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Vineyard calcium (Ca) sprays have been increasingly used by grape growers to improve
fruit firmness and thus maintain quality, particularly in periods of heavy rains and hail.
The observation that Ca visibly modified berry size, texture, and color in the most
prominent white cultivar of the DOC region ‘Vinhos Verdes’, cultivar (cv.) Loureiro,
led us to hypothesize that Ca induced metabolic rearrangements that resulted in a
substantial delay in fruit maturation. Targeted metabolomics by ultra-performance liquid
chromatography coupled to mass spectrometry and directed transcriptomics were thus
combined to characterize the metabolic and transcriptional profiles of cv. Loureiro
berries that, together with firmness, °Brix, and fruit weight measurements, allowed to
obtain an integrated picture of the biochemical and structural effects of Ca in this cultivar.
Results showed that exogenous Ca decreased amino acid levels in ripe berries while
upregulating PALT expression, and stimulated the accumulation of caftaric, coutaric,
and fertaric acids. An increase in the levels of specific stilbenoids, namely E-piceid and
E-w-viniferin, was observed, which correlated with the upregulation of STS expression.
Trace amounts of anthocyanins were detected in berries of this white cultivar, but Ca
treatment further inhibited their accumulation. The increased berry flavonol content
upon Ca treatment confirmed that Ca delays the maturation process, which was further
supported by an increase in fruit firmness and decrease in weight and °Brix at harvest.
This newly reported effect may be specific to white cultivars, a topic that deserves
further investigation.

Keywords: anthocyanins, amino acids, calcium, flavonols, fruit firmness, grape berry ripening, polyphenolic
metabolism, white grape cultivars

INTRODUCTION

Calcium (Ca) supplements have been increasingly used in fresh fruits and vegetables toward
improved fitness, sanitation, nutritional enrichment, and decay prevention (Martin-Diana et al.,
2007). Diverse supplementation strategies have been optimized, from routinely spraying the fruits
throughout their development in the tree, applying a single treatment at pre-harvest, or supplying
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Ca only at postharvest, through spraying, dipping, or even
impregnation techniques (Saftner et al., 1997; Martin-Diana et al.,
2005, 2007; Manganaris et al., 2007; Wang et al., 2014; Correia
et al,, 2019). The refinement of these methodologies showed
that the beneficial effects of Ca can be achieved at both pre-
harvest and postharvest stages, supporting its potential to protect
the grape berries against abiotic and biotic stresses (Alcaraz-
Lopez et al., 2005; Romanazzi et al., 2012; Ciccarese et al., 2013;
Gonzalez-Fontes et al.,, 2017; Aldon et al., 2018). Accordingly,
increased fruit resistance to infection by Botrytis cinerea during
storage was achieved by Ca dips after harvest (Fu et al., 2020),
an effect that was also reported upon vineyard Ca sprays between
fruit set and veraison stages (Amiri et al., 2009; Ciccarese et al.,
2013). In line with these observations, Ca sprays during berry
development reduce the incidence of microcracks on the fruit
surface and the lodging of filamentous fungi in these structures,
reducing fruit decay at postharvest (Martins et al., 2020b, 2021a).

The effects of Ca on fruit texture are connected to its structural
function in the cell wall and membranes, mediating cross-
links between pectin molecules, and inhibiting the activity of
polygalacturonases responsible for fruit softening (Hocking et al.,
2016; Martins et al., 2020b), but a myriad of developmental and
stress—response processes mediated by Ca may occur because
it is a pivotal secondary messenger (Gonzalez-Fontes et al,
2017; Aldon et al., 2018). Recent studies reported increased
bulk anthocyanin content in berries cultivar (cv.) Manicure
Finger sprayed with Ca around veraison stage (Yu et al,
2020). In contrast, a general repression in the synthesis of
anthocyanins in the grape berry was shown through a targeted
metabolomics approach, following Ca treatments throughout
the entire fruiting season in vineyards cv. Vinhdo (Martins
et al,, 2020a). This effect was also reported in grape cell
cultures cv. Gamay Fréaux var. Teinturier, which became
significantly less pigmented upon Ca treatment, due to a
general repression of the entire flavonoid pathway (Martins
et al., 2018, 2020a). These effects were underlaid by the Ca-
driven regulation of core enzymes of secondary metabolism,
at gene expression and protein activity levels, besides vacuolar
transporters mediating anthocyanin accumulation (Martins et al.,
2018). Transcriptomics studies in berries cv. Manicure Finger
also showed the involvement of Ca-activated transcription factors
in the regulation of anthocyanin levels (Yu et al, 2020). In
cv. Vinhio berries, the inhibition of anthocyanin synthesis was
accompanied by a general accumulation of stilbenoids, including
E-resveratrol, E-g-viniferin, E-piceid, and pallidol, demonstrating
the powerful ability of Ca in diverting polyphenolic biosynthetic
routes (Martins et al., 2020a).

The studies reported above provided a good overview of the
effects of Ca over the metabolism of red wine grape cultivars
(Martins et al., 2018, 2020a; Yu et al., 2020); however, how the
phenolics metabolism of berries from white cultivars is affected
by Ca is still puzzling. Previous studies indicated a qualitative
improvement in the general color of grape berries of the white
cv. Asgari (Amiri et al., 2009), but information on the metabolic
mechanisms underlying these effects is lacking. The present study
aimed at filling a gap in the literature, following the observation
that Ca visibly modified berry size, texture, and color in the white

cv. Loureiro, in two consecutive seasons. Our main hypothesis is
that Ca induces specific metabolic rearrangements that result in
a substantial delay in fruit maturation. Integrated metabolomics
and directed transcriptomics were combined to study the effect
of Ca over key genes involved in polyphenol biosynthesis and in
grape berry metabolic profile at harvest time. The determination
of technical and biochemical parameters such as firmness, °Brix,
and fruit weight further enlightened the mechanisms of Ca-
driven modulation of fruit structure and metabolism in cv.
Loureiro, possibly posing as a model for other white cultivars.

MATERIALS AND METHODS

Vineyard Treatments and Sample
Collection

Field trials were performed in grapevines cv. Loureiro, the
most prominent white cultivar of the Portuguese DOC region
of ‘Vinhos Verdes’ (edaphoclimatic conditions specified in
Supplementary Figure 1), cultivated in a commercial vineyard
with coordinates: N41°28'28” latitude, W8°34'59" longitude, 165
m altitude. The plants were oriented in southwest to northeast,
spaced at 2.2 m between rows, 1.0 m along the row and trained
on a vertical shoot position trellis system, uniformly pruned on
a unilateral Royat cordon. Grapevine aerial parts were evenly
sprayed with a solution of 2% (w/v) CaCl, and 0.1% (v/v)
Silwet L-77 used as a surfactant, as previously optimized (Saftner
et al.,, 1997; Martins et al., 2020a,b, 2021a). Treatments were
performed in the early morning, and 3 L of the solution was
used for every 10 plants. Three applications were performed
throughout the fruiting season, every 30 days, the first performed
at the pea size (E-L 31; Coombe, 1995), the second performed
at veraison stage (E-L 35), and the last performed 1 week
before harvest (E-L 38). Control plants were sprayed with a
solution containing the surfactant agent only. Both control and
Ca-treated grapevines were healthy, cultivated under the same
microclimate, and subjected to the same routine phytosanitary
treatments with Topaze and Ridomil Gold R WG, according
to the instructions of the suppliers. Rows of control and Ca-
treated vines were intercalated with vines with no treatment At
the harvest time, berries were randomly collected from 10 Ca-
treated and control grapevines. Six independent sets (n = 6) of
approximately 30 berries each were frozen immediately in liquid
nitrogen and stored at —80°C for further characterization of
metabolite profile. The determination of technical/biochemical
parameters and gene expression analysis were performed in three
pools of two independent sets (n = 3).

Determination of Berry Weight, Ca

Content, °Brix, and Firmness

Grape berry fresh weight was assessed with an analytical scale
Mettler Toledo AG245 (Martins et al., 2020a). Ca content was
determined in profusely washed berries, using a previously
optimized adaptation of the technique described by Spare (1964).
Briefly, berries were ground in liquid nitrogen and 200 mg of
fresh weight were used for extraction of soluble contents in
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1.5 mL milli-Q H;O. After centrifuging the extracts at 12,000 x g
for 3 min, 300 pL of 0.008% (w/v) murexide reagent was added
to 500 w1 of the supernatant. Following incubation for 15 min
at RT, the ODygonm was recorded and Ca concentration was
determined through a calibration curve of CaCl, solution at
2-150 WM (Martins et al., 2020b). The °Brix was determined in
aliquots of grape juice using a digital wine refractometer Hanna
HI 96813, as described previously (Martins et al., 2020c). Fruit
firmness was assessed in 24 intact fruits containing the pedicel,
by determining the tension necessary to perforate the fruit skin.
Tests were performed on a Shimadzu (model AG-IS) equipped
with a 50-N load cell and a 1-mm diameter needle. Force-stroke
plots were assembled in Trapezium 2.0 Software and results were
expressed in MPa, as described previously (Martins et al., 2020b).

Characterization of the Grape Berry
Metabolic Profile

Grape berries were ground in liquid nitrogen and converted
into a fine powder. Metabolites were extracted from freeze-dried
samples, using a proportion of 1 mL of 80% (v/v) methanol per
25 mg of dry weight. Samples were sonicated for 30 min and
macerated overnight at 4°C in the dark, centrifuged at 18,000¢ for
10 min, and the supernatants were recovered. Ultra-performance
liquid chromatography coupled to mass spectrometry (UPLC-
MS)-targeted metabolomic analysis was performed as optimized
previously (Billet et al., 2018a,b,c; Martins et al., 2020a), using
an ACQUITY UPLC system coupled to a photo diode array
detector and a Xevo TQD mass spectrometer (Waters, Milford,
MA, United States) equipped with an electrospray ionization
source controlled by Masslynx 4.1 software (Waters, Milford,
MA, United States). Analyte separation was achieved by using
a Waters Acquity HSS T3 C18 column (150 x 2.1 mm, 1.8
pwm) with a flow rate of 0.4 mL/min at 55°C. Chromatographic
separation and identification of analytes were achieved as
optimized previously, using the same standards specified by
Martins et al. (2020a, 2021b). UPLC-MS analyses were achieved
using the selected ion monitoring (SIM) mode of the targeted
molecular ions. SIM chromatograms were integrated using the
subroutine QuanLynx 4.1 for data mining. Peak integration was
performed using the ApexTrack algorithm with a mass window
of 0.1 Da and relative retention time window of 1 min followed
by Savitzky-Golay smoothing (iteration = 1 and width = 1).
To evaluate the robustness of measurements and analytical
variability, a pool of all samples was prepared to obtain a quality
control sample and the samples were randomly injected. Relative
quantification was determined for L-proline (ml), L-leucine
(m2), L-isoleucine (m3), L-phenylalanine (m4), L-tyrosine (m5),
L-tryptophan (m6), cyanidin-3-O-glucoside (m7), peonidin-3-
O-glucoside (m8), delphinidin-3-O-glucoside (m9), cyanidin-3-
O-(6-O-acetyl)-glucoside (m10), malvidin-3-0O-glucoside (m11),
malvidin-3-0-(6-O-acetyl)-glucoside (m12), petunidin-3-O-(6-
p-coumaroyl)-glucoside (m13), malvidin-3-O-(6-p-coumaroyl)-
glucoside (m14), malvidin-3,5-O-diglucoside (m15), gallic acid
(m16), citric acid (m17), E-resveratrol (m18), E-piceatannol
(m19), catechin (m20), epicatechin (m21), coutaric acid (m22),
caftaric acid (m23), fertaric acid (m24), E-piceid (m25),
kaempferol-3-O-glucoside (m26), pallidol (m27), E-e-viniferin

(m28), E-w-viniferin (m29), E-8-viniferin (m30), quercetin-3-0O-
glucoside (m31), quercetin-3-O-glucuronide (m32), myricetin-
hexoside 1 (m33), myricetin-hexoside 2 (m34), quercetin
derivative (m35), procyanidin Bl (m36), procyanidin B2 (m37),
procyanidin B3 (m38), procyanidin B4 (m39), kaempferol-3-O-
rutinoside (40), procyanidin gallate (41), procyanidin trimer 1
(42), and procyanidin trimer 2 (43).

RNA Extraction and Quantitative

Real-Time PCR Analysis

Total RNA was extracted from 0.3 g of freshly ground
samples according to the method of Reid et al. (2006),
as previously optimized (Martins et al, 2020a,b). RNA was
purified with the GRS Total RNA kit — Plant (Grisp Research
Solutions, Porto, Portugal), and the cDNA was obtained from
1 pg of mRNA by reverse transcription with an Xpert
cDNA Synthesis Kit and oligo (dT) primers (Grisp Research
Solutions). Quantitative real-time PCR (qRT-PCR) reactions
were performed in triplicate, as previously described (Martins
et al., 2020a,b). The sequences of the gene-specific primers
used are detailed in Supplementary Table 1. Genes encoding
core enzymes of secondary metabolism were selected, namely,
PALI (phenylalanine ammonia lyase), STS (stilbene synthase),
CHS3 (chalcone synthase), CHII (chalcone isomerase), F3'5H
(flavonoid 3,5’ -hydroxylase), F3H1 (flavanone 3-hydroxylase),
FLS1 (flavonol synthase), DFR (dihydroflavonol 4-reductase),
LARI (leucoanthocyanidin reductase), ANS (anthocyanidin
synthase), BAN and ANR (anthocyanidin reductases), and
UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT) (Jeong
et al., 2004; Bogs et al., 2005; Castellarin et al., 2007; Tavares
et al., 2013; Martins et al., 2018). The expression of LAC
encoding a laccase involved in the oxidation of E-resveratrol
was also studied, together with key genes involved in cell wall
and cuticle structure, namely, PMEI (pectin methylesterase),
PG1 (polygalacturonase), EXP6 (expansin), CesA3 (cellulose
synthase), CER9 (E3 ubiquitin ligase), and CYPI5 (cytochrome
P450 monooxygenase/hydroxylase) (Martins et al., 2018, 2020b).
Dissociation curves allowed confirmation of the specificity of
the PCR reactions. Expression of target genes was normalized
to that of the reference genes glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and actin (ACTI) (Martins et al,
2020a) using the A ACq method in CFX Manager Software 3.1
(Bio-Rad Laboratories, Inc., Hercules, CA, United States).

General Statistical Analysis

Results were statistically analyzed through the Students t-test
in Prism6 (GraphPad Software, Inc.). The significance level of
differences between the control and the Ca-treated samples
is marked in graphs with asterisks: *P < 0.05; **P < 0.01;
EP < 0.001; ****P < 0.0001. A multivariate statistical data
analysis (MVA) of the samples was performed with SIMCA
P+ version 15 (Umetrics AB, Umed, Sweden), after mean-
centering all variables and scaling unit-variance. Metabolic
variables affected by Ca treatment were revealed through
the principal component analysis (PCA) applied as the
unsupervised MVA method.
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RESULTS

Results showed that Ca treatment throughout the fruiting season
visibly modified the size (decreased), texture, and color of the
berries at harvest time, and these effects were consistent in two
consecutive seasons (Figure 1A). Accordingly, the fresh weight
of berries from Ca-treated plants was 35% lower than that of the
control fruits. In parallel, Ca sprays increased fruit Ca content by
30% and decreased the °Brix from 18.4 to 16.7 °B, in line with the
immature appearance of the fruits (Figure 1B). In addition, the
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FIGURE 1 | Appearance (A), weight, Ca content, and °Brix (B) of mature
berries from vines cv. Loureiro treated with Ca (+ Ca) or without treatment
(- Ca). Images in panel (A) are representative of two consecutive seasons.
Results are expressed as mean + SD and asterisks denote statistical
significance as compared to control (- Ca): **P < 0.01; **P < 0.001; n = 3.

force necessary to perforate the skin of berries from Ca-treated
plants, expressed as tension, was significantly higher than that of
the control fruits (Figure 2A). This change was associated to a
56-fold increase in the expression of cell wall PME1 (Figure 2B).
Likewise, transcript levels of EXP6 also increased by 5.6-fold.
In contrast, the expression of PGI decreased by 66% upon Ca
treatment. The same effect was observed for CYPI5 involved in
the cuticle structure, that was downregulated by 82%. Other genes
involved in the cell wall and cuticle structures, namely CesA3 and
CER9 were not significantly affected by the Ca treatment.

Targeted metabolomics analysis by UPLC-MS allowed the
detection of 44 metabolites, including 5 phenolic and organic
acids, 6 amino acids, 9 flavan-3-ols, 7 flavonols, 9 anthocyanins,
and 7 stilbenoids (Supplementary Table 2). Unsupervised PCA
score plot of the first two components explained 52.9% of the
variance and readily discriminated the metabolic profiles of
berries from control and Ca-treated vines (Figure 3A). In general,
amino acids and anthocyanins di-OH mostly accumulated in
control berries, while most phenolic acids were more abundant
in berries from Ca-treated vines (Figure 3B). A detailed analysis
of berry metabolic profiles showed that all amino acids detected,
including L-phenylalanine, were significantly reduced in berries
from Ca-treated vines, decreasing by up to 40% in comparison to
the control fruits (Figure 4). In contrast, phenolic acids increased
by up to 1.9-fold, among which coutaric, caftaric, and fertaric
acids. The levels of citric and gallic acids were not affected by
Ca treatment. Regarding stilbenoids, a significant increase of
1.8-fold was observed in E-piceid levels upon Ca treatment,
together with a 6.5-fold increase in E-w-viniferin content. For
the remaining stilbenoids, which included E-resveratrol, E-
e-viniferins, and E-3-viniferins, a tendential but not significant
decrease was observed. Regarding flavan-3-ols, only the content
in epicatechin was significantly affected by Ca treatment, for
which a reduction of 20% was observed. Thus, the apparent
increase in procyanidin levels observed in the loading plot was
not statistically significant (Figure 3B). The accumulation of
specific flavonols, namely kaempferol-3-O-rutinoside, quercetin-
3-O-glucuronide, and myricetin-hexoside 2, was favored by
the Ca treatment and their content increased by up to 2.8-
fold in comparison to the control fruits. The corresponding
glucosides were not significantly affected by the Ca treatment,
nor myricetin-hexoside 1 (Figure 4). Anthocyanins detected in
berries of cv. Loureiro included cyanidin, peonidin, petunidin,
delphinidin, and malvidin conjugates, the latter being the most
diverse. The Ca treatment specifically reduced cyanidin-3-O-
glucoside levels by 40% and malvidin-3-O-(6-p-coumaroyl)-
glucoside content by 60%. The effect of Ca on the remaining
anthocyanins was not statistically significant.

The molecular nature of the metabolic shifts triggered by
Ca in berries of cv. Loureiro vines was investigated through
the analysis of transcript levels of genes encoding key enzymes
of secondary metabolism. The expression of PALI, encoding
PAL, was upregulated by 63% upon Ca treatment (Figure 5).
Likewise, STS encoding stilbene synthases was upregulated by
62%. Coincidentally, the expression of CHS3 encoding chalcone
synthase was 62% lower in berries from Ca-treated vines
than in the control berries. The same effect was observed
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FIGURE 2 | Firmness (A) and transcript levels of genes involved in cell wall and cuticle structures (B), in berries from vines cv. Loureiro treated with Ca (+ Ca) or
without treatment (- Ca). Firmness is expressed as the tension necessary to perforate the fruit skin; n = 24. Transcript levels are shown for pectin methylesterase
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FIGURE 3 | Unsupervised classification using the principal component analysis on metabolomic data from grape berries from vines cv. Loureiro treated with Ca

(+ Ca) or without treatment (- Ca) (n = 6). Variables in the score plot (A) were colored according to the treatment, and variables in loading plot (B) were colored
according to the metabolic class. Numbers indicate the ID of metabolites, as follows: L-proline (m1), L-leucine (m2), L-isoleucine (m3), L-phenylalanine (m4),
L-tyrosine (m5), L-tryptophan (m6), cyanidin-3-O-glucoside (m7), peonidin-3-O-glucoside (m8), delphinidin-3-O-glucoside (m9), cyanidin-3-O-(6-O-acetyl)-glucoside
(m10), malvidin-3-O-glucoside (m11), malvidin-3-O-(6-O-acetyl)-glucoside (m12), petunidin-3-O-(6-p-coumaroyl)-glucoside (m13),
malvidin-3-O-(6-p-coumaroyl)-glucoside (m14), malvidin-3,5-O-diglucoside (m15), gallic acid (m16), citric acid (m17), E-resveratrol (m18), E-piceatannol (m19),
catechin (m20), epicatechin (m21), coutaric acid (m22), caftaric acid (m23), fertaric acid (m24), E-piceid (m25), kaempferol-3-O-glucoside (m26), pallidol (M27),
E-g-viniferin (m28), E-w-viniferin (m29), E-3-viniferin (M30), quercetin-3-O-glucoside (M31), quercetin-3-O-glucuronide (M32), myricetin-hexoside 1 (M33),
myricetin-hexoside 2 (m34), quercetin derivative (m35), procyanidin B1 (m36), procyanidin B2 (m37), procyanidin B3 (m38), procyanidin B4 (m39),
kaempferol-3-O-rutinoside (40), procyanidin gallate (41), procyanidin trimer 1 (42), and procyanidin trimer 2 (43).
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for F3HI encoding flavanone 3-hydroxylase, whose transcript
levels decreased by 50% upon Ca treatment. Further in the
flavonoid pathway, DFR encoding dihydroflavonol reductase was
upregulated by 30% upon Ca treatment, whereas ANS encoding
anthocyanidin synthase was downregulated by 49%. Seven other
genes of the flavonoid pathway including UFGT were not
significantly affected by the Ca treatment, nor did LAC (laccase)
was involved in the E-resveratrol oxidation. An overview of the
effects of Ca in cv. Loureiro berries is shown in Figure 6.

DISCUSSION

Results in the present study demonstrated the beneficial effect
of Ca sprays over the firmness of berries cv. Loureiro,
complementing the few studies conducted in other white
cultivars, namely Thompson Seedless, Asgari, and Italia (Amiri
et al., 2009; Bonomelli and Ruiz, 2010; Ciccarese et al., 2013),
and are in agreement with some previous reports on red
cultivars such as Vinhao and Crimson (Alcaraz-Lopez et al., 2005;
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FIGURE 4 | Effect of Ca on the metabolite profile of grape berries cv. Loureiro. Results are expressed as fold changes of the mean + SD values obtained for Ca
treatment (+ Ca) relative to the control (- Ca), and asterisks indicate statistical significance of + Ca vs. — Ca for each metabolite: *P < 0.05; **P < 0.01; ***P < 0.001;
P < 0.0001; n =6.

Martins et al., 2020b). Electron microscopy studies on cv. Vinhédo
berries showed that increased firmness was accompanied by a
reduction in the incidence of microcracks on the fruit surface
which became smoother than that of the control fruits (Martins
et al., 2020b). The tight regulation of genes involved in the cell
wall and cuticle structures by Ca in berries cv. Loureiro likely
explained the improved fruit firmness. The observed inhibition
of PGI and CYPI5 expression was in accordance to previous
results in cv. Vinhdo berries (Martins et al., 2020b), thus it
seems that both white and red varieties share the same targets
related to the prevention of fruit softening in response to Ca. PGs
degrade pectin molecules in the cell wall and a particularly close
correlation between PGI levels and grape berry softening has
been reported (Deytieux-Belleau et al., 2008). In turn, cuticular
CYPs such as CYPI5 are involved in the synthesis of wax
triterpenoids, which also determine the fruit quality (Fukushima
et al., 2011; Lara et al., 2014). Contrary to previous studies
in cv. Vinhdo berries (Martins et al., 2020b), PMEI and EXP6
were upregulated upon Ca treatment in cv. Loureiro. PME and
EXP are involved in various physiological processes underlying
both reproductive and vegetative plant development, including

seed germination, root tip elongation, and soft fruit ripening
(Sampedro and Cosgrove, 2005; Pelloux et al., 2007). PME effects
on the latter process arise from its contribution in the degree of
demethylated polygalacturonans that are prone to degradation by
PGs and the availability of homogalacturonan carboxylic groups
for Ca>T binding (Deytieux-Belleau et al., 2008). Accordingly, the
induction of PME mRNAs has been associated to the decrease
in the degree of methyl-esterification of insoluble pectins during
grape berry development (Barnavon et al., 2001).

Results in the present study showed a reduction in the
weight and °Brix of mature berries from vines sprayed with Ca,
suggesting a delay in fruit maturation, which could be anticipated
from the immature appearance of the fruits. This result was not
observed in vines of the red cultivar Vinhdo subjected to the
same Ca application protocol (Martins et al., 2020b). However,
decreased °Brix following Ca treatment was reported previously
for another white grape cv. Asgari (Amiri et al, 2009). This
effect was accompanied by a change in fruit skin color, berries
remaining greener, and not attaining the characteristic golden
color of ripe fruits (Amiri et al., 2009), much like the observations
in the present study with the cv. Loureiro.
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(UDP—glucose:flavonoid-3-O-glucosyltransferase, UFGT). Expression levels were normalized to the transcript levels of GAPDH and (ACT1) (housekeeping genes).
Results are expressed as mean + SD and asterisks denote statistical significance as compared to control (- Ca): *P < 0.05; **P < 0.01; and ***P < 0.001; n = 3.

In this study, trace amounts of anthocyanins were detected
by UPLC-MS in cv. Loureiro berries, as reported in other white
cultivars such as Chardonnay, Sauvignon Blanc, Riesling, Pinot
Blanc, and Muscat Blanc, also by chromatographic methods

4 PHENOLIC ACIDS

E-piceid, w-viniferin

4 FLAVONOLS

ANTHOCYANINS |

FIGURE 6 | Physiological, metabolic, and transcriptional changes driven by
exogenous Ca in grape berries from vines cv. Loureiro. Arrows pointing
upward indicate increase in comparison to control berries, while arrows
pointing downward indicate decrease. The pathway was based on the
information from Kyoto Encyclopedia of Genes and Genomes — KEGG
database.

(Arapitsas et al., 2015; Niu et al, 2017). In contrast, earlier
studies (Boss et al., 1996) reported the absence of these pigments
in white cultivars; however, the quantification methods were
much less sensitive. Results in the present study and in previous
reports suggested that anthocyanin diversity is similar in both
white and red grape varieties (Arapitsas et al., 2015; Niu et al,,
2017; Martins et al., 2020a). The inhibitory effect of Ca over
the anthocyanins malvidin-3-O-(6-p-coumaroyl)-glucoside and
cyanidin-3-O-glucoside observed in the present study for fruits
cv. Loureiro is in line with previous studies in cv. Vinhdo,
and is consistent with the downregulation of ANS and UFGT
(Martins et al., 2020a).

The consistent decrease in fruit amino acid levels upon
Ca treatment observed in the present study might bring
about changes during wine fermentation, as many of these
metabolites constitute the yeast assimilable nitrogen fraction of
the must (Vilanova et al., 2007). In particular, the decrease in
L-phenylalanine levels was tightly linked to the upregulation
of PALI encoding the enzyme responsible for its conversion
to cinnamic acid, the first catalytic step of plant secondary
metabolism (Teixeira et al., 2013). This effect correlated with
the increase in phenolic acids, produced in downstream routes
initially fed by this substrate. Caftaric acid is known to account
for the color of white wines, as it can be hydrolyzed to
caffeic acid during the wine-making process, the oxidation
of the latter contributing to wine browning (Cilliers and
Singleton, 1990). Caftaric acid and other hydroxycinnamates
including coutaric acid, also detected in the present study,
were shown to be effective markers of wine differentiation,
together with resveratrol, piceid, and epicatechin (Andrés-
Lacueva et al., 2002; Lampit, 2013). In the present study, Ca
treatment induced STS expression and consequently, stilbenoid
synthesis, in analogy to previous reports in berries of cv. Vinhao
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vines located in the same vineyard (Martins et al, 2020a).
Although in cv. Vinhdo a general increase in most stilbenoids
including E-resveratrol and E-e-viniferin was reported, in
cv. Loureiro a targeted accumulation of E-piceid and E-w-
viniferin was observed, suggesting a specific action of Ca
effect depending on the cultivar. The interaction of Ca with
other metabolites differentially present in each cultivar may
underlie these effects; accordingly, previous studies showed
that the combination of Ca and plant hormones such as
jasmonic or abscisic acid greatly determines the redirecting
of secondary metabolism toward the synthesis of specific
compounds such as different types of viniferins (Martins
et al, 2018, 2021b). The targeted action of Ca over specific
polyphenols was evident in other metabolic classes, including
anthocyanins (discussed above), flavonols, and flavan-3-ols.
The large increase of the flavonols kaempferol-3-O-rutinoside,
quercetin-3-O-glucuronide, and myricetin-hexoside 2 observed
in cv. Loureiro was not reported previously in cv. Vinhao
(Martins et al,, 2020a). Flavonols are exclusively found in
the grape berry skin and seeds, peaking at veraison stage of
fruit development (Teixeira et al., 2013). Thus, the increase
in their levels upon Ca treatment supports the delay in fruit
maturation in cv. Loureiro, as discussed previously. In parallel,
only epicatechin was affected in this cultivar, suggesting a minor
influence of Ca over flavan-3-ols contrary to that observed in
cv. Vinhdo and cv. Gamay Fréaux var. Teinturier cell cultures
where a general repression of the flavonoid pathway was reported
(Martins et al., 2018, 2020a).

CONCLUSION

Results in the present study confirmed the postulated hypothesis,
showing that vineyard Ca sprays induce precise metabolic
rearrangements in cv. Loureiro berries that result in a substantial
delay in fruit maturation. A specific integrated effect of Ca over
biochemical and structural properties of cv. Loureiro berries is
thus suggested: by inhibiting the action of polygalacturonases
responsible for degradation of cell wall pectin and fruit softening,
Ca prevents fruit growth and other processes associated with fruit
maturation, leading to increased flavonol content and firmness,
at the expense of fruit size and °Brix. This effect may be specific
for white cultivars, a topic that deserves further investigation.
The results may pave the way for the optimization of protocols
of Ca treatments in the field aimed to prevent early fruit
ripening in specific cultivars from wine regions most affected
by climate change, possibly consisting of a good alternative
to crop forcing. Additional benefits on the resistance to biotic
and abiotic stresses and on shelf-life could also be expected,
in accordance to previous studies (Romanazzi et al, 2012;
Martins et al., 2021a).
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