al., 2018b), which considers the original
read depths for each SNP allele. The Bowtie2 algorithm version
2.1 (Langmead and Salzberg, 2012) was used to align the reads of
theUrochloa spp. andM.maximus against the reference genomes
of Setaria viridis v1.0 and Panicum virgatum v1.0, respectively,
since the reference genomes are not available for the species
under study. In this stage, a limit of 20 dynamic programming
problems (D), a maximum of four times to align a read (R), and
a very-sensitive-local argument were considered. Both genomes
used as references were retrieved from the Phytozome database
(Goodstein et al., 2012).

For quality purposes, the SNPs were submitted to a filtering
procedure using VCFtools (Danecek et al., 2011), with the
following parameters: maximum number of alleles of two (to
include only bi-allelic loci), maximum missing data per marker
of 25%, and minimum read depth per individual of 20 reads for
M. maximus and U. decumbens, and 40 reads for U. humidicola.
Due to the polyploid nature of the species, a high sequence depth
is required to identify the genotypic class accurately (Cappai et al.,
2020; Ferrão et al., 2020; Mollinari et al., 2020), and even higher
values were used for U. humidicola because it is a hexaploid.
Finally, the Updog R package (Gerard et al., 2018) was used
to estimate the allele dosage of each SNP locus, with a fixed
ploidy parameter of four forM. maximus and U. decumbens, and
six for U. humidicola. The flexdog function was used with the
“f1” population model for the three populations. The posterior
proportion of mis-genotyped individuals (prop_mis) was set at
six different values (0.05, 0.1, 0.15, 0.20, 0.25, and 0.3) for M.
maximus and U. decumbens, aiming to compare the rates of the
tetraploid dosages in the parents and assess the influence of the
number and quality of the markers in further analysis. For the
hexaploid population of U. humidicola, prop_mis was set at 0.2.

The genotyping data were organized into marker matrices
M(nxm), where n denotes the samples,m denotes the markers, and
the allele dosage genotypes are encoded as 0, 1, 2, 3, 4, 5, or 6 for
nulliplex, simplex, duplex, triplex, quadruplex, quintuplex, and
hexaplex data, respectively.

Simulated Data
Biparental F1 populations were simulated using the PedigreeSim
R package (Voorrips and Maliepaard, 2012), a software package
that simulates meiosis and uses this information to create
cross populations in tetraploid species. To create the linkage
map required by PedigreeSim, the previously published map
for M. maximus (Deo et al., 2020) was used as a model
to estimate the main parameters, such as the number and
size of chromosomes, density, gap regions, and centromere
position. Eight chromosomes with sizes between 90 and 120
centimorgans (cM) and 600–900 SNP markers per chromosome,
both randomly sampled, were created. In addition, the markers
were considered to be distributed along the chromosomes
with a minimum distance between adjacent markers of 0.1 cM.
The centromere position was sampled between 10 and 50 cM,
preferential pairing was set to zero, and the quadrivalent

fraction was set for natural pairing. In this case, the fraction of
quadrivalents arises automatically from the pairing process at the
telomeres. Other options of the software were kept as default. All
these files were created using R software (R Core Team, 2020).

To perform the crosses, four parents (P1, P2, P3, and P4)
were created, and the genotypes of these parents were simulated
based on the rate of allele dosages of parents genotyped in
real biparental progenies: P1 and P2 from M. maximus (Deo
et al., 2020) and P3 and P4 from U. decumbens (Ferreira
et al., 2019). Considering these rates, the haplotypes of each of
the four homologous chromosomes were randomly created for
each parent. The simulated crosses between these parents were
based on the following combinations: P1 × P2, P1 × P1 (self-
fertilization), P1× P3, P1× P4, and P3× P4, with a progeny size
of 200.

The results of the simulated crosses were converted into
marker matrices (M), and all subsequent manipulations were
performed using R software (R Core Team, 2020). To insert
genotyping errors, 5% of the genotypes were randomly replaced
by other genotype values with equal probability, and between
1 and 5% of the genotypes of each marker were removed
to simulate the missing data (NAs). Clonal individuals were
simulated by duplicating the genotype of a parent, and errors and
NAs were inserted as described above.

Using the tetraploid populations created in the PedigreeSim
software, four scenarios were established to analyze the different
types of contaminants that could occur in biparental populations
of tropical forage grasses. The first two scenarios were
represented by contaminants resulting from the reproductive
mode of parents, which can reproduce by (1) apomictic clones
(ACs), or (2) self-fertilization progeny of one of the parents
(SPs), resulting in segregating individuals. The last two scenarios
represent (3) cross-contamination, that is, when fertilization
occurs by foreign pollen, resulting in half-siblings (HSs), or (4)
when physical mixtures occur during seed handling, resulting in
full contaminants (FCs). In each of the four possible scenarios,
the size of the base population was 200 hybrids (HPs), and the
HPs were progressively replaced by contaminants until 25% of
the samples were contaminants. In addition, to investigate a
joint scenario with four parents (P1, P2, P3, and P4) with AC
and SP contamination, a population of 1,200 individuals (200
P1-ACs, 200 P1-SPs, 200 HPs from P1 × P2, 200 HPs from
P1 × P3, 200 HPs from P1 × P4, and 200 HPs from P3 ×

P4) was created. These described populations were constructed
to investigate how contaminants influence principal component
analysis (PCA) scatter plot dispersion patterns.

For the evaluation of the proposed contaminant identification
method, 6,000 populations were simulated. Each one was
composed of 200 individuals with a random number of
contaminants, ranging between 1 and 50 and distributed per
contaminant type considering random probabilities between 0.1
and 0.8. The populations were divided into six equal size groups
according to the number of genotyped markers. Considering n
as the total simulated markers, the groups were composed of:
n/2, n/4, n/8, n/16, n/32, and n/64 markers. For each population,
the subset of markers used was randomly sampled from the total
simulated markers. Furthermore, a biparental population with
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200 individuals [150 HP (P1 × P2), 10 AC (P1), 10 SP (P1),
10 HS1 (P1 × P3), 10 HS2 (P1 × P4), and 10 FC (P3 × P4)]
was also simulated to exemplify the use of GA and CA in the
contaminant identification.

Principal Component Analysis
Principal component analyses were performed by the R package
pcaMethods (Stacklies et al., 2007) using the non-linear
estimation by iterative partial least squares (NIPALS) algorithm
(Wold and Krishnaiah, 1966) to calculate the eigenvalues with
missing data imputation. Given a matrix Xm,n representing
the n random variables (herein SNPs) across m individuals,
this analysis transforms X by multiplying it by the orthogonal
eigenvectors, generating a matrix Xm,p of new p variables
[the principal components (PCs)] with specific mathematical
properties (Maćkiewicz and Ratajczak, 1993). The ggplot2 R
package (Wickham and Chang, 2016) was used to construct
scatter plots of the first two PCs. These graphical visualizations
were used to identify clustering patterns that may be associated
with contaminants in the progeny.

Genotypic Analysis
The term genotypic analysis (GA) is employed here to refer to an
analysis that evaluates all the samples of a progeny considering
what is genotypically expected for a contaminant. Three different
measures were created for evaluating the samples: GA-I for AC
identification and GA-II for SP identification, both accounting
for a similarity rate between the sample and one of the parents
(computed separately for each), and GA-III, accounting for a
rate of unexpected genotypes in each sample considering the
genotypes of both the parents, enabling the identification of
half-siblings (HSs) and full contaminants (FCs) in the progeny.

To investigate whether an individual x is an AC of a parent
p, the GA-I scores were calculated using the marker matrix M

with n rows (individuals) and m columns (markers). Then, the
similarity between x and p was the proportion of allele dosages
in Mx,i that satisfied the condition, Mx,i = Mp,i with 1 ≤ i ≥ m.
This measure is based on the presumption that, given Mendel’s
law, each individual inherits genetic material from its parents
(Mendel, 1866; Miko, 2008). However, if one of the parents
reproduces through apomixis, a genetically identical progeny is
produced (Hand and Koltunow, 2014). Therefore, in a suite of
Mendelian loci, if a putative individual shows a high similarity
(GA-I close to 1.00) with one of the parents, it can be considered
a clone of this parent.

In the case of SP samples, the GA-II scores were calculated
by computing the similarity between the progeny samples and
the parents considering only nulliplex allele dosages; i.e., for a
parent p and an individual x, GA-II was the proportion of allele
dosages in Mx,i (with 1 ≤ i ≤ m) that satisfied Mx,i = Mp,i =

0. If a parent reproduces through self-fertilization, Mendelian
segregation should be observed. Using a tetraploid species as an
example, a parent with the genotype AABB at a specific locus,
after self-fertilization, would generate a progeny with genotypes
in all possible doses (AAAA, AAAB, AABB, ABBB, and BBBB)
(Hackett et al., 2013). However, if we focus only on the markers

for which the parent had a nulliplex genotype (AAAA), the
progeny produced would be genetically identical to the parent at
those loci. Thus, GA-II computes a similarity rate between the
sample and the parent considering only those markers; in this
situation, it was expected that SP contaminants would present
GA-II scores close to 1.00.

For the HSs and FCs, the GA-III term calculates the rate
of unexpected allele dosages for the progeny individuals across
all the markers. Considering the combination of gametes for
parent p1 and p2 at a SNP i with 1 ≤ i ≥ m, the GA-III of
an individual x is the proportion of unexpected allele dosages
for its set of markers. Considering the allele dosage of each
parent at each marker, it is possible to define which dosage
is not expected in their progeny. For example, if one parent
is nulliplex (AAAA) for a marker and the other is simplex
(AAAB), the gametes produced by the nulliplex are all AA, and
for the simplex, they can be AA or AB (Hackett et al., 2013).
Their combination can produce a progeny with only nulliplex or
simplex for this marker, and the presence of other dosage types
is an evidence for the fact that this individual may not belong to
the cross. In this way, for all markers, GA-III tested whether the
genotype of this sample was expected considering both parental
genotypes, computing a rate of unexpected genotypes for each
sample (Supplementary Table 1). In this analysis, it was expected
that HSs and FCs would show higher GA-III scores than HPs,
enabling their identification.

Clustering Analysis
The contaminant identification process is based on a clustering
analysis (CA) performed using an average linkage hierarchical
clustering approach with R software (R Core Team, 2020).
Considering the GAs calculated, pairwise Euclidean distances
between these values were calculated across the progeny
and were used to obtain 27 different clustering indexes
(Supplementary Table 2) with numbers of clusters varying from
2 to 15, implemented in the R package NbClust (Charrad
et al., 2014). The package automatically calculates the indexes,
defines the best clustering scheme based on majority rule (i.e.,
most indicated number of clusters), and classifies the samples
into clusters.

Contaminant identification was then performed with the best
clustering configuration scheme. Individuals in groups separated
from most of the population were considered contaminants
and classified according to the following rules applied to the
GA measures within these clusters: (1) individuals within a
cluster having the greatest GA-I values for one parent were
considered ACs when the median of these measures was >0.75;
(2) individuals within a cluster with the median GA-II values
for one parent >0.75 and not belonging to Group (1) were
considered SPs; and (3) individuals not belonging to Groups (1)
and (2) and with a within-group minimum GA-III value greater
than the maximummeasure of the group with the minimumGA-
III median were considered HSs/FCs. Therefore, in a simplified
and automated process with only the threshold of GA measures
as an ad hoc decision, we obtained the final data set with parents
and their corresponding true hybrids.
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The method was evaluated on a set of 1,000 simulated
populations, computing the following metrics considering the
most indicated clustering scheme: mean rate of hybrids correctly
identified (MRH), mean rate of contaminants correctly identified
(MRC), mean rate of apomictic clones correctly identified
(MRAC), mean rate of SPs correctly identified (MRSP), and
mean rate of cross-contaminants (HSs/FCs) correctly identified
(MRCC). Furthermore, the same metrics were computed
considering the three most indicated clustering schemes; in this
situation, the highest rate among the three schemes for each
simulated population was used to calculate the mean.

Contaminant Identification in Real Data
Combining GA, CA, and PCA, we established a four-
step contaminant identification methodology as follows,
and applied it to the real populations (Figure 1, Part III
Contaminant Identification):

1. Construction of a scatter plot with the first PCs from a
PCA performed with the SNP data organized according to
allele dosage, looking for evidence of contaminants in the
population. When no contaminants are detected, simulated
clones (25% of the population) from one of the parents can
be artificially added to the population, changing the dispersion
pattern of individuals and inducing contaminant separation;

2. Calculation of five different GA measures for each individual
(GA-I and GA-II, considering Parents 1 and 2, respectively,
and GA-III). GAI and GAII were calculated in the same way
for all ploidy, but for hexaploid progeny, GAIII was adapted
considering its respective segregation;

3. Performance of CA using the GA data to identify clusters in
the population;

4. Visual inspection of the histograms, to classify the clusters
according to the GA value differences described in section
Clustering analysis. This step is done in a sequential process,
in which the first ACs are identified and removed, then SPs,
and lastly, HSs/FCs are identified and removed.

5. Recalculation of PCA to confirm in the biplot the expected
dispersion pattern of a population with no contaminants.

All these procedures were unified in polyCID Shiny app, created
using R software together with the libraries shiny (Chang et al.,
2021), shinydashboard (https://cran.r-project.org/web/packages/
shinydashboard/index.html), and DT (https://cran.r-project.org/
web/packages/DT/index.html). polyCID is an R-Shiny Web
graphical user interface (GUI) that combines all the described
analyses in a simple way and provides a user-friendly tool, fully
available and documented at https://github.com/lagmunicamp/
polycid.

RESULTS

The results are organized as follows. First, the genotyping and
allele dosage information for the three biparental progenies of the
tropical forage species is presented (3.1). Next, the application
of principal component analysis (PCA) to the simulated data
is shown (3.2). Then, the use of GA and CA in contaminant
identification in the simulated data is described (3.3), and finally,

the results obtained from the contaminant identification in real
data are presented (3.4). Furthermore, for simulated and real
populations, P1/Parent 1 is the female parent and P2/Parent 2 is
the male parent.

GBS-SNP Discovery and Allele Dosage
Estimation
After SNP calling using the Tassel- genotyping-by-sequencing
(GBS) pipeline (Glaubitz et al., 2014) modified for polyploids
(Pereira et al., 2018b), filtering markers for missing data (NAs)
and read depth with VCFtools (Danecek et al., 2011), we
obtained 15,279 SNP markers for Urochloa humidicola, 8,036 for
Urochloa decumbens, and 6,337 forMegathyrsus maximus. Three
individuals (“Bh181,” “Bh226,” and “Bh245”) of theU. humidicola
progeny were removed because of the high content of missing
data (>44%).

The Updog R package (Gerard et al., 2018) was used to
estimate the allele dosage for the SNP loci identified in each
progeny. For the six values of prop_mis used (0.05, 0.10, 0.15,
0.20, 0.25, and 0.30), 4,003, 5,179, 5,863, 6,068, 6,161, and
6,215 markers were obtained for M. maximus and 1,195, 1,745,
2,303, 2,862, 3,165, and 3,243 markers were obtained for U.
decumbens, respectively, while 7,253 markers were obtained for
U. humidicola using a prop_mis value of 0.20.

Principal Component Analysis
Marker matrices of each simulated scenario were used to perform
a PCA, looking for patterns spanned by the first two PCs that
can aid in the identification of contaminant samples. Details
of these simulated scenarios, such as the size of chromosomes,
position of centromeres, and the number of markers can be
found in Supplementary Tables 3-5. The PCA scatter plot of
the simulated population without contaminants had hybrids and
parents distributed with no apparent clustering patterns among
the individuals, with 4% of variance explained by the first two
principal components (PCs) (Supplementary Figure 1).

The same biplot distribution was observed when only
one contaminant was added to the biparental population,
i.e., an apomictic clone (AC) (Figure 2A), self-fertilization
progeny (SP) (Supplementary Figure 2), half-sibling (HS)
(Supplementary Figure 3), or full contaminant (FC)
(Supplementary Figure 4). In these situations, the genetic
variation related to contamination could not be detected
by the first components and therefore assessed by visual
inspection. When the number of contaminants was progressively
increased in the scenarios, the dispersion pattern of the scatter
plots began to reveal the separation of the contaminants
from the hybrids. For the scenarios, five (Figure 2B), four
(Supplementary Figure 5), six (Supplementary Figure 6), and
three (Supplementary Figure 7) contaminants were necessary
to clearly visualize the separation. Adding these contaminants
changed the source of variation in the first PCs, which changed
little (<0.2%). As the number of contaminants increased to
25% of the population, it was possible to observe in the PCA
biplot that the hybrids were projected between the parents,
the ACs/SPs were closer to the parent of origin (Figure 2C and
Supplementary Figure 8), the HSs/FCs formed separated groups
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FIGURE 1 | Workflow of the contaminant identification process. (I) Field experiment to obtain the biparental progeny. (II) Population genotyping and bioinformatic

analyses. (III) Methodology with principal component analysis (PCA), genotype analysis (GA), and clustering analysis (CA) to identify and remove contaminants.

(Supplementary Figures 9, 10), and the sums of variance in the
first two PCs changed to values between 10.8 and 17%.

Considering that the analysis of the first two PCs through
a PCA scatter plot could not reveal contaminants at low
frequencies, biparental populations with 199 HPs and one
contaminant were simulated, and 50 ACs (25%) of one of the
parents were included. This unique contaminant may be an SP
(Scenario 2), AC (Scenario 3), or FC (Scenario 4). As a result,
we observed that the inclusion of these simulated clones, which
occurs in real populations, changed the sums of variance in the
first two PCs to a value of ∼10.3% and increased the dispersion
pattern in the PCA scatter plot, leading to the formation of

different subgroups that allowed for the visualization of SP or
HS contaminants (Supplementary Figures 11, 12). On the other

hand, FCs and HPs were grouped together and could not be

identified visually in the scatter plot (Supplementary Figure 13).

Finally, when simulating an open pollination population with

four different possible parents, the biplot of the PCs was able

to provide visual separation of the different progenies. It was
possible to identify each cross since HPs formed a subgroup

between their respective parents. In addition, the AC and SP

contaminants grouped together with their parents (Figure 3).

Semi Automatic Contaminant Identification
To look for the patterns in contaminant genotype analyses

(GA) measures, the three described GAs were calculated in a

simulated population of 200 samples composed of 150 hybrids
(HPs) and 50 contaminants (10 ACs, 10 SPs, 10 HS1s, 10

HS2s, and 10 FCs); thus, five different values for each putative

hybrid were generated. We analyzed how GA histograms behave
for each type of contamination. In Figure 4A, AC individuals
formed a group with the greatest GA-I scores for Parent 1
(red circle) and were removed to analyze the other histograms.
In the same way, the GA-II histogram (Figure 4B) showed
that the SP samples had the highest scores for Parent 1
(red circle), and these individuals were also removed. We
believe that mutations, missing data, and sequencing/genotyping
errors are events responsible for the differences between the
expected scores (pretty close to 1) and the observed (about
0.8 to 0.9). Finally, in Figure 4C, the GA-III histogram
showed that the HP samples had lower scores than the HS
and FC contaminants. For a correct hybrid definition, these
contaminants were also removed to generate a proper hybrid
data set.

By using the idea underlying these visual histogram
inspections, we implemented on GA measures a clustering-
based approach for automatic contaminant identification.
The established methodology employs a single hierarchical
clustering algorithm on a different range of cluster numbers,
defining the best clustering scheme with 27 clustering indexes
(Supplementary Table 2). Employing this approach on the
simulated population previously described, we observed that
the defined CA separated the samples into six different groups:
one for the HP and five for each type of contaminant,
exactly corresponding to the simulated categories (Figure 4).
Therefore, we evaluated its accuracy on additional 6,000
simulated populations and checked its appropriateness using six
set sizes of markers in a broad range of possible contamination
scenarios. The sets were of the following sizes: 2,758, 1,379, 689,
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FIGURE 2 | Principal component analysis (PCA)-based scatter plots showing the change in dispersion pattern as the apomictic clone (AC) of P1 increases in

frequency in the simulated population. (A) Progeny with 199 hybrids (HPs) and 1 AC; (B) Progeny with 195 HPs and 5 ACs; (C) Progeny with 150 HPs and 50 ACs.

The axis represents the first and second principal components, explaining 2.1% and 1.9% of the variance, respectively, for (A), 2.1% and 1.9% for (B) and 10.1% and

1.9% for (C).

Frontiers in Plant Science | www.frontiersin.org 8 October 2021 | Volume 12 | Article 737919

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Martins et al. SNP-Based Approach for Contaminant Identification

FIGURE 3 | Principal component analysis (PCA)-based scatter plot showing the simulated population composed of four parents (P1, P2, P3, and P4), 200 apomictic

clones (ACs) (P1), 200 self-fertilization progenies -(SPs) (P1), 200 half-siblings (HSs) (P1 × P2), and 200 hybrids (HPs) (P1 × P3, P1 × P4, and P3 × 43). The axis

represents the first and second principal components, with 14.9% and 4.6% of the variance explained, respectively.

344, 172, and 86 markers. For each marker’s set size of the,
1,000 populations were simulated sampling markers from a total
of 5,516.

The mean rate of hybrids (MRHs) correctly identified was
100% for all sets of markers, except for the smallest one (86
markers), which had a slight reduction. On the other hand,
the mean rate of contaminants (MRC) was around 90% for
the three largest sets (2,758, 1,379, and 689 markers), which
started decreasing, reaching the value of 48% in the smallest one
(Figure 5A). It was possible to observe that the methodology
failed only for the smallest set (86 markers), in which a true
hybrid was considered a contaminant, but it rarely discarded
reliable data. Regarding the contaminant classification and
considering the largest sets of markers, 69, 72, and 84% were
observed for the mean rate of apomictic clone (MRAC), mean
rate of self-fertilization progeny (MRSP), and mean rate of cross-
contaminants correctly identified (MRCC), respectively. Then,
we observed a slight reduction in the 689 markers set, which
showed values of 63% (MRAC), 66% (MRSP), and 76% (MRCC),
followed by 49% (MRAC), 50% (MRSP), and 15% (MRCC) in the
smallest set (Figure 5A).

In the function of these modest values, we also evaluated
the method efficiency on the second and third best clustering
configurations identified by the calculated indexes. Considering
the best group separation within these three possible
configurations also noticed in GA histograms, we achieved
a performance improvement in all set markers, reaching an
approximate accuracy of 100% in the three largest sets for all
types of samples. Next, we observed a slight reduction (to values
higher than 90%) in the set of 344 markers, and more prominent

reductions in the two smallest sets, reaching the values of 49%
(MRAC), 85% (MRSP), and 40% (MRCC) (Figure 5B). These
findings suggest that, in real applications, such evaluations in
these three cluster configurations may represent an additional
step for increasing the method’s reliability.

Contaminant Identification in Real
Populations
After investigating with simulated populations, the proposed
methodology was applied to real genotyping data from three
biparental F1 progenies of tropical forage grasses. For the progeny
of M. maximus, the PCA plots with different values of prop_mis
showed similar sample dispersion patterns and a reduction in
variance explained by the first two PCs from 10.1 to 7.5%
as the number of markers increased. Therefore, the dataset
obtained with the default value of prop_mis = 0.20 was used
in the further analysis. Even though there was no clear group
formation in the PCA scatter plot, the pattern of parents on the
opposite sides andHPs grouped between them provided evidence
for the presence of contaminants (Supplementary Figure 14A).
Similarly, in the PCA with simulated ACs, these two individuals
remained close to Parent 2 (M. maximus cv. Mombaça)
(Supplementary Figure 14B).

The clustering analysis (CA) with GA revealed two clusters in
the M. maximus progeny, with 134 and two samples. The GA-
I histogram for Parent 2 (M. maximus cv. Mombaça) showed
that the cluster with two samples had high scores and must be
considered putative ACs of Parent 2 (M. maximus cv. Mombaça)
(Supplementary Figure 15A). On the other hand, GA II and
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FIGURE 4 | Genotype analysis (GA)-based histograms of the simulated population with samples classified in the clustering analyses (CAs). (A–C) show the results

from GA-I, GA-II, and GA-III, respectively. Red circles highlight the identified contaminants, i.e., apomictic clones (AC), self-progeny (SP), and half siblings/full

contaminants (HSs/FCs), in contrast to the hybrid progeny (HP).

III showed no evidence for other types of contaminants in
the M. maximus progeny (Supplementary Figures 15B,C). The
exclusion of these two individuals resulted in a PCA scatter plot
with the expected pattern (Supplementary Figure 14C).

For the progeny of U. decumbens, the PCA biplots for the
different values of prop_mis showed different sample dispersion
patterns (data not shown). As this is a very intuitive measure
for the quality of SNPs when estimating allele dosage (Gerard

et al., 2018), we chose to be conservative and used the most
restrictive filter, 0.05, ensuring the selection of markers with
high quality. The first PCA scatter plot showed strong evidence
of contaminants in the population (Figure 6A). The algorithm
found three clusters with 184, 49, and 3 samples. In the GA
histograms, both Clusters 2 and 3 had high GA-I scores for
Parent 2 (U. decumbens cv. Basilisk), providing evidence that
those samples were putative ACs of this parent (Figure 7A).
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FIGURE 5 | Evaluation metrics of the proposed methodology considering six different set sizes of makers in simulated populations (1,000 populations for each set).

(A) The most indicated clustering scheme, and (B) the best out of the first three most indicated schemes found with the 27 employed clustering indexes. The indicated

rates are the mean rate of hybrids correctly identified (MRH), the mean rate of contaminants correctly identified (MRC), the mean rate of apomictic clones correctly

identified (MRAC), the mean rate of self-fertilized progeny correctly identified (MRSP), and the mean rate of cross-contaminants (HSs/FCs) correctly identified (MRCC).

The other GA histograms showed no clear evidence of other
contaminants (Figures 7B,C), except two individuals that could
be considered suspicious in GA-II. In this case, we followed
the clustering results and did not consider these individuals as
contaminants. But this is an ad hoc decision, so the user can
choose to be conservative and remove outliers. Once again, after
the elimination of these ACs, the PCA scatter plot showed the
expected pattern for progeny without contaminants (Figure 6B).

For the hexaploid biparental population of U.
humidicola, the scatter plot of the first PCs showed strong
evidence for the presence of AC and/or SP contaminants
(Supplementary Figure 16A). The clustering analysis of the GA
scores separated the progeny into two clusters with 211 and 65
samples. The histogram of GA-I for Parent 1 (U. humidicola
H031) showed that the cluster with 65 samples had scores close
to 1.0 (Supplementary Figure 17A), representing putative ACs
of the respective parent. GA-II and GA-III showed no evidence
of contaminants (Supplementary Figures 17B,C). Finally,
the PCA without the previously identified contaminants also
showed the expected pattern for progeny without contaminants
(Supplementary Figure 16B).

The PolyCID Shiny App
Finally, we implemented the polyCID Shiny app, aWeb graphical
user interface (GUI) that provides all previously described
analyses in a user-friendly tool that allows users to identify

contaminants in biparental progeny in a simple way. The
polyCID is completely R based, easy to install and presents a
graphical interface designed for non-expert users, with several
functions for interactive visualization of the results. The package
accepts SNP data in the form of marker matrices with allele
dosage information, loads this information, and performs the
four-step contaminant identification methodology, as described
in section Contaminant identification in real data. The Shiny-
based GUI is included in the package as a standalone application,
available at https://github.com/lagmunicamp/polycid.

DISCUSSION

Experimental populations used in the breeding programs are
usually derived from a controlled cross between two or more
parents, but depending on the field experiment, the species
analyzed, and its reproductive biology, individuals may be
generated from the mixtures of seeds, foreign pollination during
open pollinated crosses, self-fertilization, or apomixis by one of
the parents during the crosses. The non-identification of these
contaminant individuals can interfere not only in the selection
cycles of breeding programs (Telfer et al., 2015) but also in the
studies of genetic diversity (Ji et al., 2013), population structure
(Alam et al., 2018), linkage mapping (Deo et al., 2020), and
association mapping (Laucou et al., 2018), since it can generate
biased results.
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FIGURE 6 | Principal component analysis (PCA)-scatter plots showing the Urochloa decumbens progeny for the set of single nucleotide polymorphism (SNP) markers

filtered by 0.05 for prop_mis. (A) Original population composed of two parents (P1 and P2) and their progeny of 236 hybrids [HP (P1 × P2)]; (B) Population without

the 52 apomictic clones (ACs) identified. The axis represents the first and second principal components, explaining 20.9 and 5.5%, respectively, of the variance for (A)

and 7.2 and 5.7% for (B).

In most available studies, the identification of contaminants
involved the use of microsatellites and morphological markers,
but this strategy can be costly and time-consuming (Santos
et al., 2014; Jha et al., 2016; Zhao et al., 2017; Patella et al.,
2019), especially for polyploid species. In these cases, progeny
evaluation is often performed using fewmicrosatellite markers in
polyacrylamide gels, and frequently, other analyses are needed,
such as genetic distance analysis (Santos et al., 2014). The
low number of microsatellite markers, usually in the tens
or hundreds, may prevent the identification of contaminants.
Considering this scenario, we used genotyping-by-sequencing
(GBS) (Poland et al., 2012) to identify thousands of single
nucleotide polymorphism (SNP) markers with allele dosage
information and to propose a methodology that facilitates the
identification of contaminants in biparental crossbreeding of

polyploid species. Despite the emergence of several pipelines for
the analysis of GBS data in polyploids, the application of these
markers in parentage analysis is still little explored.

Currently, several software packages can deal with genetic data
to assign paternity or parentage to individuals at the diploid
level using microsatellite or SNP markers and the likelihood-
based or Bayesian methods (Kalinowski et al., 2007; Jones and
Wang, 2010; Anderson, 2012; Huisman, 2017), in addition to
other approaches (Hayes, 2011; Heaton et al., 2014; Grashei et al.,
2018; Whalen et al., 2019). For polyploids, the few resources
available are limited to microsatellite data (Spielmann et al., 2015;
Zwart et al., 2016). Another common approach in polyploids
is to estimate pairwise relatedness (r) (Huang et al., 2015;
Amadeu et al., 2020), for example, to assess the relationships
between parents, offspring, full-sibs and half-sibs in progenies.
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FIGURE 7 | Genotype analysis (GA)-based histograms of Urochloa decumbens with samples classified in the clustering analysis (CA). (A–C) show the results from

GA-I, GA-II, and GA-III, respectively. The red circle highlights the identified apomictic clone (AC) contaminants in contrast to the hybrid progeny (HP).

In addition, identity-by-descent (IBD) has been used to assess
the probabilities of inheritance of particular combinations of
parental haplotypes (Zheng et al., 2016), which are also quite
difficult to evaluate in polyploid progenies. For both approaches,
the parameters are estimated in a pairwise manner, and the
results are evaluated for each pair, making the analysis even
more laborious.

For breeding programs that make use of biparental crosses,
the major challenge is to precisely identify whether there are

contaminating individuals to be excluded from the progeny
(Martuscello et al., 2009; Ma and Amos, 2012; Santos et al.,
2014; Subashini et al., 2014; Simeão et al., 2016b; Matias et al.,
2019; Deo et al., 2020). In this context, no studies have proposed
a unified pipeline focused on identifying the most common
contaminants in biparental crossings, especially in polyploid
species, and supplying such a pipeline is the main objective
of this work. Therefore, we propose an unprecedented semi-
automatized pipeline that is based on principal component
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analysis (PCA), genotypic analysis (GA), and clustering analysis
(CA) to identify and classify all types of contaminants in a
biparental progeny. The proposed methodology was developed
and tested in F1 biparental crosses of tropical forage grasses, but
it can be applied to any tetraploid or hexaploid species since the
parents of the F1 biparental cross are known.

Contaminant Identification in Simulated
Data Based on PCA, GA, and CA
Principal component analysis (PCA) is a multivariate data
technique used to represent a dataset as orthogonal variables
named principal components (PCs). Aiming at reducing the
dimensionality of a set of variables through linear combinations,
repeated information can be removed while the maximum
variance–covariance structure of these variables is maintained
(Jolliffe and Cadima, 2016). As the first two components explain
the most variance in the SNP data, a scatter plot of the samples
in a Cartesian plane with these PCs is a way to visually identify
similarities and differences, and determine whether samples
can be grouped (Ringnér, 2008). Our results showed that in
a simulated biparental F1 progeny without the presence of
contaminants, the first components showed a two-dimensional
pattern in which the population was distributed between the two
parents (Supplementary Figure 1), which was expected since
these individuals were closely related. As the first PCs generally
reflect the variance related to the population structure in the
sample, individuals from the same population form a unique
cluster in a subspace spanned by the first two eigenvectors (Ma
and Amos, 2012).

Considering the four simulated scenarios described above,
a contaminant frequency of ∼3% in a progeny is needed to
observe a different pattern of PCs that allows the identification
of contaminants (Figure 2B and Supplementary Figures 5–7),
which shows the inefficiency of employing a PCA biplot
for such an approach. In cases with a lower percentage of
apomictic clones (ACs), self-fertilization progenies (SPs), or
half-siblings (HSs), duplicating the genotype of one of the
parents to generate artificial clones proved to be an alternative
way to change the dispersion pattern of individuals, inducing
the projection of contaminants as separated from the real
hybrids (Supplementary Figures 11, 12). This occurred because
the values for the linear combination increased for the PC1
vector, and the source of variation changed to be based on
the presence of inserted clones. On the other hand, we found
that full contaminants (FCs) could be detected with fewer
contaminating individuals (1.5% contaminants in relation to the
total population) due to the different genetic backgrounds in
relation to the progeny. This high genetic variability modifies the
first components and thereby facilitates the identification of FCs
in the PCA.

In general, PCA has a better-defined pattern that allows
for more inferences about population relationships, not at the
individual level (Patterson et al., 2006). It has been widely
performed using microsatellite and SNP markers for diploid
and polyploid species to evaluate population structure (Larsen
et al., 2018; Lara et al., 2019), to infer genetic ancestry (Byun

et al., 2017), to predict genomic breeding values (Macciotta et al.,
2010), and for other applications. However, for contaminant
identification, the use of the first components from PCA, even
those successfully employed in forage grass polyploids (Lara et al.,
2019; Deo et al., 2020), proved to be insufficient inmost scenarios;
therefore, other approaches are required.

In the pipeline described here, we propose the use of PCA
to visualize the data and produce information that suggest the
presence of possible contaminants in biparental crosses. The
main limitation of PCA lies in cases with few contaminants,
i.e., <3% of the progeny, which has already been reported in
tropical forage grasses (Deo et al., 2020). Artificially inserting
simulated clones from one of the parents changed the dispersion
pattern in most cases; however, when the contaminants were
HSs or FCs, the variance was still not captured by the first
components. Therefore, PCA itself could not effectively identify
and classify the contaminants and, for this reason, was combined
with other techniques. We suggested the use of specific GA
measures as inputs for CAs as amethodological workflow capable
of identifying contaminants regardless of the type or quantity,
overcoming the limitation of PCA in identifying contaminants
in proportions below 3% of the total population.

The fundamental idea underlying GA-I, GA-II, and GA-III
was to identify incompatibilities between putative hybrids and
their parents as a strategy to conclusively demonstrate their
parentage. For such analyses, it is expected that the GA scores
from different populations (here, hybrids and contaminants)
form different distributions with specific parameters. Although
there are other approaches for parentage estimation already
discussed in the literature, such as Identity by Descent (IBD)
or pairwise relatedness (r) (Huang et al., 2015; Zheng et al.,
2016; Amadeu et al., 2020), these measures indicate how close an
individual is to another in a given population, regardless of the
degree of relationship. GA measures, on the other hand, differ
from these in terms of their focus on the genetic relationships in
biparental populations for which both parents are known. Here,
themain objective is to compute scores that are related to the type
of contaminants expected in such populations, enabling not only
identification but also classification.

In all simulated populations with 689 or more genotyped
markers, the proposed methodology could correctly identify and
classify almost 100% of the samples, ratifying the appropriateness
of the proposed pipeline. The size of the markers set employed in
different scenarios has been demonstrated to have a large effect
on the accuracy of the methodology, as we observed a positive
correlation between the two variables. Nevertheless, considering
the most indicated clustering scheme, sets with more than 689
markers did not cause an expressive accuracy increase (Figure 5).
Previous studies have evaluated accuracies in the function of
number of markers in different genomic approaches, such as
parentage assignment and genomic selection, and found similar
results (Wang, 2012; Arruda et al., 2015; Lenz et al., 2017;
Whalen et al., 2019). However, finding and generalizing the
optimal number of markers for this methodology is complicated
because it may be influenced by various factors, including
the species, population size, contaminants quantity/type, and
sequencing/genotyping techniques.
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Even though the CA identifies different groups of individuals
with similar GA measures, the association of each group with a
contaminant type requires an additional step, which is important
because identifying the type of contamination (in the case
of AC or SP contamination) can assist the breeder to better
understand the reproductive biology of the species or genotype.
On the other hand, identifying HS or FC contaminants highlights
the need for greater control during the field experiment,
avoiding foreign pollen or seed mixtures. Interestingly, we
noticed that each cluster captured a distinct pattern in the GA
measures, a phenomenon that can be leveraged to decipher the
contaminant origin of the individuals. Importantly, by using
the proposed approach, we did not find any configuration in
which true hybrids were discarded, which is of great value for
real applications.

In summary, our proposal is a unique methodology
that brings together all types of contamination in a single
identification pipeline, representing an important resource
for breeders, who need specific tools to deal with such
contamination. Instead of relying solely on the putative
population structure revealed by PCA methodologies, genotypic
analysis (GA) indexes are calculated, taking into account the
genetics behind the origin of the contaminants. Compared to
the exclusive use of PCA, this pipeline identifies one or a few
contaminating individuals with more confidence. This increased
confidence makes this methodology ideal for situations in the
field that lead to mixtures of seeds or foreign pollen during
fertilization, which usually occurs at low rates.

Contamination Identification in Real Data
Principal component analysis, GA, and CA using
genotypic data from the Megathyrsus maximus, Urochloa
decumbens, and Urochloa humidicola F1 progenies led to the
conclusion that these real progenies had AC contaminants
(Supplementary Figures 15, 17 and Figure 7). ForM. maximus,
the two detected clones (1.4% of the population) corroborated
the findings of Deo et al. (2020), while for U. decumbens, 52
individuals (21.7% of the population) were identified as clones
of the male parent. It is possible that these clones were inserted
into these two progenies during seed collection. Additionally,
the male parent was used as a control in the field experiments,
and the plants may have produced seeds and/or seedlings that
became mixed with the real progeny. As the female parent
of these populations was entirely sexual, the absence of SPs
suggests the predominance of allogamy in these plants and
self-incompatibility as the main mechanism to guarantee this
mode of reproduction.

We extended this methodology for the identification of
contaminants in hexaploid species, represented in this study
by U. humidicola (2n = 6x = 36). GA-I and GA-II were
performed in the same way as for tetraploid species, but
GA-III was adapted considering the segregation and possible
combination of gametes in hexaploid species. For the progeny
of U. humidicola, the combined PC and GA-I histogram analysis
suggested the presence of 61 clones of the female parent (21.8%
of the population). This result suggests that the genotype H031

(CIAT 26146) also reproduces through facultative apomixis, even
though it has been widely cited in the literature as a unique
obligate sexual genotype of U. humidicola (Jungmann et al.,
2010; Vigna et al., 2016). It is known that the expression of
apomixis in the same genotype may vary with the flowering
season in other grasses (Rios et al., 2013). It might be that
the mode of reproduction of H031 was evaluated at the
end of flowering or under a specific environmental condition
when the proportion of sexuality was greater than apomixis;
therefore, this genotype might be a facultative apomict with
high rates of sexuality (Karunarathne et al., 2020). In addition,
the sexual genotypes of the Urochloa spp. can present a certain
degree of self-incompatibility (SI) (Keller-Grein et al., 1996;
Dusi et al., 2010), and Worthington et al. (2019) reported
the detection of 12 individuals derived from accidental self-
pollination of U. humidicola H031. Therefore, there is a need
to enrich the current understanding of U. humidicola biology
and reproduction mode, which are important for developing
suitable breeding and selectionmethods (Barcaccia andAlbertini,
2013).

All three forage progenies used in this work have already been
used in the studies previously developed for the construction
of genetic maps. Deo et al. (2020) identified and removed
two contaminants in M. maximus progeny by PCA, which
were also identified as contaminants by our methodology.
However, for the progeny of U. decumbens (Ferreira et al.,
2019) and U. humidicola (Vigna et al., 2016), only an
analysis of the bands of the hybrids identified by genotyping
with dozens of microsatellites or single sequence repeats
(SSRs) and random amplified polymorphic DNA (RAPD)
markers (Bitencourt et al., 2008), respectively, was performed,
and no clones could be identified through this approach.
Therefore, the absence of an adequate methodology and/or
a sufficient number of markers for the prior identification
of contaminants has resulted in genetic maps constructed
with genetic information including some false hybrids, and
consequently, these maps may contain bias that should be
considered by researchers.

Our methodology proved to be useful in practical situations
of breeding programs of tropical forage grasses, including
the identification of different progenies from multiparent
crosses, which may be extended to other polyploid crops.
The identification of contaminants in the early stages of
breeding cycles can greatly increase the efficiency of programs,
preventing costs with false hybrids that might otherwise only
be discarded in the later phases of selection. Conversely,
it allows for the size of the useful population to increase,
optimizing the breeding populations. Although the use of
molecularmarkers is not yet a reality inmany breeding programs,
it is important to assess potential expenses brought by false
hybrids, which might surpass the cost of large-scale genotyping
technologies (such as GBS), which have been experiencing
considerable cheapening in the recent years. PCA, GA, and
CA were combined in a simple and semi-automated pipeline,
and the coupling of a low-cost genotyping with such pipeline
thus allows for a more precise and efficient detection of
incompatibilities between a group of putative hybrids and the
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identification of contaminants in biparental crosses of tetraploid
and hexaploid species.

The implementation of this simple approach in the
identification of contaminants in biparental progenies of
polyploid species can increase the efficiency of breeding
programs. In this context, the polyCID Shiny app was designed
to enhance the ability of breeders to use our methodology, even
with no bioinformatics expertise. Great advances in sequencing
technologies and genotyping tools have enabled us to explore vast
amounts of genetic data in a more cost-effective and faster way;
however, the ability to handle and apply this genome information
to breeding remains a significant barrier for most breeders and
experimental researchers. Therefore, we designed the polyCID
Shiny app as an interactive and user-friendly application that
is completely R based and easy to install, incorporating the
analysis in a single environment and enabling the users to extract
information on contaminant individuals without requiring
knowledge of a programming language.

Finally, although our analyses were performed with real and
simulated progenies of tropical forage grasses, this methodology
can be extended to any biparental progeny of tetraploid or
hexaploid species. It can be applied in the early stages of
genomic studies with GBS in biparental polyploid progenies,
such as genetic linkage map construction and genomic
prediction, to identify possible contaminants. However, as the
price of SNP genotyping is constantly decreasing and other
polyploid genotyping tools are emerging, the application of our
methodology even in experiments that do not involve SNPs may
be possible, mainly in the intermediate and final stages of the
breeding program to confirm the absence of contamination in
the final stages and cultivar release. In the case of genotyping
with a lower number of molecular markers, it is suggested
that simulation studies be carried out a priori, taking into
account how the number and quality of the markers affect the
final results.
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