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Functional–structural plant models (FSPMs) have been evolving for over 2 decades and

their future development, to some extent, depends on the value of potential applications

in crop science. To date, stabilizing crop production by identifying valuable traits for novel

cultivars adapted to adverse environments is topical in crop science. Thus, this study will

examine how FSPMs are able to address new challenges in crop science for sustainable

crop production. FSPMs developed to simulate organogenesis, morphogenesis, and

physiological activities under various environments and are amenable to downscale to the

tissue, cellular, and molecular level or upscale to the whole plant and ecological level. In

a modeling framework with independent and interactive modules, advanced algorithms

provide morphophysiological details at various scales. FSPMs are shown to be able to:

(i) provide crop ideotypes efficiently for optimizing the resource distribution and use for

greater productivity and less disease risk, (ii) guide molecular design breeding via linking

molecular basis to plant phenotypes as well as enrich crop models with an additional

architectural dimension to assist breeding, and (iii) interact with plant phenotyping for

molecular breeding in embracing three-dimensional (3D) architectural traits. This study

illustrates that FSPMs have great prospects in speeding up precision breeding for specific

environments due to the capacity for guiding and integrating ideotypes, phenotyping,

molecular design, and linking molecular basis to target phenotypes. Consequently, the

promising great applications of FSPMs in crop science will, in turn, accelerate their

evolution and vice versa.

Keywords: functional-structural plant modeling, plant architecture, plant phenotyping, genotype to phenotype,

assisted molecular breeding

INTRODUCTION

Global human population is growing rapidly and has been estimated to reach nearly 10 billion by
2050. However, overall crop production at current rate is insufficient for such great population
(Ray et al., 2013). Undoubtfully, the growing population requires extra food supply as well as high
food quality, which is in a conflict with shrinking availability of farmland due to industrialization
and urbanization (Karki et al., 2013). Concomitantly, climate change is alarming and causing more
droughts, heat shocks, and floods, which may further compromise crop productivity and grain
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quality (Altieri and Nicholls, 2017; Webber et al., 2018; Ababaei
and Chenu, 2020). Accordingly, both the growing population and
climate change constitute a roadblock in ensuring food security,
which urges to increase crop productivity under likely harsher
environments in a sustainable way.

To address such challenges, efforts in breeding have been
attempted to develop novel high-yielding varieties under
unfavorable environments along with improved agronomic
managements (Henry and Nevo, 2014). However, the efforts
have been hindered by the complex traits in controlling
high yielding and quality under abiotic stresses (Hammer
et al., 2005). Therefore, the adoption of new techniques and
tools, e.g., plant/crop growth models in dissecting complex
traits into secondary traits that can be related to specific
morphophysiological pathways and genes, is important in
tackling such challenges in crop production systems (Hammer
et al., 2006; Tardieu and Tuberosa, 2010; Rebolledo et al.,
2015). Such models based on concepts rooted in robust system
biology and open frameworks that allow integrating knowledge
of plant behaviors and research hypothesis (Yin and Struik, 2010;
Hammer et al., 2016) and will be particularly useful for studying
the interaction of genotypes and environments (G× E) precisely
and decoding complex traits (Messina et al., 2015). For instance,
crop/plant models are shown with a great capacity in realizing
such aims (Hammer et al., 2006, 2010; Letort et al., 2008).
Nevertheless, plant architectural or related traits, e.g., leaf/root
three-dimensional (3D) characteristics are not often taken into
account in crop models though leaf area and leaf area index that
are key determinants in such models.

On the other hand, as for the architectural trait, it is one of
key drives in functional–structural plant models (FSPMs). The
concept and definition of FSPMs have been clearly described
in many places (Vos et al., 2010; DeJong et al., 2011; Sievänen
et al., 2014). Hence, in this study, we describe the model in
brief only. FSPMs are dedicated in the simulation of both the
plant architectural development and physiological activities at
a resolution of individual organs under specific environments
(Table 1) (Yan et al., 2004; Allen et al., 2005), originally
derived from plant architectural models (De Reffye et al., 1988;
Prusinkiewicz et al., 1988; Prusinkiewicz, 1998). For example,
GreenLab (Hu et al., 2003), a typical FSPM, was initially tested
for the key algorithms in biomass allocation (Song et al., 2003a)
and morphological construction (Song et al., 2003b) for maize
and was further developed with a systematic integration of
interactive modules, i.e., developmental, biomass growth and
partitioning, and architectural development and visualization
(Yan et al., 2004; Guo et al., 2006); subsequently, the model
was further generalized (Kang et al., 2008a) and widely applied
to other crops (Dong et al., 2007; Kang et al., 2008b, 2012;
Jullien et al., 2011). Simultaneously, many other FSPMs, model
platforms, and tools have emerged worldwide (Fournier and
Andrieu, 1999; Prusinkiewicz et al., 2000; Allen et al., 2005; Evers
et al., 2006; Kniemeyer and Kurth, 2008; Pradal et al., 2008)
with a particular focus on plant architectural development for
diverse crops. In essence, FSPM has a robust physiological ×
architectural interaction at organ level in response to various
environments (Hanan, 1997; Yan et al., 2004; Vos et al., 2010;

El-Sharkawy, 2011; Henke et al., 2016; Postma et al., 2017;
Schnepf et al., 2018; Zhou et al., 2020).

It is noteworthy that FSPM framework is built on the
multipurpose and multidisciplinary knowledge of structural
and functional interactions on an organ level (Figure 1) and
has been successfully applied for many plants under various
environmental conditions, assisting in dealing with sustainable
food production (Tardieu, 2003; Hanan and Prusinkiewicz, 2008;
Evers et al., 2010; Vos et al., 2010; Guo et al., 2011). As a
consequence, they have great potentials to attract more attention
from scientists in various disciplines and can be the center
of interest of debates in overcoming challenges arisen from
the practice of crop production (Evers et al., 2018). Thus, in
this study, we highlight the robust concepts of FSPMs with
ecophysiological functions of a structural phytomer, flexible
in allowing integration of disciplines for down- or upscaling.
We then further illustrate unique potential roles of FSPMs in
overcoming great challenges in sustaining crop productivity
under environmental stresses. The following sections will
demonstrate the role of FSPMs in: (i) assisting to design crop
ideotypes with optimal use of resources, (ii) enhancing crop
modeling ability by assisting to link phenotypes to genotypes,
(iii) improving the efficiency and accuracy of molecular breeding,
and (iv) guiding plant phenotyping for efficient breeding.
Integration of favorable ideotype identification, traits discovery,
and the reduction of the gap between phenotypes and genotypes
collectively contribute to developing new cultivars for stable and
sustainable production under adverse environments.

FUNCTIONAL–STRUCTURAL PLANT
MODELS GUIDE PLANT IDEOTYPE
DESIGN

A crop ideotype, originally defined by Donald (1968), is the
combination of collective elite traits thatmay control crop growth
and development, grain yield, and stress tolerance in specific
environments (Qi et al., 2010; Andrivon et al., 2012; Rötter et al.,
2015). Conventional breeding efforts depend on experienced
breeders to combine the alleles in tedious and time-consuming
field trials. However, the FSPM can provide in silico plants that
aid to conduct virtual trials in achieving theoretical ideotypes
by adjusting any combination of traits (Tardieu, 2003; Song
et al., 2013; Picheny et al., 2017) and testifying them by rigorous
field trials.

Functional–structural plant model requires a supply of
resources including irradiance, nutrients, and H2O as a fuel and
building materials for organ kinetics and morphophysiological
activities as well as comprehending how to manipulate such
resources in 3D development and ecophysiology of each
phytomer precisely for optimal plant architecture (Ourry et al.,
2001). Further, resource distribution within the plant confines
many aspects of crop growth and development and grain yield
formation as well as the risk of disease infection. Consequently,
the crop performance is regulated considerably by the way crop
interacts with the environments involved in the processes that
lead to final product formation and quality.
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TABLE 1 | The list of functional–structural plant models/platforms, brief description of characteristics, and basic functions.

Model/platform Brief description Model basic functions Model properties References

GreenLab A model framework to integrate plant

architecture and physiological

function as growth cycles; each cycle

composed of biomass production

computation, biomass allocation,

morphological construction; and

applied to many crops.

Use mathematical equations and

biological rules to simulate plant structural

development and growth, and biomass

partitioning among plant compartments,

to mimic plant morphogenesis and its

plasticity in response to various

environments, allowing scaling down or

up. Applied to different crops and plants.

3D development mainly on

shoots; temporal scale as growth

cycle with days depending on

time to complete a metamer

development; programmed with

C++, Matlab, Java, Scilab

Hu et al., 2003;

Song et al.,

2003a,b; Yan

et al., 2004; Kang

et al., 2008a,b

L-Studio A software system including a

L-system-based simulation core

program cpfg, and 3D plant modeling

environments, and many models are

developed in the L-studio platform.

Simulating plant growth and development

and visualizing plant architecture

according to specific tasks

2D or 3D platform;

Time scale depending on

specific application;

programmed with L-system

Prusinkiewicz

et al., 2000;

Karwowski and

Prusinkiewicz,

2004

GroIMP An open-source modeling platform

and the rule-based programming

language XL (eXtended L-system), for

realistic plants and conditions

Simulating plant architecture and

physiological functions, and visualizing

plant architecture in general.

3D;

Time scale depending on

specific application;

programmed with Java-based XL

Kniemeyer and

Kurth, 2008;

Henke et al., 2016

OpenAlea A user-friendly software platform for

modelers to build models using a

visual programming interface and

provides a set of tools and models for

plant modeling

Provide a visual and interactive interface to

the inner structure of an FSPM specific

application

3D;

Time scale depending on

specific application;

programmed with Python

Pradal et al., 2008

GRAAL;

GRAAL-CN

Plant organs (roots and shoots)

development, resource acquisition

(Carbon and Nitrogen) and

management among organs,

dynamic of imbalances between C-N

metabolite

Analyse of the dynamic between

morphogenetic process and assimilates

(C-N) acquisition process during the

vegetative development of individual plants

Schematic 2D;

Daily scale;

programmed with Java language

Drouet and Pages,

2003; Drouet and

Pagès, 2007

NEMA Nitrogen acquisition and distribution

within aerial plant parts for wheat

Predict N content of each photosynthetic

organs as regulated by Rubisco turnover

which depends on intercepted light and a

mobile N pool share to all organs

Schematic;

Daily scale;

programmed with L-system +

C language

Bertheloot et al.,

2011

L-Peach A model developed using L-system

formation. Plant structure

development, carbon storage and

remobilization

Use of L-system to simulate the

development of plant architecture and

explain the dynamically changing system

of carbon accumulation and partition

among organs

3D dynamic;

Daily scale;

programmed with L-system

Allen et al., 2005

EcoMeristem Phenology, organ initiation as driven

by meristem behavior, assimilate

production (supply for carbon)

Simulate plant morphogenesis and

phenotypic plasticity relying on adjustment

methods relevant to C sink-sources

variations

Schematic;

Growth cycle as temporal scale;

programmed with C language

Luquet et al., 2006

ADEL-Maize

ADEL-Wheat

A model to drive plant development

according to thermal time and

simulate leaf architecture

development using L-system.

Model maize and wheat 3D architectural

development;

Shoot 3D dynamic;

Daily scale;

programmed with L-system

Fournier and

Andrieu, 1999;

Fournier et al.,

2003

CN-Wheat Carbon-nitrogen distribution in wheat

plants (roots, shoots and grains)

Simulates the allocation of C-N into wheat

culms in relations to photosynthesis, N

uptake, metabolites turnover, root

exudation and tissue death

Schematic;

Process-based model

Growth cycle as temporal scale;

programmed with Python

Barillot et al., 2016

OpenSimRoot An open-source modular

infrastructure to simulate root

architecture and function, with

modules i.e., water uptake and xylem

flow; tiller formation;

evapotranspiration, etc.

Simulates root system architecture, the

shoot, C, water and nutrient acquisition

and utilization, root growth plasticity and

geometric descriptors

Root 3D;

Daily scale;

programmed with C++

Postma et al.,

2017

CPlantBox A framework for simulating interaction

between carbon and water flows;

CPlantBox is an extension of the

model CRootBox

Simulates the growth and development of

a variety of plant architectures by

combining with a mechanistic model of

water and carbon flow

Schematic 2D;

Hourly scale;

programmed with C++,

Python, R

Zhou et al., 2020

(Continued)
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TABLE 1 | Continued

Model/platform Brief description Model basic functions Model properties References

CRootBox Root architectural development and

root-soil interaction

Simulate dynamically and on field scale,

based on computational science

strategies, the responses of root

architecture to environmental properties as

well as the effects of roots on soil

conditions

2D;

Hourly scale;

programmed with C++,

Python, R

Schnepf et al.,

2018

FIGURE 1 | The schematic diagram of plant architecture and functional activities on the basis of individual organs for FSPMs downscaled to the cellular function or

upscaled to the ecological function via leaf photosynthesis. Leaf photosynthesis can be decoded as a collection of cellular chloroplast photosynthesis per unit that can

adopt leaf C3/C4 biochemical models (Farquhar et al., 1980) regulated by molecular network (Wu et al., 2016); while for field level, the estimation of grain yield from

leaf photosynthesis is the intercepted light by the canopy as a function of LAI multiplying with LUE and HI. Leaf photosynthesis acts as a nexus in connecting cellular

and molecular level to field level modeling. The curve shows net photosynthetic rate as a function of incident irradiance, CO2, H2O, and temperature. From left to right,

the upscale from molecular to ecological level or vice versa for downscale from right to left. FSPMs, functional–structural plant models; LAI, leaf area index; LUE, light

use efficiency; HI, harvest index.

One of prime features in FSPM is a plant composed of
a network of structural units such as axes, internodes, leaf
tips, and axillary buds (Vos et al., 2010; Sievänen et al.,
2014). This offers the possibility to study and model the
development and functioning of each metamer/organ and
the interaction of each metamer via resource competition.
Being a prerequisite factor for plant photosynthetic process,
light absorption/interception is one of the important factors
in determination of crop yield. The introduction of modeling
paradigm that focuses on the spatial design of plant architectural
traits and their development gives the opportunity to explore
light absorption and photosynthesis for each structural element,
biomass partitioning, and grain yield (Chelle and Andrieu,
1998; Cournède et al., 2008; Sarlikioti et al., 2011b; Da Silva

et al., 2014; Sievänen et al., 2014; Christensen et al., 2018). In
this context, Sarlikioti et al. (2011a) performed simulations
with FSPM of tomato crop to define plant ideotype for optimal
light distribution, absorption, and canopy photosynthesis. This
study defined two ideotypes scenarios that exhibited an increase
in light absorption, resultantly higher canopy photosynthesis,
which, in turn, may potentially lead to an enhanced yield.
Interestingly, they identified that internode length and leaf shape
are the most essential architectural traits to be manipulated
in optimizing light absorption. This demonstrates that plant
architectural information may have significant importance in
modern breeding to design genotypes with respect to efficient
light absorption and canopy photosynthesis (Sarlikioti et al.,
2011b).
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Furthermore, the importance and implication of plant
architecture in the identification of plant ideotypes with respect
to light partitioning capacity in a crop mixture is highlighted
(Barillot et al., 2014). In fact, in this study, the authors
developed a deterministic model of pea (L-pea) with modules
for vegetative topological development and organ dynamics,
linked it with Architectural Model of Development Based on
L-systems (ADEL)-Wheat (Fournier et al., 2003) in a common
L-system platform, and applied the model to a cropping
system of pea and wheat to assess light partitioning. Results
illustrated that quantitative variation of architectural traits is a
determining factor for light partitioning (Barillot et al., 2019)
and that in intercropping systems (such as wheat and pea),
light capture is principally linked to architectural characteristics.
Such findings can facilitate the design of crop genotypes adapted
to intercropping by capturing morphological traits that can be
incorporated into modern breeding programs (Louarn et al.,
2020). These studies demonstrated how far beyond can FSPMs
provide a finer insight of light absorption and partitioning within
plant canopy and also deliver tools that help to establish a fine
set of architectural traits for maximizing canopy photosynthesis,
allocation of assimilates to growing organs, and ultimately crop
yield (Sarlikioti et al., 2011b; Teichmann and Muhr, 2015). Apart
from abiotic environments, pea architectural details are reported
to affect spatiotemporal epidemic development for Ascochyta
blight (Le et al., 2009) and an ideotype with the combinations of
optimal architectural traits is shown to minimize the epidemic
development of pests and diseases in crops (Andrivon et al.,
2012).

In addition to shoot ideotypes, root ideotypes have been
explored in maximizing the uptake of resources in the soil. A
“steep, cheap, and deep” ideotype with the ability of optimizing
the acquisition of water and nitrogen was proposed by Lynch
(2013). An ideotype of root system for efficient nitrogen
acquisition in intensive cropping system was proposed by Mi
et al. (2010) and further updated with more detailed root
architecture including root branching, angle, and distribution
(Mi et al., 2016). A novel irrigated ideotype with high resource
use efficiency was proposed by Schmidt and Gaudin (2017). The
functional–structural plant modeling has been applied to identify
the ideotype of root system drought resistance for breeding
(Ndour et al., 2017).

FUNCTIONAL–STRUCTURAL PLANT
MODELS ASSIST IN MOLECULAR DESIGN
BREEDING

The modern molecular breeding (Moose andMumm, 2008) with
the guidance of crop design by employing the knowledge and
tools arisen from contemporary functional genomics is fairly
effective for breeding new cultivars (Hammer et al., 2016). A
considerable literature has been dedicated to understanding how
crop/plant modeling could help to decode complex traits for
guidingmolecular breeding (Hammer et al., 2005; Yin et al., 2005;
Chapman, 2008). It is an extended form of the standard breeding
approach by the prediction of genotypic breeding. As such, it
allows the breeding procedure to be simulated and optimized

prior to being tested in the field, thus increasing breeding
efficiency and predictability (Hammer et al., 2006, 2016; Wan,
2006). Designing superior crop cultivars would be affordable for
breeders due to genetic basis of agronomically important traits
and allelic variations at those loci made available (Wan, 2006;
Wang et al., 2011).

The framework and concept of FSPMs to represent the plant
as a network of elementary units, i.e., phytomers and their
structural–functional feedback, provide great opportunities to
comprehend plant biological organization from molecular level
to whole plant (Figure 1) (Hanan and Prusinkiewicz, 2008).
There are possibilities to connect the whole plant trait to
fundamental biology via FSPMs in accordance with the behavior
of the entire plant systems biology (Letort et al., 2008; Xu and
Buck-Sorlin, 2016). Molecular design has been attracting great
interest in plant breeding programs (Wang et al., 2011). The link
up of a given model measurable trait and tangible quantitative
trait loci (QTL) is the key fact that makes crop models or
FSPMs an integral tool for crop molecular genetics research and
breeding (Tardieu et al., 2005; Quilot et al., 2006; Letort et al.,
2008; Semenov and Halford, 2009). Accordingly, Xu et al. (2011)
developed a model system of rice that represents plant structural
kinetics in combination with ecophysiological processes using
FSPMs and interactive modeling platform Growth Grammar-
related Interactive Modelling Platform (GroIMP) (Kniemeyer
and Kurth, 2008) along with the graph-based relational growth
grammar formalism (Kurth et al., 2004), which is an extended
L-system formalism. This prototype constitutes the first effort of
a model system of rice FSPMs that will prominently integrate
information on QTLs, environments, and their interactions in a
network. This could help further for designing molecular specific
traits in crop systems biology or in breeding. Plant under water
stress has different responses underlined by various physiological
processes that could account for emergent behavior. Associating
alleles with particular responses will help to identify alleles
for maintaining growth under stress (Tardieu et al., 2005).
Leaf elongation rate depends on environmental variables, e.g.,
temperature, evaporative demand, and soil water status, so QTLs
for these variables were established, enabling to predict the
responses to different climatic conditions. The identification of
QTLs in this study offers opportunities for improving drought
adoption mechanisms via molecular breeding to design and
assess traits that were elusive in previous selection study.

Overall, as a mechanistic and comprehensive tool, the FSPM
can be used in molecular breeding work to assist in the design of
new plant prototype. They will be for sure embrace the system
design in addition to the synthesis of data and prediction of
quantitative behavior, as proposed by Yin and Struik (2008) for
future modeling of crop systems biology.

FUNCTIONAL–STRUCTURAL PLANT
MODELS ENRICH ARCHITECTURAL
DETAILS FOR CROP MODELS

Crop models are usually capable in predicting crop phenology,
biomass, and grain yield under various soil and climate
conditions including abiotic stresses (Jones and Kiniry, 1986;
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Sinclair and Seligman, 1996; Wang et al., 2019). Initially, such
models have been employed to assist crop management in a
farming systemwith a simplification of plant architectural details.
The model design based on robust physiological principles is in
accordance with the systems biology (Hammer et al., 2005; Yin
and Struik, 2009), e.g., Genotype-by-Environment Interaction
on Crop Growth Simulator (GECROS) (Yin and van Laar,
2005). Crop models are shown to be promising to connect
with molecular level mechanisms in assisting plant breeding for
complex traits, e.g., drought tolerance (Hammer et al., 2005;
Chapman, 2008). For example, a linkage between crop models
and leaf biochemistry models has been proposed to reflect
the adjustment of biochemical reaction in grain yield for crop
improvement (Wu et al., 2016; Yin et al., 2018). Often, leaf area
index is required in driving crop photosynthesis and productivity
in modern crop models such as Decision Support System for
Agrotechnology Transfer (DSSAT) (Jones et al., 2003) and
Agricultural Production Systems Simulator (APSIM) (Hammer
et al., 2010). Detailed root architecture is essential in investigating
water or nutrient absorption under abiotic stresses (Fang et al.,
2009; Hammer et al., 2009). Thus, the resolution of representing
plants at organ level is helpful to enhance the capacity of crop
modeling for the precise description of a plant.

Functional–structural plant models have been developed with
a particular focus on a delicate description of plant structure,
initially known as plant architectural models or virtual plants (De
Reffye et al., 1988; Barthelemy and Caraglio, 2007). FSPMs add
a structural dimension to conventional crop models (Vos et al.,
2007). Upon the advent of FSPMs, supply fine details of plant
architecture is reinforced for likely use in cropmodels (Wernecke
et al., 2000; Vos et al., 2007; Fourcaud et al., 2008; Feng et al.,
2014). For example, the GreenLab model (Hu et al., 2003; Yan
et al., 2004; Kang et al., 2008a) takes fundamental ecophysiology
in calculating biomass production and partitioning and links
physiology with architectural models (Slavíková, 1980) for more
precise prediction of crop production (De Reffye et al., 2009).
Further, this model has been calibrated for many plants and has
been shown to be able to accurately reproduce plant growth and
architecture with phenotypic plasticity (Dingkuhn et al., 2005).

In earlier days even when crop models reached maturity
(Sinclair and Seligman, 1996), high resolution of canopy
architecture is not necessary and time-consuming in farming-
scale simulations. Given fundamental biological functions closely
associated with plant architecture, the description of shoot and
root architecture may be valuable in crop models. Thus, it
deserves more attention to improve the resolution of canopy
architectural details, allowing matching the heterogeneity of
environmental resources required for precision computation of
crop productivity and design in molecular breeding with crop
models (Dai et al., 2004; Evers et al., 2010; Yin et al., 2018).

FUNCTIONAL–STRUCTURAL PLANT
MODELS ASSIST IN PLANT PHENOTYPING

Assessment of qualitative and quantitative traits rapidly, known
as plant phenotyping (Granier and Devis, 2014), helps to explore

functional diversities or performances of different plants in
given environmental conditions. Plant phenotyping calls for
strategies that include collecting data from the experiment and
submitting those data to a crop/plant model that will provide
predicted crop traits (Messina et al., 2015). The models should
be, therefore, able to simulate G × E interactions and the
resulting phenotypic plasticity (Dingkuhn et al., 2005). Within
the context, Luquet et al. (2006) developed EcoMeristem, a
FSPM explicitly conceived to simulate rice crop phenotypic
plasticity on the basis of meristem behavior and associated
adjustment processes (Dingkuhn et al., 2005). Luquet et al.
(2012a) illustrated the practicability of the model while using it
to explore the phenotypic and genetic diversity of early vigor and
drought regulation in rice. In their study, according to optimized
parameters, the model accurately simulated plant leaf area, plant
height, and shoot dry weight under both the well-watered and
drought conditions. This shows the capacity of the model to
reproduce the behavior of morphophysiological traits. Model
parameters can provide phenotypic data less noised by “genotype
by environment interaction,” as the parameters showed less
replicate effect compared to corresponding measurements
(Rebolledo et al., 2012). In this context, a theoretical study based
on linking parameter values of GreenLab (Yan et al., 2004; Guo
et al., 2006) to hypothetical genes was done by Letort et al. (2008).
This study simulated the virtual phenotypes resulting from
hybridization of homozygous parents, showing that this virtual
phenotype resulted from population cross could be used in QTL
identification for further breeding use. Therefore, for building
new ideotype concepts of phenotyping, FSPM approaches are
needed because they help to integrate knowledge of physiology,
explicit organ 3D characteristics, and genetics via such a bridge
between plant science and functional genomics.

FUNCTIONAL–STRUCTURAL PLANT
MODELS AMENABLE TO CROSS
DISCIPLINES AND SCALES

Functional–structural plant models are equipped with interactive
modules built for precisely exploring plant morphogenesis,
development, and growth in the context of environmental
cues. They are specifically valuable in synthesizing research
understanding and integrating discipline knowledge to generate
tools with descriptive and mechanistic potentials (DeJong et al.,
2011; Sievänen et al., 2014; Louarn and Song, 2020). Owing
to their multidisciplinary characteristics, FSPMs are based on
concepts, tools, and frameworks that emanate from various
disciplines, thus the development of FSPMs involves scientists
with a wide range of backgrounds including crop physiologists,
plant biologists, plant ecologists, computer scientists, and
agronomists, etc (Figure 1).

A modeling study with FSPMs may generate massive data
at different scales, thus managing these data constitutes a
new challenge for modelers (DeJong et al., 2011). Therefore,
the integration of data acquisition techniques involving laser
scanning, confocal laser imaging, and X-rays, underlined by
remote sensing approach, led to the design of “3D” FSPMs
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that work at various spatial-temporal scales. Based on laser
scanning technology, Boudon et al. (2014) developed algorithms
for automatic identification of plant elementary units, further
used to parameterize FSPMs and evaluate them, according to
accurate and real generated data. Hakala et al. (2012) showed
that the feasibility of analyzing spectral characteristics of the
Light Detection and Ranging (LiDAR) 3D point clouds generates
future prospect in FSPMs for identification of plant parts
and their physiological conditions. The development of FSPMs
provides platforms for computational modeling that depends
on appropriate software and programming languages (Sievänen
et al., 2014). For example, as established concepts are frequently
adjusted to provide new approaches in modeling studies, L-
system was an open tool and concept (Prusinkiewicz and
Lindenmayer, 1990) with a multi-modules system for integrating
previous modeled aspects of carbon dynamics (Allen et al., 2005),
apical dominance (Prusinkiewicz et al., 2009), and biomechanics
(Taylor-Hell, 2005; Prusinkiewicz et al., 2007) into a well-
structured FSPM (Cieslak et al., 2011). This is illustrated in the
study of Ong et al. (2014), where the programming language XL
and GroIMP platform have been used to explore models of plant
growth that allow appropriately the use of several structural scales
in plant description, highlighting the multi-scalar potentials of
FSPMs. The result pointed out 3 contrasting models that show
the way for combining information from various scales in the
models. These are top-down, bottom-up, and within a range of
scales from microscopic cell-level process to macroscopic level
of plants. The integration of discipline knowledge, techniques,
and concepts for the development of FSPMs and explicit tools
for usage beyond the individual discipline could produce user-
orientedmultifacetedmodels for application in studying complex
systems (Boote et al., 1996; Sievänen et al., 2014).

FUNCTIONAL–STRUCTURAL PLANT
MODELS SOLVE CHALLENGES IN CROP
PRODUCTION

Functional–structural plant models have been deployed to
comprehend morphological, physiological, and biological
processes that drive development, growth, and yield formation
of crops in various environmental conditions and to simulate
the consequences of crops × environments including the effect
of biotic and abiotic stresses (Hanan and Prusinkiewicz, 2008;
Sievänen et al., 2014). FSPMs offer considerable potentials
for tackling current challenges including food security for
greater human population and sustainability in the context of
biotic/abiotic stress due to climate change (Chapman, 2008;
Wang et al., 2019). Inherently, one of the greatest bottlenecks
in crop production is managing biotic and abiotic factors that
significantly reduce crop production (Maiti and Pratik, 2014).
The usefulness of FSPMs at tackling these issues has been
demonstrated (Garin et al., 2014; Gigot et al., 2014). For example,
the drought stress occurring at crop establishment stage has been
deleterious to rice crops (Courtois et al., 2000). The only way
to alleviate that is for the plant to acquire sufficient resources
and avoid soil evaporation and weed rivalry (Zhao et al., 2006).

This is termed as “early vigor,” which confers drought avoidance
ability in rice crops (Zhang et al., 2005). As the FSPM allows
formalizing integratively, the genetic (G) × environment (E)
bases of elemental process-based traits and their linkages, it
was able to simulate genetic diversity of rice early vigor and its
drought regulation (Luquet et al., 2012b). FSPM concepts were
applied in the EcoMeristem (Luquet et al., 2006) to investigate
the existence of negative linkages between the capacity of
proper plant establishment and its drought tolerance (Luquet
et al., 2012b). Indeed, those identified negative linkages could
be attributed to the variation of resources per se and also the
reaction of sink activities to available resource. The result of this
study would eventually help rice breeders to better co-select early
vigor and drought tolerance traits (Luquet et al., 2012a).

In a former study, a modeling framework was produced to
simulate foliar fungal epidemics based on the OpenAlea platform
(Pradal et al., 2008). This study is designed by implementation
of two different pathosystems and yielded the simulation of
the effect of canopy structural traits on fungal dissipation. This
paves the way for modeling the complex dynamics of crop
pathosystems for a good understanding of interactions that will
probably make better protective strategies (Garin et al., 2014).
The study by Gigot et al. (2014) proposed as a strategy for
managing splash-dispersed fungal pathogen in wheat to define
cultivar (whether sensible or tolerant) proportion as a function
of host resistance capability. FSPM technique used in this study
referred to a virtual 3D plant model, integrated to a module
that predicts splash droplet dispersion of the fungal pathogen
and the host resistance in wheat. This highlights how FSPMs,
through its spatial-temporal characters, can make itself useful
for understanding issues related to the dissipation of disease
within plants.

CHALLENGES OF FSPM DEVELOPMENT

After more than 2 decades of evolution of FSPM (Vos et al., 2010;
Louarn and Song, 2020; De Reffye et al., 2021), the model has
become widely known due to the continuous efforts from the
pioneers in both the plant architectural modeling and functional–
structural plant modeling community (Prusinkiewicz et al., 1988;
Hanan, 1997; Hu et al., 2003; Godin and Sinoquet, 2005). The
models have achieved great success in algorithms and prototypes
for different plants or crops under various environments,
receiving more attention nowadays and in future (Louarn and
Song, 2020). The above paragraphs also demonstrated the
great capacity for FSPMs in addressing the challenges in crop
science. Despite this, we have identified constraints in both the
modelization and practical aspects that may limit the potentials
of extensive applications for FSPMs.

First of all, it is known that the major strength in FSPMs
is the fine simulation of explicit plant morphogenesis, 3D
architecture, and architectural development; nevertheless, the
key functional parts in many FSPMs are, to some extent,
based on or adopted from the physiological processes used
in conventional crop models, in particular, in the beginning
when to illustrate the role of FSPMs by integrating both the

Frontiers in Plant Science | www.frontiersin.org 7 December 2021 | Volume 12 | Article 747142

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Soualiou et al. FSPMs Advance Crop Science Missions

plant architecture and physiological functions (De Reffye et al.,
2009), which is still widely used. For example, the estimation
of canopy photosynthesis in many FSPMs is based on empirical
light extinction within the canopy as a function of leaf area
index (Vos et al., 2010; Pao et al., 2021) rather than mechanistic
interaction of irradiance with individual leaves, though there are
many studies available in investigating such interaction (Buck-
Sorlin et al., 2011; Sarlikioti et al., 2011b). In addition, modeling
transfer of incident light energy to the chemical energy in the
form of carbohydrate in leaves can be realized by mechanistically
biochemical model of leaf photosynthesis (Farquhar et al., 1980;
Wu et al., 2016). Hence, the mechanistic process of carbohydrate
should be introduced in the novel model stage. Taken another
example, there is attempt in mathematically simulating biomass
allocation among individual growing organs (Kang et al., 2008b;
Reyes et al., 2019). However, the biomass flow into the sink
governed by fundamental cellular activities is rarely studied. As
FSPMs are maturing, it is time and necessary to mimic the
mechanistic, physiological process rooted from an organ activity,
which will be desirable and boosted in future development. It
needs to dismantle the integrative sink strength into fundamental
cellular activities driven by sucrose unloading and following
sucrose degraded into glucose and fructose, which is regulated
by a series of enzymes and genes (Ruan, 2014). Consequently, the
participation from crop/plant scientists and a closer collaboration
between model developers and those field scientists should be
more encouraged for model development and practice, though
the models have been initially developed by joint efforts from
mathematicians, modelers, and computer scientists as well as
with the participation of agroforestry scientists.

Practically, as the model considers both the fundamental
biological processes and plant architecture, even visualization, it
will require substantial computation time. We got to admit that
the computation power has made great progress over the last
decades. Nonetheless, it is still a major concern for the models
applied to the complicated system in practice by integrating
details including soil and atmosphere environments and crops.
To address this, for instance, the visualization is made in separate
rendering program depending on if it is required, e.g., GreenLab
(Kang et al., 2008a,b). In addition, to facilitate the application,
it is essential to have a user-friendly interface and practice the
software or tools without knowingmuch about underlying model
algorithms. At the current stage, the use of models is not easy for
users in crop science who are not with fairly good backgrounds of
FSPMs. It takes a while to train new users about how to use tools
and software.

CONCLUSION AND FUTURE INSIGHTS

Crop science is confronted with the challenge for substantial
improvement of crop productivity under climate change for
increased human population. This requires elite cultivars tolerant
to adverse environments to be bred. The ideotypes, traits,
phenotypes, and molecular design breeding were integrated in a
system via FSPMs for more efficient breeding. FSPM, by tracing
organ kinetics, microenvironments, and their interactions,
enables to understand and explore how the complex crop
system work, which allows the model to be downscaled to
the molecular level or upscaled to the plant community in
a faithful way to the systems biology. Also, FSPMs may be
envisaged to generate more substantial details arisen from
the analysis of genotypic and environmental interaction at
different scales. FSPMs provide algorithms, platforms, and tools
in advancing the frontiers in crop science from molecular
design to phenotypic-guided breeding, by which, sustainable
crop production under adverse environments may be achieved.
On the other hand, the existing and promising applications in
advancing crop science will result in the evolution of FSPMs.
Though the attempt for FSPMs applied to advancing the frontiers
in crop science has been demonstrated, there is still much
more study to be done in fulfilling the potentials. This includes
bringing together scientists in different disciplines to work closer
than ever in guiding molecular design for precise breeding
via FSPMs.
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