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Tobacco bacterial wilt (TBW) is a devastating soil-borne disease threatening the yield
and quality of tobacco. However, its genetic foundations are not fully understood. In
this study, we identified 126,602 high-quality single-nucleotide polymorphisms (SNPs)
in 94 tobacco accessions using genotyping-by-sequencing (GBS) and a 94.56 KB
linkage disequilibrium (LD) decay rate for candidate gene selection. The population
structure analysis revealed two subpopulations with 37 and 57 tobacco accessions.
Four multi-locus genome-wide association study (ML-GWAS) approaches identified
142 quantitative trait nucleotides (QTNs) in E1–E4 and the best linear unbiased
prediction (BLUP), explaining 0.49–22.52% phenotypic variance. Of these, 38 novel
stable QTNs were identified across at least two environments/methods, and their alleles
showed significant TBW-DI differences. The number of superior alleles associated
with TBW resistance for each accession ranged from 4 to 24; eight accessions had
more than 18 superior alleles. Based on TBW-resistant alleles, the five best cross
combinations were predicted, including MC133 × Ruyuan No. 1 and CO258 × ROX28.
We identified 52 candidate genes around 38 QTNs related to TBW resistance
based on homologous functional annotation and KEGG enrichment analysis, e.g.,
CYCD3;2, BSK1, Nitab4.5_0000641g0050, Nitab4.5_0000929g0030. To the best of
our knowledge, this is the first comprehensive study to identify QTNs, superior alleles,
and their candidate genes for breeding TBW-resistant tobacco varieties. The results
provide further insight into the genetic architecture, marker-assisted selection, and
functional genomics of TBW resistance, improving future breeding efforts to increase
crop productivity.

Keywords: tobacco germplasm, bacterial wilt resistance, SNP, genome-wide association analysis, quantitative
trait nucleotide, superior alleles
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INTRODUCTION

Tobacco (Nicotiana tabacum L.; 2n = 48) is an important
cash crop in many countries, including China, and a valuable
model system in genetic engineering and molecular biology.
Tobacco bacterial wilt (TBW) caused by Ralstonia solanacearum
is a destructive soil-borne disease in many regions worldwide
(Nishi et al., 2003; Lan et al., 2014; Drake-Stowe et al., 2017).
Infected tobacco plants typically exhibit symptoms such as
leaf wilt, root and stem necrosis, and growth retardation,
followed by plant death, which reduce yield and quality (Qian
et al., 2013). TBW is prevalent in tobacco-growing countries
with moist tropical or warm-temperate climates (Denny, 2006).
In China, the disease occurrence has been steadily rising,
reaching 15–30% in some areas (Jiang et al., 2017), posing
a serious threat to tobacco production in the four main
tobacco-growing regions, including 14 provinces (Li et al.,
2016). Several methods, including crop rotation and soil
fumigation, can reduce some economic losses from the disease;
however, none provide sufficient protection (Nishi et al., 2003;
Lan et al., 2014).

Tobacco bacterial wilt resistance is a quantitative trait
controlled by multiple genes and/or quantitative trait
loci/nucleotides (QTLs/QTNs) (Smith and Clayton, 1948;
Nishi et al., 2003; Gao et al., 2010; Ni et al., 2011). It is challenging
to improve TBW resistance using traditional breeding methods
(Yang et al., 2012). Marker-assisted selection (MAS) is an
alternative tool for combining different resistance genes/alleles
into a single plant, which has been used to improve different
traits in crop breeding programs (Kuchel et al., 2005; Ribaut
et al., 2010; Nakaya and Isobe, 2012). It is important to identify
significant QTLs/QTNs to develop superior TBW-resistant
tobacco cultivars. To date, only four QTL mapping studies
for TBW resistance have been conducted in bi-parental and
different genetic populations, using simple sequence repeat
(SSR) and amplified fragment length polymorphism (AFLP)
markers (Nishi et al., 2003; Qian et al., 2013; Lan et al., 2014;
Drake-Stowe et al., 2017). Nishi et al. (2003) identified one QTL
with 43.8% phenotypic variance using 117 AFLP markers in
125 doubled haploid populations. Similarly, Qian et al. (2013);
Lan et al. (2014), and Drake-Stowe et al. (2017) identified
four, eight, and two QTLs for TBW resistance, respectively.
Thus, only 15 QTLs underlying TBW resistance have been
identified, which is relatively small compared to other members
of the Solanaceae family (Sharma et al., 2021). Unfortunately,
the identified QTLs have large genomic regions unsuitable
for detecting candidate genes, and markers linked to these
QTLs have limited application in tobacco breeding programs
(Li et al., 2017).

With the development of next-generation sequencing (NGS)
technology, genotyping-by-sequencing (GBS) has been used
widely as a high-throughput and low-cost genotyping platform
for discovering genome-wide single-nucleotide polymorphisms
(SNPs) in many crops, including tobacco (Elshire et al., 2011;
Lee et al., 2017; Sakiroglu and Brummer, 2017). Genome-wide
association studies (GWAS) can use these millions of SNPs as
molecular markers to screen many accessions simultaneously

without needing to construct segregating populations in advance
(Buckler and Thornsberry, 2002; Flint-Garcia et al., 2003; Yu
et al., 2006; Wang et al., 2016; Zhang et al., 2019). For instance,
Thapa et al. (2021) identified 23 and 38 QTNs associated with
shoot and blossom blight resistance, respectively, using GBS
markers in 273 apple accessions, while Jing et al. (2021) identified
18 QTNs related to Sclerotinia stem rot resistance in soybean.
Thus, GWAS is an efficient tool for QTN identification in
natural populations with high-quality SNPs to overcome the
shortcomings of bi-parental QTL mapping (Zhang et al., 2019)
and has great potential for discovering interrelationships among
complex traits conditioned by multiple genes/alleles (Buckler and
Thornsberry, 2002; Yu et al., 2006; Hyun et al., 2021; Thapa
et al., 2021). However, no GWAS studies have been undertaken
to detect QTNs associated with TBW resistance in tobacco.
Identifying QTNs/alleles/genes related to TBW resistance is an
important step for improving tobacco production.

This study assembled a panel of 94 tobacco accessions
from seven countries and used GBS sequencing to identify
high-density SNPs. The study aimed to: (1) analyze the
SNP distribution, linkage disequilibrium (LD), and population
structure using GBS data; (2) detect QTNs related to TBW
resistance using GWAS; (3) identify TBW-resistant superior
alleles of stable QTNs for MAS and the best parental cross
combination based on superior alleles; (4) predict potential
candidate genes for TBW resistance in the region of stable QTNs.
The results of this study will provide information for uncovering
the genetic basis of TBW resistance and facilitating MAS in
tobacco breeding.

MATERIALS AND METHODS

Plant Material and Phenotyping
Ninety-four tobacco accessions were obtained from the Nanxiong
Scientific Research Institute of Guangdong Tobacco Company,
China. These accessions came from the United States, Japan,
Canada, Somalia, Australia, Zimbabwe, and China, including 90
flue-cured, two sun-cured, and two burley tobacco accessions
(Supplementary Table 1).

The 94 accessions were planted at the Hukou experimental
station in Nanxiong city in 2013, 2014, and 2015 (denoted E1, E2,
and E4) and Xikou experimental station in Nanxiong city in 2014
(denoted E3) in a randomized complete block design with two
replicates at each location. Each plot had 20 plants spaced 0.5 m
within rows and 1.2 m between rows, with local management
practices applied. We used the biochemical type III bacterial wilt
pathogen race-1 strain of R. solanacearum. The inoculum was
applied in early May (May 8, 2013, May 4, 2014, and May 5, 2015)
using the stem puncture inoculation method. Disease ratings for
each accession occurred on May 30, 2013, May 29, 2014, and
May 29, 2015 using the 0–9 scale described in “China National
Tobacco Pests Classification and Survey Methods (GB/T23222-
2008)”: 0 = no lesions; 1 = flecks on stem or leaf wilt <1/2 leaf;
3 = lesion on <1/2 stem or leaf wilt on 1/2 to 2/3 leaf; 5 = lesion
on >1/2 but not entire stem or leaf wilt on >2/3 leaf; 7 = lesion on
entire stem or wilt on entire leaf, and 9 = dead plant (Figure 1).
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FIGURE 1 | Tobacco bacterial wilt disease rating (0–9 scale).

The disease index for TBW (TBW-DI) was calculated according
to Lan et al. (2014):

TBW−DI= (accession mean rating/9) × 100

The disease resistance of the 94 accessions was classified
using a 0–100 scale following the standard method of “China
National Tobacco Varieties Resistance Identification (YC/T 41-
1996)”: 0 < TBW-DI≤ 25 as highly resistant, 25 < TBW-DI≤ 50
as moderately resistant, 50 < TBW-DI ≤ 75 as moderately
susceptible, and 75 < TBW-DI ≤ 100 as highly susceptible.

Statistical Analysis of Phenotypic Data
Mean, range, standard deviation (SD), coefficient of variation
(CV%), skewness, kurtosis, and analysis of variance (ANOVA)
were calculated for TBW-DI of the 94 tobacco accessions in
each environment using R4.0.31 software. A best linear unbiased
prediction (BLUP) value of TBW-DI for each tobacco accession
was calculated using the lme4 (Bates et al., 2014) statistical
package of R. The mixed linear model (MLM) was applied to
calculate polygenic and residual error variance components for
heritability (Wang et al., 2016) as follows: y = Xα + ϕ + ε,
where y = phenotypic vector, X = incident matrix for fixed
effects, α = vector of fixed effects, ϕ∼MVN(0,Kσg

2) = polygenic

1http://www.R-project.org/

effect with a multivariate normal distribution with zero mean,
and ε∼MVN(0,Iσe2) = vector of residues. Moreover, σg

2, σe
2,

and K were used as polygenic variance, residual variance, and
kinship matrix, respectively. The above two variance components
were estimated from the restricted maximum likelihood (REML)
method, whereas the kinship matrix was calculated from marker
information (Xu, 2013). Broad-sense heritability was calculated

as: h2
B =

σ2
g

σ2
g+σ2

e

DNA Extraction and Quantification
Total genomic DNA of the 94 tobacco accessions was
isolated from 0.1 g fresh young leaves. DNA extraction was
performed using a NuClean Plant Genomic DNA Kit (CWBIO,
Beijing, China), according to the manufacturer’s protocol.
DNA quality and concentration were evaluated using 1%
agarose gel electrophoresis and a NanoDrop spectrophotometer.
The DNA concentration was normalized to 30 ng/uL for
library construction.

Genotyping-by-Sequencing Library
Construction, Sequencing, and
Single-Nucleotide Polymorphism Calling
For GBS library preparation, genomic DNA was digested with
the restriction enzyme ApeK1, and libraries with 250–500 bp
were constructed in 96-plex using the protocols developed by
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Elshire et al. (2011). The GBS libraries were sequenced on
an Illumina HiSeqTM 2000 instrument. Raw reads were de-
multiplexed using a barcode sequence, and the adapter sequences
were trimmed using the standard Illumina GA Pipeline v1.5.
High-quality clean short reads were aligned to the tobacco
reference genome, N. tabacum Nitab4.5 (Edwards et al., 2017),
using Burrows-Wheeler Aligner (BWA, V0.7.12) software (Li
and Durbin, 2009). The SNP variants were extracted using
the Unified Genotyper module of GATK software (v3.4-46) in
multiple samples (McKenna et al., 2010). The extracted variants
were filtered using the following filter parameters: -Window 4, -
filter “QD < 4.0 | | FS > 60.0 | | MQ < 40.0,” -G_filter “GQ < 20.”
ANNOVAR software was used to annotate all filtered high-
density SNPs (Wang et al., 2010). The GAPIT software package
was used to create the kinship matrix between accessions, kinship
matrix heatmap, and physical map of SNPs (Lipka et al., 2012).

Linkage Disequilibrium and Population
Structure Analysis
PLINK v1.90 software (Purcell et al., 2007) was used to analyze
the LD by calculating the squared correlation coefficients (R2) of
SNPs, using minor allele frequency (MAF) ≥0.05 and a missing
rate <20%, and the LD plot was generated using R script. The
LD decay rate was observed when the average R2 decreased to
half of its maximum value. The population structure for the 94
accessions was evaluated using STRUCTURE v2.3.4 (Pritchard
et al., 2000). The hypothetical subgroup (K) values were set from
2 to 10, with 20,000 iterations for each run, followed by 200,000
Markov chain Monte Carlo (MCMC) replications after burn-
in. According to Evanno et al. (2005), the best K was identified
using STRUCTURE HARVESTER (Earl and vonHoldt, 2012).
A neighbor-joining phylogenetic tree of the 94 accessions was
constructed using the filtered SNPs by the Tassel 5.2 software
(Bradbury et al., 2007).

Genome-Wide Association Mapping
Genome-wide association studies used SNPs with less than 20%
missing data, MAF > 0.05, and sequencing depth≥3. Four multi-
locus (ML) GWAS approaches were used to identify significant
QTNs, including mrMLM (Wang et al., 2016), pLARmEB (Zhang
et al., 2017), ISIS EM-BLASSO (Tamba et al., 2017), and
FASTmrMLM (Tamba and Zhang, 2018), while the Q and K
matrix were incorporated into a MLM. These methods were
implemented using the R package mrMLM (version 4.0.2).2 All
multi-locus genome-wide association study (ML-GWAS) models
use a modified Bonferroni; the number of markers is replaced
by the effective number of markers in the correction formulas
(Wang et al., 2016; Zhang et al., 2017). Two-step algorithms
are involved in all these methods. In the first step, the single
(SL) GWAS method scans the entire genome, with putative
QTNs identified according to a less stringent threshold level. In
the second step, the effects of selected markers are estimated
by empirical Bayesian, the significance of the effects from zero
were obtained using the likelihood ratio test, and the threshold

2https://cran.r-project.org/web/packages/mrMLM/index.html

level LOD ≥ 3 (P = 0.0002) was used to determine significant
trait-associated QTNs (Wang et al., 2016; Tamba et al., 2017).

Superior Allele Analysis for Tobacco
Bacterial Wilt Resistance
For this purpose, we used stable QTNs identified in multiple
environments and/or by multiple GWAS methods. The resistance
allele of each stable QTN was determined using code 1 for
genotype and QTN effect value. If the QTN effect value is
negative, the genotype with code 1 is considered the TBW-
resistant superior allele; if the QTN effect value is positive, the
alternative genotype is considered the TBW-resistant superior
allele (Wang et al., 2016; Zhang et al., 2019). Correlation
coefficients between TBW-DI and the number of superior alleles
were calculated using R4.0.3 (see text footnote 1) software. The
TBW superior allele percentage was calculated for each accession
as the number of superior alleles divided by the total number of
stable QTNs. For each QTN, the TBW superior allele percentage
in the GWAS population was calculated as the number of
accessions with superior alleles divided by the total number of
accessions. The best parental cross combinations for tobacco
breeding programs were predicted using TBW-resistant superior
alleles and stable QTN information.

Prediction of Potential Candidate Genes
The search for potential candidate genes based on the stable
QTNs detected by multiple methods and/or in multiple
environments/BLUP was performed using the N. tabacum
Nitab4.5 reference genome3, according to the genome-wide LD
decay distance (Edwards et al., 2017). Next, homologous genes
related to bacterial wilt inArabidopsiswere determined by BLAST
analysis with 1E-30 critical E-value. These candidate genes were
assigned to different biological processes related to bacterial
wilt based on the function of their homologs in Arabidopsis
in literature, such as WRKY transcription factors (TFs) (Cai
et al., 2015; Hussain et al., 2018), ethylene-responsive factors
(Gutterson and Reuber, 2004), pathogenesis-related proteins
(PRs) (Kuhn et al., 2017), Cytochrome P450 family (Li et al.,
2021), and brassinosteroids (Sun and Li, 2017). KEGG analysis
was used to identify the functional categories (metabolic or
signal transduction pathways) of predicted candidate genes, using
the KOBAS v3.0 tool4, with P-value < 5% as threshold criteria
(Xie et al., 2011).

RESULTS

Phenotypic Variation of Tobacco
Bacterial Wilt in a Natural Population
The mean values for TBW-DI across 94 accessions in the
four environments (E1–E4) were 52.75, 51.23, 13.34, and
72.04, with SDs of 35.24, 29.42, 16.88, and 26.47, respectively
(Table 1). The CVs were >50% in all environments except

3https://solgenomics.net/organism/Nicotiana_tabacum/genome
4http://kobas.cbi.pku.edu.cn/kobas3
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E4 (36.74%), indicating the highly dispersed distribution
of TBW-DI among accessions. The frequency distribution
for TBW-DI in the four environments and BLUP is in
Supplementary Figure 1. Skewness and kurtosis values were
<1 in E1, E2, and E4, indicating that TBW-DI followed a
normal distribution; in E3, TBW-DI was skewed slightly to
the left (Table 1 and Supplementary Figure 1). The two-
way ANOVA exhibited significant differences (P < 0.001)
for genotype, environment, and genotype × environment
interaction, suggesting that environmental factors also influence
TBW-DI (Table 1). Moreover, the heritability estimates for
TBW-DI in the four environments ranged from 61.37 to
81.36%, using residual and polygenic variances (Table 1),
indicating that genetic effects play a significant role in TBW-
DI variation.

Genotyping-by-Sequencing of the Test
Population
We obtained 1412.73 million raw Illumina sequencing reads
for the 94 accessions from the GBS library. After quality
control and data filtering, 1370.27 million clean reads were
generated, with an average 97.06% effective rate (Supplementary
Table 2). On average, 98.63% of clean reads had a base
error rate of <1% (Q20), and 95.90% of the reads had
a base error rate of <0.1% (Q30), with an average GC
distribution of 40.92%. Overall, 4.81–23.54 million high-
quality sequencing reads were obtained per sample from clean
reads, with an average of 9.76 million reads (Supplementary
Table 2). Finally, 4.45–22.06 million reads were aligned to the
reference genome, with an average mapping ratio of 93.01%
(Supplementary Table 2).

After completing the sequencing, 938,799 SNP variants were
called from GBS sequencing data using the GATK process.
Among these, 573,312 SNPs were transitions, and 365,487
SNPs were transversions. The SNP data were filtered with
MAF ≥ 5%, missing rate <20%, sequence depth ≥ 3 to
obtain 126,602 high-quality SNPs, comprising 90,276 transitional
and 36,326 transversional SNPs. SNP functional annotation
revealed that most identified SNPs were located within intergenic
regions (85.83%) of the genome followed by intronic regions
(6.68%), coding variants (5.64%), upstream (0.95%), downstream
(0.75%), and UTR regions (0.11%) (Figure 2A). Further
classification of coding SNPs revealed that 54.66 and 44.56%
are synonymous and non-synonymous, while stop-gain and
stop-loss constituted <1% (Figure 2B). Moreover, the SNPs

mentioned earlier were distributed on all 24 chromosomes of
tobacco (Figure 2C), with an average of 5275.08 SNPs per
chromosome (Supplementary Table 3). The maximal number
of SNPs were identified on chromosome Nt17 (9583), while
those with minimal numbers were on chromosome Nt02 (2966).
The average marker density was approximately 24.46 kb/SNP
at the genome level (Supplementary Table 3). The highest
marker density (16.23 kb/SNP) was on chromosome Nt11,
while the lowest marker density (37.94 kb/SNP) was on
chromosome Nt15 (Supplementary Table 3). These results
demonstrate the uneven distribution of markers throughout
the tobacco genome.

Population Structure, Linkage
Disequilibrium, and Kinship Analysis
A total of 126,602 high-density SNPs were used to define the
subgroups/subpopulations within the panel of 94 tobacco
accessions. Delta K (K = 1–10) analysis revealed two
subpopulations (selected K = 2) comprising 37 (39.40%)
and 57 (60.60%) tobacco accessions, respectively (Figures 3A,B).
Each subpopulation comprised accessions from different
ecological zones (Figure 3B), indicating that the division
of two subpopulations was not related to their geographical
origins. Furthermore, a neighbor-joining phylogenetic tree was
conducted based on their genetic distances derived from the SNP
differences in these accessions. The population could be divided
into two subpopulations (Figure 3C), and the phylogenetic
analysis agreed well with the clustering results in STRUCTURE.
The squared correlation coefficient (r2) values were calculated
for all SNP pairs to determine LD decay. The r2-values decreased
rapidly with increasing physical distance between pairwise SNPs
(Figure 3D). The overall LD decay distance for all chromosomes
was estimated at ∼94.56 kb, where r2 = 0.381 decreased to half
its maximum value (Figure 3D). Moreover, the pairwise relative
kinship coefficients showed a lower level of genetic relatedness
among 94 tobacco accessions (Figure 3E).

Identification of Quantitative Trait
Nucleotides by Multi-Locus
Genome-Wide Association Study
Methods
The four multi-locus methods identified 142 significant
QTNs associated with TBW resistance based on LOD
scores ≥3 in the four environments and BLUP (Figure 4

TABLE 1 | Statistical analysis of TBW-DI in 94 tobacco accessions in four environments.

Env. Mean Range SD CV (%) Skew Kur FG FE FG×E h2B (%)

E1 52.75 0.00–100 35.24 66.80 −0.05 −1.38 3.42∗∗ 117.76∗∗ 14.86∗∗ 71.07

E2 51.23 0.00–100 29.42 57.39 −0.1 −1.22 77.78

E3 13.34 1.39–79.44 16.88 78.75 1.53 1.54 81.36

E4 72.04 2.78–100 26.47 36.74 −0.76 −0.32 61.37

Env: environments, E1: Nanxiong (2013), E2: Nanxiong (2014), E3: Xikou (2014), E4: Nanxiong (2015), SD: standard deviation, CV: coefficient of variation, Skew:
skewness, Kur: kurtosis, FG, FE , and FG×E : F-values for genotype, environment, and genotype × environment, respectively, h2B: broad sense heritability. **Significance
at the 0.01 level.
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FIGURE 2 | Single-nucleotide polymorphism (SNP) annotation, density, and distribution on 24 chromosomes of tobacco. (A) SNP variant classification; (B) Coding
variant classification; (C) Tobacco physical map developed using GBS-SNPs. Y-axis represents chromosomes from Nt01 to Nt24, and X-axis represents the
physical positions of the SNPs on each chromosome.

and Supplementary Figure 2). Of these, 26, 34, 38, 26,
and 28 QTNs were detected in E1, E2, E3, E4, and BLUP,
respectively, explaining 8.18, 7.95, 7.03, 7.93, and 8.22% of
the phenotypic variation (PVE) on average (range 0.49–
22.52%) (Table 2). The corresponding LOD scores ranged
from 3.20 to 12.41, 3.02 to 14.19, 3.01 to 15.20, 3.02 to
13.23, and 3.11 to 13.26 (Supplementary Figure 2). Among
the 142 QTNs, 7–12, 5–13, 8–17, and 10–13 QTNs were
identified using FASTmrMLM, ISIS EM-BLASSO, mrMLM,
and pLARmEB, respectively, in E1–E4 and BLUP (Table 2).
The corresponding PVE values ranged from 1.56 to 22.52,
1.14 to 19.16, 0.63 to 20.32, and 0.49 to 19.26, and LOD
values ranged from 3.02 to 12.11, 3.10 to 9.56, 3.02 to
14.18, and 3.01 to 15.20 (Table 2). Significant QTNs were
disseminated on 24 chromosomes, with more than eight
QTNs located on chromosomes 1, 4, 7, 10, 17, 20, and 22
(Supplementary Figure 2). Additionally, the QTNs identified

in this study were not located in or overlapped with the
genomic region of previously reported QTLs for bacterial wilt
resistance in tobacco.

Environment- and Method-Stable
Quantitative Trait Nucleotides for
Tobacco Bacterial Wilt Resistance
Two types of QTNs were defined as stable QTNs: those detected
in at least two environments/BLUP (environment-stable)
and/or by at least two ML-GWAS models (method-stable).
In this study, 38 QTNs were identified as stable for TBW
resistance (Table 3 and Figures 4, 5A–C), of which nine
were environment-stable (Table 3 in bold and Figure 5B),
37 were method-stable (Table 3 and Figure 5C), and
eight were co-detected as environment-stable and method-
stable. For example, qTBW-20-1 was detected in E2, E4,
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FIGURE 3 | Population structure, phylogenetic tree, LD decay, and kinship of 94 tobacco accessions. (A) Relationship between K and Delta K, and determination of
subpopulations using Delta method of Evanno et al. (2005); (B) Distribution of accessions into subgroups: red and green bars indicate subgroup I and subgroup II,
respectively; (C) Neighbor-joining phylogenetic tree based on Nei’s genetic distances; (D) Entire genome LD decay of the population; (E) Heatmap of kinship matrix
of 94 accessions.
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FIGURE 4 | Genetic map based on identified QTNs. The black font represents QTNs identified in E1–E4 and BLUP using four ML-GWAS approaches. The blue font
represents QTNs repeatedly identified across at least two environments and/or two ML-GWAS methods.

TABLE 2 | Summary of QTNs detected in multiple environments and BLUP model using four ML-GWAS methods.

Method Total E1 E2 E3 E4 BLUP QTN effect LOD score r2 (%)

Total 142 26 34 38 26 28 −37.02 to 30.64 3.01–15.20 0.49–22.52

FASTmrMLM 45 12 8 7 11 9 −17.91 to 20.13 3.02–12.11 1.56–22.52

ISIS EM-BLASSO 44 10 13 10 5 9 −16.01 to 17.76 3.10–9.56 1.14–19.16

mrMLM 54 10 8 17 12 9 −31.02 to 20.12 3.02–14.18 0.63–20.32

pLARmEB 57 10 11 13 12 13 −17.29 to 30.64 3.01–15.20 0.49–19.26

E1: Nanxiong (2013), E2: Nanxiong (2014), E3: Xikou (2014), E4: Nanxiong (2015), r2: phenotypic variance explained by each QTN.

and BLUP by three methods, with LOD and PVE values
ranging from 3.10 to 9.43 and 8.05 to 19.98, respectively.
Likewise, six stable QTNs, qTBW-7-1, qTBW-7-2, qTBW-11-
1, qTBW-18-3, qTBW-18-4, and qTBW-19-1 were identified
in two environments using two, three, two, four, four,
and two ML-GWAS methods; their respective LOD values
were 4.55–7.55, 3.49–12.60, 3.37–3.78, 3.86–13.27, 3.10–
5.40, and 4.78–14.18, and PVE values were 8.42–17.26,

5.79–16.87, 0.49–1.17, 4.77–14.83, 3.91–12.75, and 4.03–
13.37 (Table 3). Three QTNs (qTBW-2-1, qTBW-14-2,
and qTBW-17-1) were detected by all four multi-locus
methods in one environment, and eight QTNs (qTBW-
3-1, qTBW-10-1, qTBW-14-1, qTBW-17-4, qTBW-19-2,
qTBW-22-3, qTBW-23-1, and qTBW-24-1) were detected
by three methods in one environment. Interestingly, only
one QTN (qTBW-22-1) was identified by a single method
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TABLE 3 | Significant QTNs for TBW resistance detected by multiple ML-GWAS methods and/or in multiple environments/BLUP.

QTN namea Chr. Position (bp) Effect LOD score r2 (%)b MAFc Environmentd Methode

qTBW-1-1 Nt01 37016222 −16.95 to −16.82 5.62–9.31 12.86–14.41 0.29 E1 M1, M3

qTBW-1-2 Nt01 51696366 4.87 to 5.91 3.54–7.79 2.50–5.07 0.48 E3, BLUP M3, M4

qTBW-2-1 Nt02 72820038 13.19 to 15.98 3.56–6.30 9.68–14.06 0.23 E1 M1, M2, M3, M4

qTBW-3-1 Nt03 34243911 4.64 to 6.30 3.42–4.16 4.17–6.69 0.44 BLUP M1, M2, M4

qTBW-3-2 Nt03 35123140 11.94 to 15.35 4.58–6.90 6.71–12.29 0.32 E1 M2, M3

qTBW-4-1 Nt04 35325384 5.67 to 8.68 3.53–5.87 1.56–5.64 0.49 E4 M2, M3

qTBW-4-2 Nt04 40894957 15.10 to 16.36 6.70–8.02 12.60–13.35 0.21 E1 M2, M3

qTBW-4-3 Nt04 113176005 −8.05 to −7.19 3.93–4.60 5.06–6.22 0.28 E4 M2, M3

qTBW-4-4 Nt04 126224139 −6.35 to −5.23 3.22–5.91 7.05–10.77 0.38 BLUP M1, M4

qTBW-7-1 Nt07 7571216 5.21 to 14.57 4.55–7.55 8.42–17.26 0.20 E2, BLUP M2, M3

qTBW-7-2 Nt07 30847693 7.17 to 11.31 3.49–12.60 5.79–16.87 0.43 E3, BLUP M1, M3, M4

qTBW-7-3 Nt07 60177410 −15.01 to −9.73 3.39–5.72 5.24–12.35 0.21 E1 M2, M4

qTBW-10-1 Nt10 56383019 17.11 to 30.64 4.88–15.20 9.21–19.26 0.48 E3 M1, M3, M4,

qTBW-11-1 Nt11 40714656 3.50 to 10.41 3.37–3.78 0.49–1.17 0.45 E4, BLUP M1, M3

qTBW-11-2 Nt11 50906143 7.31 to 9.58 4.51–5.18 4.11–7.95 0.28 E4 M1, M2

qTBW-14-1 Nt14 3465200 −9.70 to −5.04 3.85–7.95 3.38–17.79 0.14 E3 M2, M3, M4,

qTBW-14-2 Nt14 69653438 −14.26 to −8.99 3.98–12.41 3.12–8.68 0.25 E1 M1, M2, M3, M4

qTBW-16-1 Nt16 15141918 13.11 to 15.35 5.87–7.20 11.04–19.16 0.14 E4 M2, M4

qTBW-16-2 Nt16 75282825 −12.77 to −10.82 3.31–5.21 5.22–9.98 0.42 E4 M1, M3

qTBW-17-1 Nt17 48243892 11.26 to 17.76 4.05–12.11 13.97–22.52 0.17 E4 M1, M2, M3, M4

qTBW-17-2 Nt17 79641667 10.73 to 11.80 3.25–6.85 5.08–6.78 0.35 E1 M1, M3

qTBW-17-3 Nt17 103649413 4.74 to 6.53 6.59–11.28 8.06–13.36 0.43 BLUP M1, M2

qTBW-17-4 Nt17 108558750 −14.37 to −6.04 3.61–12.26 1.93–8.92 0.42 E1 M1, M2, M4,

qTBW-17-5 Nt17 172367035 5.42 to 5.66 3.99–6.90 8.31–9.35 0.33 BLUP M1, M3

qTBW-17-6 Nt17 172718671 −10.87 to −10.37 3.59–3.75 3.23–3.26 0.45 E1 M2, M3

qTBW-18-1 Nt18 31032756 −10.05 to −7.92 4.59–5.29 5.29–12.68 0.07 E3 M2, M3

qTBW-18-2 Nt18 31188535 4.93 to 7.03 5.68–6.69 8.62–15.28 0.22 BLUP M1, M2

qTBW-18-3 Nt18 36818226 5.99 to 19.46 3.86–13.27 4.77–14.83 0.47 E4, BLUP M1, M2, M3, M4

qTBW-18-4 Nt18 81285311 −11.26 to−3.64 3.10–5.40 3.91–12.75 0.36 E4, BLUP M1, M2, M3, M4

qTBW-19-1 Nt19 60933888 3.60 to 14.06 4.78–14.1 4.03–13.37 0.48 E2, BLUP M1, M3, M4

qTBW-19-2 Nt19 92990637 −19.86 to −17.29 5.10–6.53 5.80–6.92 0.47 E1 M1, M2, M3,

qTBW-20-1 Nt20 45986131 −14.90 to−5.04 3.10–9.43 8.05–19.98 0.21 E2, E4, BLUP M2, M3, M4

qTBW-20-2 Nt20 47568998 3.51 to 5.26 3.78–6.57 1.77–6.66 0.35 E3 M1, M3

qTBW-22-1 Nt22 1437500 6.46 to 12.37 4.06–5.48 7.03–11.16 0.14 E1, BLUP M4

qTBW-22-2 Nt22 79361894 3.88 to 7.45 3.13–6.27 4.24–14.13 0.37 BLUP M2, M4

qTBW-22-3 Nt22 118588843 7.63 to 9.65 3.59–4.10 0.63–1.14 0.33 E4 M1, M3, M4,

qTBW-23-1 Nt23 29888578 10.73 to 20.12 3.68–8.22 1.97–5.77 0.45 E2 M1, M2, M3,

qTBW-24-1 Nt24 49518556 15.12 to 20.13 4.21–5.81 7.32–12.39 0.48 E3 M1, M2, M3,

Normal font indicates stable QTNs detected by at least two methods. Bold font indicates stable QTNs identified in at least two environments/BLUP. aqTBW- -: QTNTBW-
chromosome-number. br2 (%): phenotypic variance explained by each QTN. cMAF: Minor allele frequency. dM1: mrMLM, M2: FASTmrMLM, M3: pLARmEB, M5: ISIS EM-
BLASSO. eE1: Nanxiong (2013), E2: Nanxiong (2014), E3: Xikou (2014), E4: Nanxiong (2015).

in two environments, with LOD 4.06–5.48 and PVE
7.03–11.16 (Table 3).

Identification of Superior Alleles
The 38 stable QTNs were used to identify superior alleles
for TBW resistance using QTN effect values. Thirty-eight
superior alleles were identified and significantly (P < 0.05)
differed from the alternative alleles (Supplementary
Table 4). The TBW-DI values for the accessions with
superior alleles ranged from 31.73 to 46.91, while those
for the alternative alleles ranged from 47.1 to 72.44
(Supplementary Table 4). For example, qTBW-14-2 had

CC as a superior allele and TT as an alternative allele,
and TBW-DI values of 44.22 and 58.04, respectively.
Similarly, three stable QTNs, qTBW-20-2, qTBW-22-3,
and qTBW-23-1, had TT, CC, and TT superior alleles
with TBW-DI values <45 (Supplementary Table 4).
Moreover, all TBW-DI values for superior alleles of the
38 stable QTNs were <47; according to the disease index,
these alleles are considered TBW-resistant superior alleles.
A negative correlation was detected between the number of
superior alleles and TBW-DI (r = −0.83, p ≤ 1 × 10−5)
(Figure 6A). A similar trend was found between the
number of superior alleles and TBW-DI in E1 (−0.53,
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FIGURE 5 | Number of stable QTNs detected for TBW resistance using different ML-GWAS methods in four environments and their BLUP values. (A) Pink dots
represent stable QTNs identified by more than two methods and/or two environments/BLUP. Light blue and green dots represent the –log10 (P-value) of 126,602
markers on 24 chromosomes in the first step of ML-GWAS methods. The threshold level LOD ≥ 3 (P = 0.0002) was used to determine significant QTNs and
estimated by empirical Bayesian in the second step of ML-GWAS methods; (B) Common and unique QTNs identified in E1–E4 and BLUP; (C) Common and unique
QTNs detected by mrMLM, FastmrMLM, pLARmEB, and ISIS EM-BLASSO. The connected circles below the histogram show overlapping QTNs; green, black, and
blue represent four, three, and two overlapping QTNs, respectively, while red represents unique QTNs. Horizontal bars show the total number of QTN set sizes.

p ≤ 1 × 10−5), E2 (r = −0.72, p ≤ 1 × 10−4), E3 (r = −0.61,
p ≤ 1 × 10−6), E4 (r = −0.63, p ≤ 1 × 10−4), and BLUP
(r = −0.81, p ≤ 1 × 10−5) (Figures 6B–F). Based on these
results, the superior alleles can be used in MAS for TBW
resistance in tobacco.

Distribution of Superior Alleles and
Prediction of Best Cross Combination for
Tobacco Bacterial Wilt Resistance
The number of TBW-resistant superior alleles for each stable
QTN in the 94 accessions ranged from 1 (1.06%) to 91
(96.81%). Among the 38 stable QTNs, 11 had >50% superior
alleles, and 27 had <50% superior alleles; only four had
>80% superior alleles (Supplementary Table 4). The number
of superior alleles for each accession ranged from 4 (10.52%)
to 24 (63.15%); 15 accessions had >50% superior alleles, and
79 accessions had <50% superior alleles. In addition, K326,
Ruyuan No. 1, MC133, C176, ROX28, CO258, H66B, and
RG17 had 24, 21, 20, 20, 20, 20, 18, and 18 TBW-resistant
superior alleles. These accessions can be used in tobacco
breeding programs to increase the number of superior alleles
for TBW resistance in one cultivar. For example, a cross
between K326 (24 TBW-resistant superior alleles) and C176 (20
TBW-resistant superior alleles) could produce offspring with
30 superior alleles. Based on this information, we predicted
the following best parental cross combinations: K326 × C176,

MC133×H66B, MC133× Ruyuan No. 1, CO258× ROX28, and
CO258× RG17.

Candidate Genes Underlying Stable
Quantitative Trait Nucleotides for
Tobacco Bacterial Wilt Resistance
The genomic regions (±95 kb around the associated
QTNs) of QTN-linked candidate genes were adopted
according to the genome-wide LD decay distance (about
94.5 kb) in this study. As a result, 642 genes were
presented in the above regions of the 38 stable QTNs,
according to N. tabacum reference genome Nitab4.5,
of which 489 were homologous in Arabidopsis. These
489 genes belonged to different functional categories:
stress and defense-related, unknown functional families,
hormonal signaling, transcription, translation, transporter,
and cell metabolism. Further, the Kyoto encyclopedia of
genes and genomes (KEGG, see text footnote 4) analysis
of the above 642 genes indicated that 74 genes were
involved in 19 KEGG pathways (adjusted P-value ≤ 0.05),
including flavonoid biosynthesis, glutathione metabolism,
MAPK signaling pathway, phenylpropanoid biosynthesis,
phosphatidylinositol signaling system, gingerol biosynthesis,
and plant–pathogen interactions. Finally, 52 genes were
considered potential candidate genes associated with disease
resistance in plants (Supplementary Table 5) based on
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FIGURE 6 | Scatter plot with fitted regression lines and 95% confidence interval bands, showing a negative correlation between TBW-DI in (A) Mean E1–E4, (B) E1,
(C) E2, (D) E3, (E) E4, (F) BLUP and number of alleles. The E1, E2, E3, and E4 denote the populations planted in Nanxiong (2013), Nanxiong (2014), Xikou (2014),
and Nanxiong (2015), respectively. The X-axis represents the number of superior alleles, while the Y-axis corresponds to the TBW-DI.

functional annotation, homologous to known genes, and
pathway enrichment analysis. For example, candidate gene
Nitab4.5_0002694g0030 underlying the stable QTN qTBW-3-2
was homologous to AT4G34050 (CCoAOMT1), which annotates
caffeoyl-CoA O-methyltransferase and phenylpropanoid
in Arabidopsis. Similarly, Nitab4.5_0000274g0070 and
Nitab4.5_0000123g0350, located near qTBW-17-3 and qTBW-
24-1, respectively, corresponded with Arabidopsis thaliana
genes AT5G15130 (WRKY72) and AT2G40890 (CYP98A3)
involved in diarylheptanoid, stilbenoid, gingerol biosynthesis,
phenylpropanoid biosynthesis, and flavonoid biosynthesis
(Supplementary Table 5). Therefore, these candidate genes
may regulate tobacco growth to increase plant defense and
disease resistance.

DISCUSSION

To study the mechanism of TBW resistance in tobacco
plants, GWAS is a useful tool for dissecting the genetic
basis and candidate genes for the natural variations in
a targeted quantitative trait (Zhang et al., 2019). Here,
four ML-GWAS methods were used to analyze TBW-DI
and BLUP values using 126,602 high-density SNP markers.
We identified 38 stable QTNs, superior alleles, and 52
candidate genes associated with TBW resistance. The markers

associated with TBW resistance can be used to develop
resistant varieties.

Population Selection for Association
Mapping
To gain some insight, we evaluated 94 tobacco accessions
for TBW in four different environments at two locations;
the variance components indicated that TBW is affected
by environmental conditions. The broad-sense heritability
for TBW-DI was moderate (61–81%) and differed between
environments (Table 1). These observations are similar to other
studies in tobacco (Nishi et al., 2003; Qian et al., 2013; Lan et al.,
2014), including some heritability problems (Gao et al., 2010).

Genetic diversity in modern tobacco cultivars is low
(Wernsman, 1999; Leng et al., 2010); only a few genotypes are
ancestors of most cultivars. Thus, it is challenging to assemble
a natural population with rich genetic diversity. However, based
on the 126,602 SNPs, we found 24.46 kb/SNP in the whole
genome (Supplementary Table 3 and Figure 2C) and higher
coverage density than reported elsewhere (Leng et al., 2010; Wang
et al., 2021). We also found an LD decay distance of ∼94.56 kb
(Figure 3D), much smaller than that reported by Fricano et al.
(2012). STRUCTURE analysis identified two subpopulations in
the panel (Figure 3B), and clustering results showed that the
genetic background of 94 accessions is diverse and complex,
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consistent with most studies on tobacco (Fricano et al., 2012;
Dadras et al., 2014; Wang et al., 2021). There are high genome-
wide SNP variations in the panel used in this study that are
suitable for association mapping (Mackay and Powell, 2007;
Wang et al., 2009; Ikram et al., 2020).

Statistical Power of Multi-Locus
Genome-Wide Association Methods and
Significance of Stable Quantitative Trait
Nucleotides
The four ML-GWAS methods—FASTmrMLM, ISIS EM-
BLASSO, mrMLM, and pLARmEB—identified 45, 44,
54, and 57 significant QTNs for TBW-DI, with small to
large effects (Table 2). While the statistical power of QTN
detection has improved, after controlling the polygenic
background, most small-effect QTNs of complex traits are
not captured by SL-GWAS methods (Zhang et al., 2019).
However, ML-GWAS studies have shown that these methods
have high-resolution power; e.g., Hou et al. (2018) used
SL- and ML-GWAS models to identify 20 QTNs related
to the drought stress response using mrMLM, but only
three by EMMAX, suggesting that the ML-GWAS methods
are more powerful. Likewise, Su et al. (2018) reported
that multi-locus methods are robust and more potent
than MLM method.

In this study, 38 QTNs were identified in more than
two environments and/or ML-GWAS models (Table 3 and
Figures 4, 5); nine were considered environment-stable, 37
were considered method-stable, and eight were considered
both. In previous studies, environmental-stable QTNs have
gained more attention than method-stable QTNs (Zhang et al.,
2019), but recent studies have shown that QTNs detected
using multiple methods are also reliable (Cui et al., 2018; Li
et al., 2018; Peng et al., 2018; Chaurasia et al., 2020; Ikram
et al., 2020). For example, 42 QTNs related to salt stress
in wheat were detected using multiple methods (Chaurasia
et al., 2020). Hence, environment-stable and method-stable
QTNs are more reliable for breeding programs, with similar
results reported in other crop plants (Zhang et al., 2019),
including soybean (Ikram et al., 2020), maize (Ma et al.,
2018), wheat (Chaurasia et al., 2020; Danakumara et al.,
2021), and rice (Verma et al., 2021). In addition, the 38
stable QTNs identified in our study are considered novel as
they are not located in the genomic region of previously
reported QTLs for TBW.

Application of Superior Alleles in
Breeding Programs
Tobacco cultivars exhibit low genetic diversity, and their existing
alleles may not improve TBW resistance (Qian et al., 2013; Wang
et al., 2021). New alleles identified through germplasm screening
will improve TBW resistance. Marker-assisted breeding has
dramatically improved breeding efficiency. The alleles of stable
QTNs significantly differed, with 4–24 superior alleles for TBW
resistance found in the 94 accessions (Supplementary Table 4).
Eight resistant genotypes were identified with superior alleles

for TBW resistance that can be used to breed highly resistant
varieties. The best cross combinations were identified based on
these superior alleles for TBW resistance, similar to previous
studies for complex traits in different crops (Wang et al.,
2006; Zeng et al., 2017). The concept of molecular design
breeding (Peleman and Van Der Voort, 2003; Zeng et al.,
2017) was used by Tian and his co-workers to successfully
selected the LYP9 rice variety with high yield and quality by
transferring several alleles into the new cultivar (Tian et al., 2009;
Zeng et al., 2017).

Candidate Genes for Tobacco Bacterial
Wilt Resistance
The identification of candidate genes associated with
quantitatively inherited traits is challenging in genetic research.
The present study identified 52 candidate genes underlying
the 38 stable QTNs, based on homology with Arabidopsis
and KEGG pathways for plant defense and disease resistance
(Supplementary Table 5). The gene Nitab4.5_0002694g0030
encodes the caffeoyl-CoA O-methyltransferase-like protein that
may prevent TBW by regulating the phenylpropanoid pathway
and lignin production (Yang et al., 2017). Nitab4.5_0001039g0060
is homologous to CYCD3;2 in Arabidopsis (Supplementary
Table 5), and CYCD3 genes appear to be positive regulators
of plant resistance because mutations in the target gene
conferred increased disease susceptibility to plant pathogens
(Hamdoun et al., 2016). Similarly, Nitab4.5_0000337g0220
encodes BR-signaling kinase 1 (BSK1), and a bsk1-1 mutation
displayed enhanced susceptibility to a range of pathogens,
demonstrating that BSK1 plays an important role in plant
immunity (Shi et al., 2013). BSK1 is a substrate of the
brassinosteroid receptor BRI1 and plays a critical role in
brassinosteroid signaling to regulate plant immunity (Tang
et al., 2008; Sun and Li, 2017). Most of the candidate
genes (Nitab4.5_0000430g0170, Nitab4.5_0000016g0210,
Nitab4.5_0002576g0050, Nitab4.5_0000553g0050, and
Nitab4.5_0002890g0050) were involved in signaling pathways,
and their homologous genes (MKK9, bZIP65, AT1G17345, EPF2,
and EMB14, respectively) in A. thaliana play a significant role
in plant disease resistance (Feys and Parker, 2000; Eshraghi
et al., 2014; Liu and Lam, 2019). Nitab4.5_0000641g0050—
involved in the glutathione metabolism pathway and
glutathione—is the most abundant antioxidant in cells and
crucial for life processes. It protects DNA, biomolecules,
and proteins against oxidative damage, which favored
resistance against environmental stresses (Freeman et al.,
2004; Li et al., 2021) and increased resistance in eggplant
after infection with R. solanacearum (Avinash et al., 2017).
TFs are essential regulatory genes in plants, and WRKY TFs
play a significant role in the immune response of plants to
various biological stresses (Chen et al., 2017). Two WRKY TF
genes (Nitab4.5_0000929g0030 and Nitab4.5_0000274g0070)
were identified in this study (Supplementary Table 5).
Numerous research findings have shown that WRKY22
and WRKY40 TF genes have positive regulatory effects
on the resistance of Solanaceae crops to bacterial wilt
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(Dang et al., 2014; Cai et al., 2015; Hussain et al., 2018). These
results suggest that WRKY genes could be important positive
regulators of tobacco plant resistance against bacterial wilt
(Hussain et al., 2018). The relationship between these candidate
genes and TBW resistance needs to be verified.

The fundamental task is to find excellent genes or QTNs
related to the target trait to achieve the precise breeding,
design, and breed aggregate of excellent genes/alleles. Most
researchers have only used linkage analysis or association
analysis to identify QTLs or SNPs/QTNs. Previous studies
only contain basic theoretical results (Nishi et al., 2003; Lan
et al., 2014), with few researchers using these results to screen
material. However, pleiotropic genes regulate quantitative traits,
their genetic laws are complex (Yang et al., 2012), and it
is difficult for a single QTL to reflect the advantages of
traits. Here, 38 stable QTNs and 52 candidate genes were
detected by GWAS, filling a gap and laying a theoretical
foundation for subsequent design and breeding. Using research
results to evaluate material phenotypes will assist in selecting
material containing multiple superior alleles to increase the
probability of selecting material with desired traits, which
has important implications for molecular marker-assisted
screening. Therefore, this study screened tobacco varieties
that carry the target QTN alleles and candidate genes that
could be used as resistant parents for gene pyramiding to
improve TBW resistance.

CONCLUSION

In this study, we used GBS technology for the first time to
conduct GWAS for TBW resistance to identify QTNs, superior
alleles, and candidate genes for breeding highly resistant tobacco
varieties. We demonstrated that TBW resistance is genetically
complex. We identified 38 novel stable QTNs with significantly
different alleles in the association panel. We predicted the
five best parental cross combinations based on superior allele
information for developing tobacco varieties that are highly
resistant to R. solanacearum. Moreover, 52 candidate genes

were associated with TBW resistance. The results from this
study serve as the basis for resistance gene cloning and
further understanding of the molecular mechanisms of tobacco
resistance to R. solanacearum.
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