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The petiole–lamina relationship is central to the functional tradeoff between

photosynthetic efficiency and the support/protection cost. Understanding environmental

gradients in the relationship and its underlying mechanisms remains a critical challenge

for ecologists. We investigated the possible scaling of the petiole–lamina relationships in

three dimensions, i.e., petiole length (PL) vs. lamina length (LL), petiole cross sectional

area (PCA) vs. lamina area (LA), and petiole mass (PM) vs. lamina mass (LM), for

325 Qinghai–Tibetan woody species, and examined their relation to leaf form, altitude,

climate, and vegetation types. Both crossspecies analysis and meta-analysis showed

significantly isometric, negatively allometric, and positively allometric scaling of the

petiole–lamina relationships in the length, area, and mass dimensions, respectively,

reflecting an equal, slower, and faster variation in the petiole than in the lamina in

these trait dimensions. Along altitudinal gradients, the effect size of the petiole–lamina

relationship decreased in the length and mass dimensions but increased in the

area dimension, suggesting the importance of enhancing leaf light-interception and

nutrient transport efficiency in the warm zones in petiole development, but enhancing

leaf support/protection in the cold zones. The significant additional influences of

LA, LM, and LA were observed on the PL–LL, PCA–LA, and PM–LM relationships,

respectively, implying that the single-dimension petiole trait is affected simultaneously

by multidimensional lamina traits. Relative to simple-leaved species, the presence of

petiolule in compound-leaved species can increase both leaf light interception and static

gravity loads or dynamic drag forces on the petiole, leading to lower dependence of

PL variation on LL variation, but higher biomass allocation to the petiole. Our study

highlights the need for multidimension analyses of the petiole–lamina relationships and

illustrates the importance of plant functional tradeoffs and the change in the tradeoffs

along environmental gradients in determining the relationships.

Keywords: allometric relationship, altitudinal gradient, environmental stress, functional tradeoff, petiole

cross-sectional area, resource allocation
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INTRODUCTION

A complete leaf consists mainly of lamina and petiole. Lamina
is the main functional structure for conducting photosynthesis
to fix carbon. For most laminas, enhancing light interception
efficiency, which depends partly on their petiole, is one of
the key evolutionary mechanisms to improve photosynthesis
(Niklas, 1999; Falster and Westoby, 2003; Niinemets et al., 2004;
Perez et al., 2018). In addition, the petioles can serve multiple
other functions, such as being a conduit for the transport of
nutrients and sap (Yamada et al., 1999), providing mechanical
support for the lamina (Niklas, 1992; Yamada et al., 1999), and
adjusting leaf angle or leaf orientation to adapt to the variation
in environments (Falster and Westoby, 2003). Most studies
to date have indicated that the petiole–lamina relationship is
fundamental to the functional tradeoff, e.g., the tradeoff between
carbon gain and support costs, in most plant species (Niinemets,
1998; Pickup et al., 2005; Niinemets et al., 2006, 2007; Li et al.,
2008; Zhong et al., 2019).

In woody communities, especially closed ones, self-shading
among leaves reduces the efficiency of light interception by
the lamina (Niinemets, 1998; Bell and Galloway, 2007; Roig-
Villanova and Martíinez-Garcíia, 2016; Perez et al., 2018). Petiole
elongation, at the expense of support, is one of the most obvious
changes to diminish self-shading because it can send lamina
to a higher position as well as adjust the angle of the lamina
on a branch to avoid overlapping with its neighbors (King and
Maindonald, 1999; Falster andWestoby, 2003; Bell and Galloway,
2007; Poorter and Rozendaal, 2008; Sarlikioti et al., 2011; Perez
et al., 2018; Li et al., 2019; Zhong et al., 2019). The relationship
between lamina length (LL) and petiole length (PL) is expected
to be positive because of a higher proportion of overlap of longer
laminas in a given space, which has been under genetic control
(Tsukaya et al., 2002; Tsukaya, 2005). The positive relationship
may be isometric or allometric, whereby the former can reflect
an overall balance between adaptation to light interception vs.
support costs in petiole growth, and the latter indicates a shift
in the balance favoring LL. However, up to now, the relationship
has not been examined in natural multispecies ecosystems, except
for a few studies that found a positive correlation between PL and
lamina area (LA; Niinemets et al., 2006; Xu et al., 2009). Notably,
LA is a comprehensive index reflecting the length, width, and
shape of the lamina (King and Maindonald, 1999; Niinemets
et al., 2007; Vogel, 2009; Lin et al., 2020), and thus, these studies
cannot determine whether the correlation is indirect mainly
through LL, or whether lamina width and/or lamina shape exert
additional effects on petiole length.

In the two-dimensional area space, theoretically, petiole
crosssectional area (PCA) increases proportionally with
increasing LA because a large total crosssectional area of
vascular conduits can meet the high demand of photosynthesis
or respiration for large laminas (as seen in the “pipe-model
theory”; Niklas, 1992; Li et al., 2008; Ray and Jones, 2018).
However, the petiole is also composed of epidermis and cortex
for protection, support, and storage of nutrients. Thus, PCA is
actually a measurement of “petiole structure,” representing the
number and proportion of different tissues, e.g., vascular, storage,

protective, or supportive. The proportion of these tissues in the
petiole, however, is usually not fixed and varies significantly
among species or environments (Givnish, 2002; Al-Edany and
Al-Saadi, 2012; Gebauer et al., 2016; Maiti et al., 2016; Ray and
Jones, 2018), potentially resulting in an interspecific allometric
relationship between PCA and LA, whereby a larger variation in
PCA than LA may attribute to a higher proportion of storage,
protective, or supportive tissues in the petiole as the LA increases
(Niinemets and Fleck, 2002; Klepsch et al., 2016; Filartiga et al.,
2021; Sargin, 2021). Due to a significant positive relationship
between lamina mass (LM) and LA (Pan et al., 2013; Lin et al.,
2020), the PCA–LM relationship has been reported to be positive
in some recent studies (Yamada et al., 1999; Levionnois et al.,
2020). However, the mass of laminas with the equal area may be
significantly different due to the differences in lamina structure
(number of cell layers, the proportion of palisade cells, having
or not protective tissue in leaf epidermis, etc. (Niklas, 1999;
Niinemets and Fleck, 2002; Sack and Frole, 2006; Ray and
Jones, 2018; Lin et al., 2020). As a result, LM may have an
additional influence on the variation in PCA because, compared
with small-mass leaves with the same LA, large-mass leaves
need the petioles with larger PCA to meet the requirement for
their leaf support and nutrition/water transport. Moreover, we
expect high additional influence in the stressful subalpine/alpine
environments where a higher proportion of protection tissue is
required in the lamina.

Studies on biomass allocation have indicated that the
relationship between LM and petiole mass (PM) may be
evolutionarily stable because too much biomass investment in
petiole will reduce the resource available to lamina development
(e.g., small LA), which makes against leaf light acquisition,
whereas too much investment in lamina will increase the risk
of leaves falling prematurely due to a lack of sufficient support
(Yamada et al., 1999; Niinemets et al., 2006; Li et al., 2008;
Yoshinaka et al., 2018). The relationship, however, was found
positively allometrical (i.e., higher mass variation in petiole than
lamina with increasing leaf mass) in several studies (Niinemets
and Kull, 1999; Niinemets et al., 2006; Levionnois et al., 2020),
in which the authors assumed (without empirical evidence)
that large-sized leaves had to invest more in support structures
than small-sized leaves because the former experienced large
static loads on the petiole and lamina (caused by long bending
and torsional moments on petiole) and extra dynamic loads of
drag forces on lamina surface (due to large lamina stress area;
Niinemets and Kull, 1999; Li et al., 2008; Bal et al., 2011; Fan
et al., 2017). Thus, given that the assumption is correct, we can
suppose that the allometric PM–LM relationship is causedmainly
by LA, whereby a positive PM–LA relationship is expected after
controlling for the effect of PM, especially in stressful alpine (AL)
environments where leaves undergo stronger natural drag forces
(wind blowing, snow covering, air–moisture freezing, etc.) on the
lamina surface (Anten et al., 2010; Louf et al., 2018).

In brief, the petiole–lamina relationship in different
dimensions (length, area, and mass) can represent different
aspects of plant functional tradeoff or adaptation to
environmental gradients (Niinemets, 1998; Li et al., 2008;
Levionnois et al., 2020), and thus, it should be studied together.
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TABLE 1 | The main topics and hypotheses dealt with in this study.

Relationship PL-LL PCA-LA PM-LM

(a)

Isometric (RC = 1) Showing a balance between adaptive light

interception and support costs of petiole

growth; expected to be common in moderate

environments with relatively sparse vegetation

cover

Showing a balance between

enhancing support/protection costs

and nutrient/water transport in petiole

growth; common in moderate

environments

Petioles support mainly the static load

of leaf mass, common in moderate

environments without significant natural

drag forces (e.g., wind) on lamina

surface

Positively allometric (RC >

1)

Showing that petiole growth is influenced by a

higher demand for light interception; common

in dense vegetation with obvious vertical layers

Showing a higher demand for

enhancing support/protection costs

in petiole growth; common in stress

environments

Petioles support both the static and

dynamic loads by drag forces; common

in stress environments with strong

natural forces

Negatively allometric (RC

< 1)

Showing that petiole development is influenced

by a higher demand for support costs;

common in sparse vegetation or stress

environments

Showing a higher demand for

enhancing nutrient/water transport in

petiole growth; common in hot and/or

humid environments

Other mechanisms of reducing a petiole

support requirement for static leaf loads

with increasing leaf mass

Relationship PL–RLA/LL (PL–LA relationship after

controlling for LL)

PCA–RLM/LA (PCA–LM relationship

after controlling for LA)

PM–RLA/LM (PM–LA relationship

after controlling for LM)

(b)

Non-significant (or

positive)

The effect of LA on PL can (or cannot) be

explained fully by LL, representing no (or

significant) additional influence of leaf width or

leaf shape on petiole length

The effect of LM on PCA can (or

cannot) be explained fully by LA,

representing no (or significant)

additional influence of lamina

structure on petiole structure

The effect of LA on PM can (or cannot)

be explained fully by LM, representing

no (or significant) additional static

gravity or dynamic drag force caused

by lamina size variation on biomass

allocation to petiole

RC, regression coefficients; PL, petiole length; LL, lamina length; PCA, petiole crosssectional area; LA, lamina area; PM, petiole mass; LM, lamina mass.

However, the current studies, often based on intraspecific
comparison of a single species or interspecific comparison of
a small number of species (Niinemets and Kull, 1999; Yamada
et al., 1999; Niinemets and Fleck, 2002; Anten et al., 2010; Ray
and Jones, 2018; Levionnois et al., 2020), have paid attention
mostly to one or two dimensions of the relationship along a
small environmental gradient (Zhong et al., 2019). As a result,
these studies often produce conflicting findings and can hardly
provide a reliable assessment of the relationship. In the study
reported here, using a leaf trait database of 537 populations of
325 common woody species from various climate or vegetative
zones representing a near 2,000-m gradient of elevation in the
eastern part of the Qinghai-Tibetan Plateau (QTP), we present
the first comprehensive investigation of the petiole–lamina
relationship of an entire woody flora in all three dimensions
(length, area, and mass). Specifically, the relationship was
examined across species and within each zone. We also analyzed
its allometric or isometric pattern and compared the difference
of the relationship with and without controlling for related traits.
The specific objectives and the associated hypotheses of this
study are presented in Table 1.

MATERIALS AND METHODS

Study Area
The study region is located on the east edge of QTP (101◦05′-
104◦20′ E, 33◦25′-35◦30′ N, about 40,000 km2) where the
altitude is the strongest determinant of bioclimatic gradients.

In the region, within only 160 km one can move from warm-
temperate to AL zone. Woody vegetation types and their climate
characteristics also differ greatly among altitudes (see below and
Table 2).

Plant Sampling
In summer and early autumn of 2018 and 2019, we set 15
altitudinal transects located at each 100-m (below 2,700m
a.s.l.) or 200-m (above 2,700m a.s.l. for less woody species,
smaller woody vegetation area and lower altitudinal difference
in species composition) interval (Table 2). At each transect,
two to four 300m ∗ 300m sites (altogether 43 sites) were
sampled to avoid possible sampling bias. These transects can
be divided into four climatic zones, including warm-temperate
(WT), cool-temperate (CT), subalpine (SA), and AL, or into
five vegetation types, including deciduous-evergreen broadleaf
forest (DEBF), deciduous broadleaf forest (DBF), deciduous
broadleaf-conifer forest (DBCF), mixed forest-deciduous shrub
(MFDS), and deciduous-evergreen broadleaf shrubs (DEBS). At
every site, leaf materials were gathered from each dominant
as well as common species. For leaf materials of the same
species (seen in Supplementary Data), different populations
were treated as one sample in the same transect but as different
samples in different transects. The total number of samples
(populations) in all transects was 537, belonging to 325 species
in 95 genera of 46 families (based on the Angiosperm Phylogeny
Group IV classification system, undated in 2016). For each
sample, three to five individuals that grew well (i.e., mature
and living in the habitat with sufficient nutrition and low
disturbance) were randomly selected. Then, for each individual,
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TABLE 2 | The meteorological parameters at each sampling altitudinal transect are the approximate range of climate change for many years in the study area.

Altitude (m) Climatic zone Zonal woody vegetation type MAT (◦C) FFM LGS (days) Canopy height (m)

1,800 Warm-temperate Deciduous-evergreen broadleaf forest 10–13 7–8 >250 15–18

1,900 Warm-temperate Deciduous-evergreen broadleaf forest 9–12 6–7 230–250 12–15

2,000 Warm-temperate Deciduous broadleaf forest 8–11 ca. 6 220–240 12–15

2,100 Warm-temperate Deciduous broadleaf forest 7–10 5–6 210–240 10–15

2,200 Cool-temperate Deciduous broadleaf forest 6–9 ca. 5 210–230 10–12

2,300 Cool-temperate Deciduous broadleaf forest 6–8 4–5 200–230 10–12

2,400 Cool-temperate Deciduous broadleaf forest 5–7 ca. 4 200–220 8–12

2,500 Cool-temperate Deciduous broadleaf-conifer forest 4–7 3–4 190–220 8–10

2,600 Cool-temperate Deciduous broadleaf-conifer forest 3–6 3–4 180–210 7–10

2,700 Subalpine Deciduous broadleaf-conifer forest 3–5 ca. 3 180–200 6–10

2,900 Subalpine Mixed forest-deciduous shrub 1–4 2–3 160–180 5–8

3,100 Subalpine Mixed forest-deciduous shrub 0–3 1–2 150–170 3–6

3,300 Subalpine Mixed forest-deciduous shrub −1 to 1 0–1 140–160 2–5

3,500 Alpine Deciduous-evergreen broadleaf shrub −2 to 0 0 130–150 1–2.5

3,700 Alpine Deciduous-evergreen broadleaf shrub −3 to −1 0 120–140 0.5–1.5

Climate data was downloaded from National Meteorological Information Center (http://data.cma.cn/). “Mixed forest” means mixed conifer–deciduous broadleaf forest. Vegetation type

before and after minus (–) sign represent locally dominant and secondary vegetation, respectively. The frost-free months (FFM) refer to the absolute frost-free months (periods). The

length of the growing season (LGS) is based on the average phenological performance of the local dominant woody species. MAT, mean annual temperature.

two to three branches with five to 20 mature, healthy, fully
expanded, and undamaged leaves on each branch were chosen
at random at the outer canopy to avoid obvious differences in
light conditions. Ninety populations of 56 species had compound
leaves (Supplementary Data); for these, the whole leaves, rather
than the leaflets, were measured. For each sample, each leaf was
divided into petiole and lamina, and then the following traits
were calculated as:

(1) Petiole cross-sectional area: For each sample, at least 10
leaves were chosen from different individuals to measure
petiole diameter (PD), the diameter of the middle position
from lamina base to the end of the petiole, by using a spiral-
micrometer, and PCA was calculated as: PCA= π

∗(PD/2)2.
(2) The LL, LA and PL: For each sample, five to 20 leaves (or two

to four large leaves) from different individuals were bulked
together representing one replicate. LA was determined by
scanning the leaves with a flatbed scanner (HP LaserJet 1320)
in three to four repetitions and then analyzing the pictures
with image analysis software (Image J; http://rsb.info.nih.
gov/ij). In each replicate, all selected leaves were carefully
placed on the scanner to avoid overlap and fully expand
bent or contracted leaves. LL and PL were determined by
analyzing scanned pictures (eight to 15 leaves were randomly
selected for each sample; Figure 1).

(3) The LM and PM: All the imaged leaves, including the
lamina and petiole, were dried at 70◦C to a constant mass
and weighed to the nearest 0.0001 g, respectively. Then, the
obtained dry mass was divided by leaf number to calculate
the individual LM and PM.

Statistical Analysis
Data on leaf traits were log-transformed before analyses to
fit a normal distribution. The petiole–lamina relationship was

analyzed by using both crossspecies analysis and metaanalysis,
whereby petiole traits were treated as dependent variables in
all binary relationship analyses. All analyses were performed in
R 3.6.1.

Crossspecies Analysis
In the analyses, leaf traits of different samples for the same species
were averaged; altogether, 325 species were used. Specifically,
we performed linear regression on each of three dimensions of
the petiole–lamina relationships (PL–LL, PCA–LA, and PM–LM)
for all species, simple-leaf species, and compound-leaf species.
The heterogeneity of the relationship slopes and the intercepts
among simple-leaf, compound-leaf, and all species were tested
by ANCOVA.

Meta-Analysis
We examined six sets of petiole–lamina relationships (PL–LL,
PCA–LA, PM–LM, PL–RLA/LL, PCA–RLM/LA, and PM–RLA/LM)
in each altitudinal transects, with RLA/LL, RLM/LA, and RLA/LM

being the residuals of LA on LL, LM on LA, and LA on
LM, respectively. Thus, the PL–RLA/LL, PCA–RLM/LA, and PM–
RLA/LM relationships will help assess whether the associations of
PL–LL, PCA–LA, and PM–LM are independent of the variation
in LA, LM, and LA, respectively. Effect sizes for each set of
petiole–lamina relationship were analyzed by the “Metafor”
package. We used meta-analysis models to calculate the mean
effect size across transects by weighting each transect-specific
effect size by its corresponding standard error. The mean effect
size across altitudinal transects and for each climate zone or
vegetation type was calculated by applying the random effects
model, and its 95% confidence intervals (95% CI) were calculated
by bootstrapping with 4,999 iterations. We used between-group
heterogeneity (Qbetween) to determine the differences in effect size
between different altitudinal transects and tested its significance
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FIGURE 1 | Schematic representation of the method of leaf trait

measurement. PL, petiole length; LL, lamina length; PCA, petiole

crosssectional area; LA, lamina area.

based on the critical value in a standard chi-square table
(Zvereva et al., 2010).

RESULTS

Crossspecies Pattern
Across all species, the three dimensions of the petiole–lamina
relationships were all significantly positive, with the regression
slopes being non-significantly >1, significantly smaller than
1, and significantly >1 for the PL–LL, PCA–LA, and PM–
LM relationships, respectively. The simple-leaf species showed
the slopes and intercepts similar to those of all species in the
three dimensions of the petiole–lamina relationships, but the
compound-leaf species showed a significantly lower slope in the
PL–LL relationship and a higher intercept in the PL–LL and PM–
LM relationships compared with those of all species (Table 3).

Patterns in Different Transects, Climate
Zones, and Vegetation Types
The PL–LL, PCA–LA, and PM–LM Relationship
The PL–LL relationship was significantly positive in almost
all transects, climate zones, and vegetation types, with the
mean effect size being non-significantly different from
1. The effect size of the relationship decreased gradually
(but non-significantly; Qbetween = 14.204, P = 0.435)
with altitude, from non-significantly >1 in WT forest, to
approximately 1 in cold-temperate and SA forests and shrubs,
and significantly smaller than 1 in AL shrubs (Figure 2a,
Supplementary Figure 1a). The mean effect size of PCA–LA
relationship was significantly positive, but smaller than 1.
The effect size of the relationship showed a non-significant
increase with an increase in altitude (Qbetween = 19.029, P =

0.164), being significantly smaller than 1 in temperate and SA

forests or shrubs, but non-significantly different from 1 in AL
shrubs (Figure 2b, Supplementary Figure 1b). The PM–LM
relationship was also significantly positive in most transects,
climate zones, and vegetation types, with the mean effect size
being significantly >1. The altitudinal trend in the effect size
was non-significantly negative (Qbetween = 14.015, P = 0.449),
being significantly >1 in temperate and SA forests or shrubs,
but non-significantly different from 1 in AL shrubs (Figure 2c,
Supplementary Figure 1c).

The PL–RLA/LL, PCA–RLM/LA, and PM–RLA/LM

Relationships
For the PL–RLA/LL relationship, a non-significant altitudinal
pattern was found (Qbetween = 9.389, P = 0.805), whereby
the mean effect size across all transects and the effect size
for most climate zones and vegetation types, except for
the lowest-altitude WT and DEBF zones, were significantly
positive but non-significantly different from 1 (Figure 3a,
Supplementary Figure 2a). The PCA-RLM/LA relationship was
significantly positive with the mean effect size being near 1/2. An
altitudinal pattern in the relationship varied from significantly
positive in low-altitude forests (WT, CT, DEBF, and DBF),
to significantly or non-significantly positive in mid altitude
forests, to being approximately 0 in AL shrubs (Figure 3b),
Supplementary Figure 2b). The mean effect size of the PM–
RLA/LM relationship was also significantly positive, with a value
being near 2/3. The altitudinal difference in the effect size was
non-significant (Qbetween = 1.369, P = 0.999), with a slightly
lower value in the mid altitude vegetation types (CT and DBCF;
Figure 3c, Supplementary Figure 2c).

DISCUSSION

We showed a different pattern of three dimensions of the
petiole–lamina relationships. These relationships were also
different between leaf forms, altitude transects, climate zones,
and vegetation types. Moreover, we found significant additional
influences of LA, LM, and LA on the PL–LL, PCA–LA,
and PM–LM relationship (Figure 3, Supplementary Figure 2),
respectively. These findings imply that multiple mechanismsmay
operate simultaneously in governing petiole/lamina development
and their relationship. Below, we discuss our findings and also
potential explanations for some of the more unexpected results.

On the one-dimension scale, PL was found to be positively
correlated with LL (Table 3, Figure 2), supporting our hypothesis
that long-leaf species may experience obvious leaf overlapping
and benefit more from elongating petiole in enhancing light
interception despite the additional costs in leaf support (King and
Maindonald, 1999; Niklas, 1999; Poorter and Rozendaal, 2008;
Vogel, 2009; Roig-Villanova and Martíinez-Garcíia, 2016). The
PL–LL relationship was isometric within most transects or zones
(Figure 2, Supplementary Figure 1), showing a proportional
length variation in petiole and lamina. This result suggests
that an overall balance between adaptive light interception vs.
support costs in petiole growth may be universal in many
environments and a stable mechanism for most woody species,
regardless of different leaf sizes and shapes. Moreover, we
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TABLE 3 | Summary of three dimensions of linear relationship (PL–LL, PCA–LA, and PM–LM) for all, simple-leaf and compound-leaf species group, respectively.

Relationship All species Simple-leaf species Compound-leaf species Comparison

Slope (BA) Intercept (AA) Slope (BS) Intercept (AS) Slope (BC) Intercept (AC)

PL–LL 1.080 ± 0.146 −1.693 ± 0.288 1.134 ± 0.183 −1.862 ± 0.348 0.800 ± 0.217 −0.757 ± 0.493 BS =BA >BC, AC >AA =AS

PCA–LA 0.738 ± 0.046 −6.070 ± 0.343 0.762 ± 0.053 −6.198 ± 0.392 0.739 ± 0.096 −6.290 ± 0.772 BS =BC =BA, AA =AS =AC

PM–LM 1.193 ± 0.061 −2.364 ± 0.159 1.150 ± 0.065 −2.593 ± 0.171 1.139 ± 0.119 −1.829 ± 0.284 BA =BS =BC, AC >AA ≧AS

For each linear relationship, the mean± 95%CI (confidence interval) of the slope (B) and intercept (A) are shown. The “Comparison” column represented the difference in slope or intercept

(“>”, “≧” and “=” were significant difference at P< 0.01, P< 0.05, and P> 0.05, respectively) among species groups. PL, petiole length; LL, lamina length; PCA, petiole cross-sectional

area; LA, lamina area; PM, petiole mass; LM, lamina mass; BA, BS, and BC: the mean ± 95%CI (confidence interval) of the slope of the linear relationship for all species, simple-leaf

species and compound-leaf species; AA, AS and AC: the mean ± 95%CI of the intercept of the linear relationship for all species, simple-leaf species and compound-leaf species.

FIGURE 2 | Mean effect size and 95% intervals of the relationship between petiole length and lamina length (PL–LL, a), between petiole crosssectional area [PCA and

lamina area (PCA–LA, b)], and between petiole mass and lamina mass (PM–LM, c) for different climate zones and vegetation types. WT, warm-temperate; CT,

cool-temperate; SA, subalpine; AL, alpine; DEBF, deciduous-evergreen broadleaf forest; DBF, deciduous broadleaf forest; DBCF, deciduous broadleaf-conifer forest;

MFDS, mixed forest-deciduous shrub; DEBS, deciduous-evergreen broadleaf shrub.

found a reduction in effect size of the relationship with
increasing altitude, varying from non-significantly >1 at the
lowest altitude to significantly lower than 1 at the highest
altitude (Figure 2, Supplementary Figure 1). The result may
imply that the balance shifts toward increasing PL to maximize
light interception in WT forests with a tall and dense canopy
and obvious vertical stratification, but toward decreasing PL
in AL shrubs to provide stronger support to resist strong
winds (Niklas, 1999; Niinemets et al., 2007; Vogel, 2009; Anten

et al., 2010; Louf et al., 2018) and also to reduce excessive leaf
exposure to high ultraviolet (UV) radiation (Castro-Díez et al.,
2000; Li et al., 2019). Also, our results showed a significant
positive PL–RLA/LL relationship within most altitudes or zones
(Figure 3, Supplementary Figure 2), supporting the hypothesis
of a significant additional effect of lamina width and lamina shape
on the variation in PL (Table 1). To our surprise, the PL–RLA/LL

relationship was isometric, which was the same as the pattern
in the PL–LL relationship, suggesting that lamina growth in two
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FIGURE 3 | Mean effect size and 95% confidence intervals of the PL–RLA/LL (a), PCA–RLM/LA (b), and PM–RLA/LM (c) relationship for different climate and vegetation

zones. Abbreviations of leaf traits, climate zones, and vegetation types were as specified in Figure 2. RLA/LL, RLM/LA, and RLA/LM were the regression residuals of LA

on LL, LM on LA, and LA on LM, respectively.

directions (parallel and vertical to petiole) has equal effects on
the growth and development of petiole. A lack of significant
difference in the PL–RLA/LL relationship among climate zones or
vegetation types implies that the equal effect of lamina growth in
two directions on PL may be the result of evolutionary tradeoffs
among leaf traits, leading to less dependence of the relationship
on the environmental variations.

In contrast, petiole crosssectional area was negatively
isometrically scaled to (i.e., increased disproportionately with)
LA (Figure 2, Table 3), which is in contrast to the “pipe-
model theory” that an isometric relationship is expected (Niklas,
1992; Ray and Jones, 2018; Levionnois et al., 2020). There
are two possible explanations for this result. Firstly, the
number of cell layers in some structures in petioles, such
as epidermis and cambium, is relatively fixed and generally
varies disproportionately with vascular structure (Song and
Hong, 2018), resulting in a smaller variation in PCA than LA.
Secondly, xylem in petiole is composed of vessels of different
sizes. According to the Hagen–Poiseuille law in the hydraulic
conductivity of the conducting tissues (Niklas et al., 2009;
Gebauer et al., 2019), narrow vessels in a large density often
occupy a larger area of secondary xylem than large vessels in small
density, but small-density larger vessels, due to their lower water
transport resistance, tend to transport a high amount of water
than large-density narrow vessels (Sack and Frole, 2006; Lintunen

and Kalliokoski, 2010; Gebauer et al., 2016). Thus, petioles of
large leaves generally develop a small amount of large vessels,
rather than a large number of small ones, although they may have
similar total petiole xylem cross section area, to respond to an
increased requirement for water transport, which would weaken
the dependence of crosssectional area of the vascular structure
of the petiole on the LA. This is supported by a few studies
on LA varying isometrically with the maximum diameter of the
xylem vessels (Dmax), rather than with the number or density of
vessels (Gleason et al., 2018; Zhong et al., 2019; Levionnois et al.,
2020). Moreover, we have shown a significant and large effect
size for the PCA–LA relationship in AL shrubs, whose reason
may be that a high percentage of supportive/protective tissues
(e.g., collenchyma or sclerenchyma cells) or an increase in storage
tissues (e.g., parenchyma cells) is needed in the petioles of high-
altitude species to adapt to increasing stresses (Li et al., 2008;
Anten et al., 2010; Pan et al., 2013; Gleason et al., 2018).

Generally, PM was positively allometrically scaled to lamina
mass, suggesting that the proportion of investment in the petiole
increases with an increase in leaf mass. The result is in accordance
with the most frequently reported findings (Niinemets and Kull,
1999; Niinemets et al., 2006, 2007; Li et al., 2008; Fan et al., 2017;
Levionnois et al., 2020), but supports neither the explanation
in these studies nor our hypothesis (Table 1) for the allometric
relationship based on to the altitudinal reduction in the effect size
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of the relationship. If the positive allometry arises mainly from
petioles needing to support extra dynamic loads caused by drag
forces, the effect size should increase with altitude to adapt to the
increasing natural forces on the lamina surface. The difference
in community structure and climate between altitudinal transects
may contribute to the results. Firstly, for temperate and SA forests
with closed and tall canopy, strong light competition and long-
distance nutrient and water transport between root and canopy
may force the large-leaf species to invest a high proportion
of biomass to petiole for (i) increasing leaf light interception
(by elongating petiole length) and (ii) maintaining a high rate
of photosynthesis and transpiration (by increasing the number
and/or crosssectional surface area of the xylem/phloem vessels)
(Bell andGalloway, 2007; Sarlikioti et al., 2011; Rosell et al., 2017).
In contrast, AL shrubs benefit from a smaller increase in PM than
LM because a low investment of mass in the petiole, associated
with short petiole and low vessel density, can reduce leaf damage
due to excessive solar radiation and low leaf temperature caused
by high transpiration rate (Vogel, 2009; Anten et al., 2010; Peng
et al., 2015). Our results, therefore, illustrate the importance of
plant competition for light and the photosynthesis/transpiration
strategy in determining a leaf biomass allocation pattern in
woody perennials (Sarlikioti et al., 2011).

The mean effect size of the PCA–RLM/LA and PM–
RLA/LM relationship were both significantly positive (i.e.,
>0; Figure 3, Supplementary Figure 2), suggesting significant
additional influences of LM and LA on the PCA–LA and
PM–LM relationship. The positive PCA–RLM/LA relationship
matches well our hypothesis in Table 1 that the variation in
lamina structure (e.g., the number of cell layers in the palisade
and sponge tissues or the proportion of protective tissue) can
exert a strong influence on the variation in petiole structure,
such as the number and proportion of vascular, protective, and
supportive tissue components; whereas the positive PM–RLA/LM

relationship can be explained by the hypothesis (in Table 1) that
the variation in LA, reflecting the changes in the static loads of
gravity force on petiole caused by the variation in the bending
and torsional moments, and/or the change in the dynamic drag
force on petiole caused by the variation in stress area of lamina
surface, can affect leaf biomass allocation to petiole (Niklas, 1999;
Niinemets et al., 2006; Sack and Frole, 2006; Li et al., 2008; Anten
et al., 2010; Bal et al., 2011; Gebauer et al., 2016; Louf et al., 2018).

Compared with our meta-analysis whose mean effect size
(E) showed the within-site (local) pattern of petiole–lamina
relationship, the crossspecies analysis exhibited mainly a
regional among-site pattern of the relationship based on its
regression slope (B). In the study, a miniaturized lamina
(low LL, LA, and LM) was found to be one of the most
significant among-site leaf variations in woody plants at
high altitude (the altitudinal variation in leaf traits was
presented in Supplementary Table 1). Therefore, our finding
of, a higher crossspecies PL–LL relationship (i.e., higher B
than E), may be attributed to an increase in the demand
for petiole elongation in most low-altitude leaves (often with
long lamina), whereas a lower crossspecies PM–LM relationship
may be associated with an increase in biomass allocation to
petiole for most high-altitude leaves (often with small lamina
mass). However, because of the lack of leaf anatomical data,

we cannot determine that the higher biomass allocation to
petiole at high altitude is due to its higher demand for
support/protection (i.e., more supportive/protective tissues in
petiole), or resource storage (i.e., more storage tissues in petiole),
or both.

We did not find any significant difference in the slope of
the PCA–LA and PM–LM relationship between the simple-leaf
and compound-leaf species (Table 3), implying that the variation
in a leaf tradeoff between the support/protection costs and the
nutrient/water transport, or in a leaf biomass allocation strategy
is independent of the leaf form. In contrast, compound leaves
showed a significantly lower slope of the PL–LL relationship than
simple leaves (Table 3). The reason may be that a compound leaf
is composed of leaflets, petiole, and petiolules. The petiolules can
extend the length and width of a compound leaf, which may help
diminish self-shading among leaves (or leaflets) and increase leaf
light interception (Niinemets, 1998; Niinemets et al., 2006; Bell
and Galloway, 2007; McCulloh et al., 2009; Xu et al., 2009; Pan
et al., 2013), thereby reducing the dependence of PL variation
on LL variation (Li et al., 2008). The extension of the length
and width of compound leaves, however, leads to a high static
load and a dynamic drag force on the petiole due to the increase
in the petiole bending/torsional moments and the lamina stress
area. This necessitates a high leaf biomass allocation to petiole
and contributes to our result of a higher intercept of the PM–LM
relationship for the compound leaves than the simple leaves.

In summary, our study illustrates the importance of plant
functional tradeoffs, especially the tradeoff between adaptive
light interception and leaf support costs, between enhancing
nutrient, water transport, and the support/protection costs, and
between increasing leaf photosynthetic efficiency or transpiration
rate and leaf protection against high solar radiation or low
temperature; meanwhile, we provide evidence of a shift in
the tradeoffs determining leaf growth and variation along the
environmental gradients. In addition, different dimensions of
the petiole-lamina relationship, reflecting different aspects of
plant functional tradeoffs, should be considered together in
examining the regional distribution and local adaptation of
perennial plant species.
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