
fpls-12-749533 November 12, 2021 Time: 14:43 # 1

ORIGINAL RESEARCH
published: 18 November 2021

doi: 10.3389/fpls.2021.749533

Edited by:
Rafael Tassinari Resende,

Universidade Federal de Goiás, Brazil

Reviewed by:
Jose Padua,

Universidade Federal de Lavras, Brazil
Marcio Lisboa Guedes,

RIDESA - UFG, Brazil
Éder David Borges Da Silva,

State University of Midwest Paraná,
Brazil

*Correspondence:
Danilo Eduardo Cursi

danilocursi@gmail.com

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 29 July 2021
Accepted: 26 October 2021

Published: 18 November 2021

Citation:
Cursi DE, Gazaffi R, Hoffmann HP,

Brasco TL, do Amaral LR and
Dourado Neto D (2021) Novel Tools

for Adjusting Spatial Variability
in the Early Sugarcane Breeding

Stage. Front. Plant Sci. 12:749533.
doi: 10.3389/fpls.2021.749533

Novel Tools for Adjusting Spatial
Variability in the Early Sugarcane
Breeding Stage
Danilo Eduardo Cursi1,2* , Rodrigo Gazaffi2,3, Hermann Paulo Hoffmann2,3,
Thiago Luis Brasco4, Lucas Rios do Amaral4 and Durval Dourado Neto1

1 Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, Brazil, 2 Sugarcane Breeding
Program of RIDESA/UFSCar, Araras, Brazil, 3 Department of Biotechnology, Vegetal and Animal Production, Federal
University of São Carlos, Araras, Brazil, 4 School of Agricultural Engineering, University of Campinas (FEAGRI/UNICAMP),
Campinas, Brazil

The detection of spatial variability in field trials has great potential for accelerating plant
breeding progress due to the possibility of better controlling non-genetic variation.
Therefore, we aimed to evaluate a digital soil mapping approach and a high-density
soil sampling procedure for identifying and adjusting spatial dependence in the early
sugarcane breeding stage. Two experiments were conducted in regions with different
soil classifications. High-density sampling of soil physical and chemical properties was
performed in a regular grid to investigate the structure of spatial variability. Soil apparent
electrical conductivity (ECa) was measured in both experimental areas with an EM38-
MK2 R© sensor. In addition, principal component analysis (PCA) was employed to reduce
the dimensionality of the physical and chemical soil data sets. After conducting the PCA
and obtaining different thematic maps, we determined each experimental plot’s exact
position within the field. Tons of cane per hectare (TCH) data for each experiment were
obtained and analyzed using mixed linear models. When environmental covariates were
considered, a previous forward model selection step was applied to incorporate the
variables. The PCA based on high-density soil sampling data captured part of the total
variability in the data for Experimental Area 1 and was suggested to be an efficient index
to be incorporated as a covariate in the statistical model, reducing the experimental
error (residual variation coefficient, CVe). When incorporated into the different statistical
models, the ECa information increased the selection accuracy of the experimental
genotypes. Therefore, we demonstrate that the genetic parameter increased when both
approaches (spatial analysis and environmental covariates) were employed.

Keywords: proximal sensing, spatial variability, quantitative genetics, geostatistics, envirotyping, Saccharum
officinarum L. (Poaceae)

INTRODUCTION

Field experiments are essential in plant breeding programs to estimate the genetic parameters and
select the best individuals. Plant breeding pipelines incorporate new techniques, such as those
derived from genomics, that can support the identification of superior individuals due to genetic
factors (Balsalobre et al., 2017; Crossa et al., 2017, 2021; Barreto et al., 2019; Yadav et al., 2020).
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However, controlling for environmental factors (non-
genetic variation) can improve the selection accuracy in
field experiments, reducing the experimental error with
increasing genetic gain (Crossa et al., 2021; Hoarau et al., 2021;
Resende et al., 2021).

Despite advances in phenotyping, genotyping remains
superior. The lack of high-throughput data with accessible
prices is one of the main reasons that phenotyping routinely
impedes acquiring these kinds of data. Additionally, other factors
make environmental detailing difficult; for example, Xu (2016)
explained that the major environmental conditions are dynamic
and can change throughout the crop cycle, and when data are
acquired, they are usually considered at the experimental station
level and not the plot level (Xu, 2016).

Although the plant breeding techniques that are currently
employed are effective, in traditional breeding methods, field
experiments are essential for selecting and recommending
improved cultivars. High experimental precision is desirable in
these experiments and can be obtained with statistical techniques
to reduce possible natural variations within experimental fields
(Gilmour et al., 1997; Hoarau et al., 2021). When a non-
genetic source of variation is modeled, and consequently, isolated
from either genetic or residual variations, the accuracy of the
model increases, and the comparison between two genotypes is
more effective. However, it is often difficult to determine the
most appropriate location of the experimental blocks within an
experiment when the natural variation in the location is unknown
or difficult to measure. This phenomenon is a particular issue in
sugarcane breeding programs, wherein large experimental areas
(usually more extensive than five hectares) are often needed to
assess the performance of hundreds of genotypes. This issue
is especially critical in the early stages, in which there are
a high number of individuals and restrictions on vegetative
material, which makes the use of several basic principles of
experimentation, such as repetition, difficult (Cursi et al., 2021).

According to Wei et al. (2015), the assumption of the
homogeneity of the location within a repetition or block may
not always be valid. This violation can cause inefficient selection
within breeding programs, and therefore, reduce genetic gain.
In this context, techniques that account for the environmental
effects in detail are desired to rationalize the use of inputs and
reduce the experimental error in both plot-scale experimentation
and field-scale experimentation.

According to Adamchuk et al. (2004), the need for spatial
characterizations of both plant and soil factors has led to the
emergence of a series of approaches that consider both the use
of a high-density soil sampling procedure to better model the
effects of spatial variability and the use of proximal field sensing
methods for the indirect measurement of soil properties based
on optical, electromagnetic, electrochemical, mechanical, airflow
and acoustic systems. This ability to identify variations in the field
would be highly useful in cultivar selection experiments since the
differences identified by the different tools can be employed as an
adjustment method while analyzing the genetic potential of each
genotype under experimentation.

The objective of this study was to evaluate the efficiency
of a digital soil mapping approach and a high-density

soil sampling procedure to improve selection in the early
sugarcane breeding stage.

MATERIALS AND METHODS

Experimental Areas
The experimental areas considered in this study belong to the
Sugarcane Breeding Program of the Federal University of São
Carlos (UFSCar), one of the ten federal university members
of the Interuniversity Network for the Development of the
Sugarcane Industry in Brazil (RIDESA). Here, we considered
two experiments, named Experimental Areas 1 and 2 (EA1
and EA2, respectively), corresponding to the first breeding
stage, each located in strategic regions of the state of São
Paulo, as detailed here. EA1 represents a traditional cultivation
region with high soil fertility for sugarcane cultivation, while
EA2 represents a region of crop expansion with low soil
fertility. Other environmental conditions are available from the
RIDESA/UFSCar coverage area, but they are usually considered
only in the final assessment trials where a reduced number of
genotypes are available. This allows us to account for genotype×
environment (G× E) interactions; i.e., the genotypes are tested in
multienvironmental trials (MET) across multiple crop-years and
seasons. Before the experiments were planted, a high density of
soil sampling was performed to determine the effect of the spatial
variability. Fertilization and cultural treatments were carried out
as recommended for sugarcane.

Experimental Area 1
The first experimental area (6.5 ha) is located at the Center for
Agricultural Sciences (CCA) at UFSCar, in the city of Araras, state
of São Paulo (22◦21′25′′ S 47◦23′03′′ W, 650 m). According to
the Köppen classification, the climate is characterized as the Cwa
mesothermal type, with hot, humid summers and dry winters, an
average annual precipitation of 1,300 mm and an average annual
temperature of 21.1◦C. According to Yoshida and Stolf (2016),
the predominant soil in this experimental area is dystrophic red
latosol, moderate A, with a clayey texture.

Experimental Area 2
The second experimental area (9.7 ha) is located at the
Experimental Station of Valparaíso in the northwestern São
Paulo state (21◦13′20′′ S 50◦52′00′′ W, 460 m). According to the
Köppen classification, the region has a tropical climate with a dry
season classification (Aw), megathermic, with an average annual
precipitation of 1,168 mm and an average annual temperature of
21.9◦C. In contrast, this station has predominantly sandy soils,
classified as red-yellow podzolic (Dias et al., 1999).

Experimental Design
In both areas, the experiments were implemented considering the
family structure, which is widely adopted by different sugarcane
breeding programs worldwide (Jackson et al., 1995; Barbosa
et al., 2004; Zhou et al., 2013; Cursi et al., 2020). Briefly, this
structure consists of groups of related individuals from the same
crossing (family) who share close genetic information in the
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same plot, i.e., families are our treatments during data analysis.
A possible statistical design is an incomplete block design with
replications. In this study, the experimental unit consisted of
two rows with a length of 27 m, a spacing of 1.4 m between
rows, 54 seedlings per row (spaced at 0.5 m), and a total plot
area of 75.6 m2. The trial was planned for two replications for
each family, but some unbalanced results could be verified. In
general, EA1 and EA2 contained 443 families and 432 families,
where most of them (418) were common for both places.
These families were generated in 2017 at the Flowering and
Crossing Station of Serra do Ouro in Muricí-AL (9◦14′36′′ S
35◦50′16′′ W, 450–500 m) from the combination of elite parents
and, therefore, frequently used by the breeding programs of
RIDESA. In total, 63% of the families were obtained from half-
sib crosses, and the other 37%, from full-sib crosses. In each
experimental block, two commercial varieties (RB855453 and
RB867515) were considered as controls. Both experiments were
planted in May 2018.

Soil Sampling Scheme
Before the implementation of the experiments, both areas were
georeferenced. Soil sampling was carried out mainly in a regular
grid, where samples were collected at equally spaced points and
homogeneously distributed throughout the experimental region.

In EA1, 56 points (8.6 samples/ha) were sampled at depths of
0–20 cm. Each sample was composed of six subsamples collected
from an average radius of 3 to 5 m around the central point
(Supplementary Figure 1A). The same procedures occurred for
EA2; however, since EA2 was larger than EA1, 68 sample points
(7 samples/ha) were collected (Supplementary Figure 1B).

The soil samples were sent to the soil laboratory of
the Department of Natural Resources and Environmental
Protection at UFSCar for analysis and determination of chemical
(macronutrients) and physical attributes of the soil.

Apparent Electrical Conductivity
Mapping
Thirty days after the experiment was planted, apparent electrical
conductivity (ECa) mapping was performed by using the EM38-
MK2 R© sensor (Geonics, Mississauga, Ontario, Canada), which
operates with the principle of electromagnetic induction (EMI).
In both experimental areas, the sensor, which was connected
to a GPS receiver [type L1 (Trimble)], was used to record the
geographic coordinates, and a data collector (Juniper Archer
Field PC) was used to store information. Additionally, no vehicle
was utilized to transport the sensor in either experimental area,
i.e., it was manually operated. Readings were collected in all the
interrow lines between the crops.

According to the manufacturer’s information, the EM38-
MK2 R© equipment simultaneously provides ECa measurements
for 0.75 and 0.375 m in the horizontal dipole orientation.
This depth reading was considered for use based on Jung
et al. (2005), wherein it was demonstrated that it provides the
best relationship between the ECa and the soil properties in
layers to 30 cm, which is the depth that was contemplated
through soil sampling.

Data Processing and Analysis
The data were subjected to statistical treatments associated with
the use of graphical tools, i.e., histograms and boxplots, to assess
the shape and dispersion of the data set.

To reduce or eliminate overlap and to select the most
representative forms of data from linear combinations of the
variables from the soil analysis, the dimensionality of the data
was reduced through principal component analysis (PCA) using
R software (R Core Team, 2020). The variables were standardized
for mean zero and unity variance. Here, we considered only the
first two components since a single biplot could be obtained to
summarize the results.

The package geoR version 1.8-1 (Ribeiro and Diggle, 2001)
was selected for the geostatistical modeling of the principal
components. A theoretical semivariogram was modeled by
restricted maximum likelihood, or REML (Kerry and Oliver,
2007), and the tested models were spherical, exponential, and
Gaussian. The model’s selection was based on the root mean
square error (RMSE), coefficient of determination (R2), and mean
squared deviation rate (MSDR) via cross-validation. Inferences
about spatial dependence were based on the classification
proposed by Seidel and de Oliveira (2016). This classification was
considered to ensure an understanding of the degree of spatial
dependence of the different principal components and to identify
the intensity of the variability present in the experimental areas.

In this study, we utilized the inverse distance weighting
(IDW) statistical interpolator (Shepard, 1968) since this type of
interpolation is suitable when dealing with a high-density data
set. After obtaining thematic maps from the information of the
different principal components, the position and exact location
of each experimental plot were determined (Supplementary
Figure 2). After the plots on the thematic maps were overlaid, the
values of each pixel (interpolation over 0.5 m× 0.5 m pixels) were
extracted within each experimental plot, and after undergoing
descriptive statistical analysis, the average value was considered
and applied as a covariate in the genetic-statistical model, as
detailed in equations 1.2 and 1.4.

Regarding the ECa sensor, due to the high density of data
collected, all the raw data in both experimental areas were
considered and directly plotted on the segmented plots; therefore,
no interpolation procedure was required. Afterward, the average
ECa of the soil was calculated for all the points obtained within
each experimental plot. Each plot-specific mean ECa value was
considered and applied as a covariate in the genetic-statistical
model, as detailed in equations 1.2 and 1.4.

Experimental Evaluation and Adjustment
of Genetic-Statistical Models
Both experiments were previously evaluated by following the
same criteria routinely adopted in the early breeding stages of
RIDESA/UFSCar; i.e., each family was measured for cane yield
(tons of cane per hectare, TCH) when considering the plant
cane stage after 12 months in May 2019. The TCH was obtained
through mechanized harvesting and total plot weighing (family)
with the support mobile truck-mounted weighing equipment.
The estimates were calculated using the following equation:
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TCH = (TW × 10)/PS, where TW is the total weight of the plot
(in kg) and PS is the total plot size in m2, i.e., 75.6 m2.

We used the linear mixed model approach where TCH was
the response variable, and four different statistical models were
assumed (from 1.1 to 1.4):

yij = µ+ Fi + bj + eij, where eij ∼ N(0, σ2) (1.1)

yij = µ+ Fi + bj +

w∑
k=1

βkdij + eij,

where eij ∼ N
(
0, σ2) (1.2)

yij = µ+ Fi + bj + εij,

where εij ∼ N(0, AR(1)uAR(1)vσ
2) (1.3)

yij = Fi + bj +

w∑
k=1

βkdij + εij,

where εij ∼ N(0, AR(1)uAR(1)vσ
2) (1.4)

The four models have an intercept (µ), a random effect for i-th
family (Fi), a fixed effect for the j-th block (bj), and an error term.

The error term in models 1.1 and 1.2 assumes homogeneity
over all the plots and no associations between them, statistically
indicated as eij ∼ N(0, σ2). For models 1.3 and 1.4, the error
term takes the spatial dependence over plots, i.e., the first-
order autoregressive structure for rows and columns, or εij ∼

N(0, AR(1)uAR(1)vσ
2). The comparisons between the absence

vs. the presence of spatial dependence (models 1.1 vs. 1.3 and 1.2
vs. 1.4) were performed using the Akaike information criterion
(AIC) (Akaike, 1974) and the Bayesian information criteria (BIC)
(Schwarz, 1978).

Models 1.2 and 1.4 included the environmental information
(
∑w

k=1 βkdij) captured using either soil sample information or
ECa values, where βk is the effect of the k-th environmental
covariate, and dij is the covariate data for the plot containing the
i-th family on the j-th block. The covariates inclusion was based
on the forward selection approach (Kutner et al., 2004), i.e., (i)
each variable was independently tested in the statistical model
using the F-test; (ii) the covariates were ordered according to the
F-test; (iii) if the highest was significant under 5%, the covariate
was added to the model and the process was repeated to include
the next one; otherwise, the process was stopped.

The residual variation coefficient (CVe%) was computed as
the proportion of the residual error over the experimental mean
for the TCH. The broad-sense heritability (H2) and the accuracy
of selection (AC) were calculated according to the following
equations:

H2
=

 σ2
g

σ2
g +

σ2
e
R


AC =

√
H2

where H2is the broad-sense heritability at the family mean level;
σ2

g is the variance in genetic effects between families; σ2
e is the

variance in residual effects (environmental); R is the number
of repetitions for families; and AC is the accuracy of selection
between families.

Before applying mixed models for data analysis, we verified the
spatial distribution pattern of the raw data for each plot/family.
We selected the R spatstat package version 1.63-3 (Baddeley et al.,
2015), which has exploratory data analysis, model adjustment and
simulation functionalities.

To perform the statistical analyses, GenStat software (Payne
et al., 2011) was used to predict the genotypic values of the
treatments (families) considering the different models, and R
software (R Core Team, 2020) was selected for the geostatistics
and graphical analyses.

RESULTS

Exploratory Analysis of Data From EA1
PCA was performed for the 17 physical and chemical variables
of the soil. The first two components captured 56.4% of the
data variability (Supplementary Figure 3A). The first principal
component (PC1) was mainly explained by variables related to
soil acidity and base saturation in relation to the cation exchange
capacity (CEC), i.e., base saturation, calcium, magnesium,
percentage base saturation, percentage aluminum saturation,
aluminum, and potential acidity; the only exception was the clay
content (Supplementary Figure 3B). The second component
(PC2) included a more diverse group of variables, such as pH,
phosphorus, silt and the contents of different fractions of sand
(total, coarse, and fine sand). The geostatistical analysis on the
two principal components showed that, for both fields, PC1
present weak spatial dependence, while PC2 showed strong
spatial dependence (Seidel and de Oliveira, 2016; Table 1). This
might be explained by the main variables of each PC: most of the
variables of PC1 are related to soil chemical properties (acidity),
which tend to be more variable within the fields; in contrast, most
of the variables of PC2 are related to soil texture (silt and sand
contents), which often shows higher spatial dependence.

According to the map obtained by applying the IDW
interpolation method (Figure 1), different variability patterns
were observed for PC1 (Figure 1A). Negative values tended
to represent regions where some parameters of PC1 had high
positive expression, such as on the south side of the experiment.
In this case, the area was most likely to have high levels of
base saturation, calcium, magnesium, percentage base saturation,
percentage aluminum saturation, aluminum, and potential
acidity. Similar results were obtained when considering PC2
(Figure 1B), which was most associated with pH, phosphorus, silt
and the contents of different fractions of sand. Each plot’s means
for PC1 and PC2 values were obtained before proceeding with the
subsequent analyses.

For the soil ECa, high-density data were obtained (11,722
reading points), which eliminated the need for interpolation. We
used the mean value of ECa at the two depths (0.375 and 0.75
m) in each plot for the analyses (Figures 2A,B). Moreover, it is
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TABLE 1 | Parameters of the theoretical models adjusted to the experimental variograms of the data set at a depth of 0–20 cm, Experimental Area 1 (EA1) and 2 (EA2).

PC Model Nugget effect Sill (C1) Range RMSE R2 MSDR SDI (%) SDI Clas.

EA1 PC1 gau 0.0000 7.7255 32.2019 1.9733 0.4305 0.9801 8.4280 Weak

PC2 sph 1.3378 1.1662 193.0948 1.3304 0.3131 0.9923 17.5121 Strong

EA2 PC1 exp 0.0000 4.5726 6.6577 2.1537 0.5986 0.9999 1.0024 Weak

PC2 exp 1.4913 182.9979 19881.5906 1.5167 0.2075 1.0602 2969.3416 Strong

PC, principal component; PC1, principal component 1; PC2, principal component 2; Exp model, exponential; Sph model, spherical; Gau model, Gaussian; RMSE, root
mean square error; R2, coefficient of determination; MSDR, mean square deviation coefficient; SDI, spatial dependence index (Seidel and de Oliveira, 2014); and SDI
Class, classification of spatial dependence (Seidel and de Oliveira, 2016).

FIGURE 1 | Thematic map generated by inverse distance weighting (IDW) and overlap of the experimental plots on the interpolated map and the average values of
the points of interest for principal component 1 – PC1 (A) and principal component 2 – PC2 (B), Experimental Area 1.

possible to note different patterns of variability, which shows that
the soil is not uniform throughout the fields.

The exploratory analysis of the raw TCH data from EA1
indicated variations in the TCH values for the different
experimental plots (families) throughout the experiment
(Figure 3A). The highest yields are shown in dark blue
(maximum = 160 tons/ha), and the lowest yields are indicated
in red (minimum = 0 tons/ha). Only three experimental plots
showed null results due to data loss (dark red). Figure 3B details
the spatial patterns; for example, the yellowish regions located on
the south side indicated higher productivity, whereas the bluish
concentrated areas on the north side showed lower productivity,
thus indicating a spatial variability tendency.

Considering the inclusion of environmental covariates (in
models 1.2 and 1.4) in the genetic-statistical models, only PC1
was included using forward selection because, in the first round,
it presented the highest significance (p = 0.011) (Supplementary
Table 1). In the second round, no variable was significant
(Supplementary Table 2).

When considering the four models, some insights can be
highlighted. First, the models that took into account the

spatial dependence between rows and columns (1.3 and 1.4)
allowed better results than the models that considered only a
homogeneous variance over plots (1.1 and 1.2). For example,
models 1.3 and 1.4 showed the highest H2 (0.60 and 0.62,
respectively), the highest AC (0.77 and 0.79, respectively),
the lowest CVe% (12.44 for model 1.3; 12.11 for model 1.4)
(Table 2), and the lowest values of the AIC (4817.24 for
model 1.3; 4810.63 for model 1.4) and BIC (4838.76 for
model 1.3; 4822.14 for model 1.4) (Supplementary Table 3).
Second, the inclusion of environmental covariates was similar
for both models (1.2 and 1.4), i.e., the environmental effects
(CVe%) were slightly reduced (13.40 for model 1.2; 12.11 for
model 1.4). When considering the four models, the complete
model (1.4) exhibited the best structure due to its capacity
to model the H2 environmental effects and increase the AC
estimates (Table 2). When considering the different VCOV
structures for EA1, the lowest values of the AIC and BIC
(Akaike, 1974; Schwarz, 1978) were obtained for model 1.4
(Supplementary Table 3). Therefore, this model is the most
recommended model for predicting the genotypic values of the
study population.
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FIGURE 2 | Apparent electrical conductivity (ECa) map and overlap of the experimental plots on the ECa map with 11,722 reading points and the average values of
the points of interest in the 0.375 m (A) and 0.75 m (B) layers, Experimental Area 1.

FIGURE 3 | (A) Values of the raw data of tons of cane per hectare (TCH, tons/ha) for each experimental plot (family). (B) Visualization of the spatial pattern of the
TCH values, Experimental Area 1.

TABLE 2 | Estimates of the variance components (REML) considering the different statistical models, Experimental Area 1.

Model TCH Mean Ve Vg Vf CVe (%) CVg (%) CVf (%) H2 AC

1.1 119.53 264.20 125.30 389.50 13.60 9.40 16.50 0.49 0.70

1.2 119.65 256.60 132.50 289.10 13.40 9.62 14.21 0.51 0.71

1.3 120.20 223.69 165.50 389.19 12.44 10.70 16.41 0.60 0.77

1.4 120.12 211.60 175.30 386.90 12.11 11.02 16.36 0.62 0.79

1.1: identity (ID); 1.2: identity including the significant covariate PC1 (ID + PC1); 1.3: first-order autoregressive structure (AR1 × AR1); and 1.4: first-order autoregressive
structure including the significant covariate PC1 (AR1 × AR1 + PC1). The main characteristic considered was tons of cane per hectare (TCH), Experimental Area 1.
Ve, environmental variance; Vg, genetic variance; Vf, phenotypic variance; CVe (%), coefficient of environmental variation; CVg (%), coefficient of total genetic variation;
CVf (%), coefficient of phenotypic variation;H2, broad-sense heritability at the average family level; and AC, accuracy of selection.

Exploratory Analysis of Data From EA2
The PCA performed with the 17 physical and chemical variables
of the soil resulted in 44.1% of the variation being explained by
the two first principal components (Supplementary Figure 4A).
PC1 was essentially defined by the high positive values of

aluminum saturation, aluminum, and clay variables, in contrast
to the high negative values for the base saturation, calcium,
percentage of base saturation, magnesium, pH, silt and cation
exchange capacity variables. PC2 was mainly explained by
the high positive values of the fine sand, percentage of base
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saturation, organic matter and pH variables, in contrast to
the high negative values of the coarse sand, potential acidity
and capacity to exchange cation variables (Supplementary
Figure 4B). In contrast to what was observed in EA1, in this
field, there was no clear division of the types of soil variables
between PCs 1 and 2.

For EA2, the theoretical model of the semivariogram with
the best fit to the data set was exponential for both PCs
(Table 1). As observed for EA1, PC1 showed weak spatial
dependence and PC2 showed strong spatial dependence. These
results show that PC1 tends to present the soil variability in
short-range distances, while PC2 often represents the long-range
distance variability.

According to the map obtained by applying the IDW
interpolation method (Figure 4), different variability patterns
were observed for PC1 and PC2 (Figures 4A,B); i.e., the
variability patterns are more likely to be associated with the
previously cited variables.

For the soil ECa, 16,617 reading points were obtained within
EA2 at depths of both 0.375 and 0.75 m (Figure 5). According to
the data obtained for both depths, different patterns of variability
were observed (Figures 5A,B).

The exploratory analysis suggested the presence of variations
in the TCH throughout the experimental area (Figure 6A);
the highest yields are indicated by the dark blue color
(maximum = 350 tons/ha), and the smallest yields are indicated
by the reddish color (minimum = 50 tons/ha). Sugarcane
presented a higher yield potential in this field than in EA1. In
this experiment, there were no missing data. Figure 6B details
the spatial patterns.

When considering forward variable selection for genetic
modeling, only the covariate ECa at 0.375 m (ECa05)
was included in models 1.2 and 1.4, because in the first
round, it presented a significance level below 0.05 (0.001
and 0.002, respectively); the other variables showed non-
significant Pearson’s chi-square values (Supplementary Table 4).
In the second round, the ECa1 variable became explanatory
for both models, presenting chi-square values of 0.031 and
0.011 (Supplementary Table 5); the other variables were not
explanatory, with values higher than 0.05.

The estimates of the variance components and genetic
parameters of models 1.1, 1.2, 1.3, and 1.4 are shown in Table 3.
For all models, the CVe presented values between 10 and
22%. A significant decrease was obtained when model 1.3 was
considered. In addition, the inclusion of both covariates in
this model (model 1.4) allowed for an expressive reduction in
this parameter (CVe = 10.66%). For the total genetic variation
coefficient (CVg), all models showed results above 10% for
TCH. Nevertheless, the significant increase in this parameter
was highlighted when models 1.3 and 1.4 were considered
(Table 3). The broad-sense heritability increased for TCH when
models 1.3 and 1.4 were considered (0.72 and 0.76, respectively).
For the latter model, the highest accuracy of the selection
value (AC = 0.87) was also observed (Table 3). Considering
the different VCOV structures, with or without environmental
variables, the lowest values obtained for the AIC and BIC were
estimated for model 1.4 (Supplementary Table 3). Therefore, this

model is the recommended model for predicting the genotypic
values of the study population.

DISCUSSION

Inferring genotypic values through phenotyping during the
initial stages of plant breeding is challenging due to the high
presence of non-genetic (or environmental) variations. The
environmental variance can be split into micro and macro
conditions. The microenvironment, or the residual, can be
controlled by experimental design and statistical methodologies.
For example, linear mixed models increase the analysis precision
due to the flexibility in modeling the field trial source of
variations (Cursi et al., 2020, 2021; Hoarau et al., 2021).
Additionally, residuals can be controlled by collecting data
from the field (electroconductivity, physical and chemical
variables) to include in the statistical model. Here, when
the modeled microenvironmental variation was considered,
the genetic parameters were best estimated, i.e., the highest
heritability, CVg%, and lowest CVe%. We stress that the
presented genetic parameters are strong indicators to perform
inferences about a given trial.

On the other hand, macroenvironmental conditions are
usually examined during the final stages of a breeding program,
where genotype by environmental interaction is detailed,
to identify the best genotypes for different environmental
conditions. However, in the early stages, this approach is
impractical due to the lack of material for each genotype.
Therefore, RIDESA/UFSCar divides the sugarcane genotypes
into two contrasting areas, where EA1 represents a favorable
environment and EA2 represents an adverse environment. Other
environmental conditions can be obtained, but they usually
rely on between them. Considering this contrast, we note
that controlling residual variance is better suited for adverse
experimental areas.

The data acquired in this work allowed some insights. The
usage of PCA for the composition of a fertility index based
on linear combinations of soil variables (principal components)
collected at a high sample density for the investigation of the
possible structure of spatial variability proved to be efficient for
the EA1. Similar results were reported by Silva et al. (2010), where
PCA provided interpretable components and correlated with
different physical and chemical attributes of the soil. According
to these same authors, this type of analysis, in association with
geostatistics, enabled an assessment of the variability of different
soil components.

In this study, although PC1 had a weak spatial dependence
for EA1, according to the classification proposed by Seidel and
de Oliveira (2016), it was the variable most associated with TCH
when incorporated into the genetic-statistical model. The four
models showed CVe values between 10 and 20%, classified as
medium magnitude (Couto et al., 2013). A high CVe magnitude
value is not desired because it is indicative of a low degree of
experimental precision and may be associated with considerable
environmental variability, i.e., non-controlled variation. CVe
presented the lowest values when the experimental error term
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FIGURE 4 | Thematic map generated by inverse distance weighting (IDW) and overlap of the experimental plots on the interpolated map and the average values of
the points of interest for principal component 1 – PC1 (A) and principal component 2 – PC2 (B), Experimental Area 2.

FIGURE 5 | Apparent electrical conductivity (ECa) map and overlap of the experimental plots on the ECa map with 16,617 reading points and the average values of
the points of interest in the 0.375 m (A) and 0.75 m (B) layers, Experimental Area 2.

FIGURE 6 | (A) Values of the raw data of tons of cane per hectare (TCH, tons/ha) for each experimental plot (family). (B) Visualization of the spatial pattern of the
TCH values, Experimental Area 2.

was modeled for the spatial dependence between errors (first-
order autoregressive structure). According to Gilmour et al.
(1997), applying a spatial model in experimentation is quite
efficient and desirable, as it improves the experiment’s precision.

Slight improvement in this model was also obtained with the
inclusion of PC1 (model 1.4), allowing a better estimate of the
genotypic values of the study population since the experimental
error was reduced.
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TABLE 3 | Estimates of the variance components (REML) considering the different statistical models, Experimental Area 2.

Model TCH Mean Ve Vg Vf CVe (%) CVg (%) CVf (%) H2 AC

1.1 173.60 1379.00 371.00 1750.00 21.39 11.10 24.10 0.35 0.59

1.2 172.60 1340.00 359.00 1699.00 21.20 10.98 23.89 0.35 0.59

1.3 173.27 391.30 513.20 904.50 11.40 13.06 17.36 0.72 0.85

1.4 173.50 341.80 533.70 875.50 10.66 13.32 17.05 0.76 0.87

1.1: identity (ID); 1.2: identity, including the significant covariate ECa of the soil at 0.375 m and 0.75 m (ID + ECa05 and ECa1); 1.3: first-order autoregressive structure
(AR1 × AR1); and 1.4: first-order autoregressive structure, including the significant covariate ECa of the soil at 0.375 m and 0.75 m (AR1 × AR1 + ECa05 and ECa1).
The main characteristic considered was tons of cane per hectare (TCH), Experimental Area 2.
Ve, environmental variance; Vg, genetic variance; Vf, phenotypic variance; CVe (%), coefficient of environmental variation; CVg (%), coefficient of total genetic variation;
CVf (%), coefficient of phenotypic variation;H2, broad-sense heritability at the average family level; and AC, accuracy of selection.

In general, to evaluate the experimental quality, several
statistics should be considered beyond the CVe value, such as
the total CVg, broad-sense heritability, and AC. These statistics
are essential to effectively determine the genotypic value of the
genetic material resulting from phenotypic evaluations (Resende
and Duarte, 2007). Considering EA1, only models 1.3 and 1.4
showed CVg above 10%, indicating genetic variability in the
population for exploitation (Cursi et al., 2020). Additionally,
the models that account for the soil spatial variability pattern
(models 1.3 and 1.4) showed high magnitude values (H2 above
0.60) (Barreto et al., 2021). The inclusion of PC1 (models 1.2
vs. 1.1 and 1.4 vs. 1.3) slightly increased the value of H2,
showing the contribution of this variable in explaining the
model. Statistical modeling of residuals and the inclusion of
environmental covariates improved the heritability, indicating
that a large part of the evaluated phenotypic variation may
be attributed to the variation in the effects of the genotype,
with limited environmental confusion (Leite et al., 2006). The
AC values were also high for all the models (higher than
0.70). When PC1 was added to models 1.2 and 1.4, the AC
values also increased (Table 2). Unlike the pattern observed for
EA1, the variable that best fitted the genetic-statistical model
for EA2 was the ECa readings for both depths. This variable
showed correlations with the physical and chemical soil attributes
in both experimental areas (Supplementary Figures 3, 4).
This result suggests that ECa readings were able to capture
another type of soil variability not measured by the soil analysis
performed in this study.

James et al. (2012) used ECa measurements obtained from
the mapping of all experimental plots to characterize the salinity
pattern present in the experimental field; such characterization
allowed the separation of the area into three blocks with
different salinity patterns. Under conditions of high ECa (or
high salinity), a reduction in the yield of the genotypes under
investigation was observed in the study by James et al. (2012).
To correct the different patterns of spatial variability present
in the experimental field, these same authors employed the
separable first-order autoregressive structure (AR1 × AR1) to
include information from the ECa sensor as a covariate in
the genetic-statistical model. This strategy allowed an improved
understanding and identification of the information of interest,
reducing the estimation bias. Similar results were obtained in
this study, in which the residual variation coefficient (CVe)
showed a significant reduction when the AR1 × AR1 model

was considered (models 1.3 and 1.4). However, this reduction
was even more accentuated with the inclusion of both covariates
obtained from the ECa reading depths (0.375 and 0.75 m—
included in model 1.4). Regarding CVg, all the models showed
results above 10%. Nevertheless, the significant increase in this
parameter is highlighted when considering the AR1 ×AR1
approach (models 1.3 and 1.4) and becomes even more evident
with the inclusion of both ECa readings (model 1.4). This
finding demonstrates that the different information obtained
via ECa allows us to reduce the environmental effects and
to exploit the genetic variability present in the population
more efficiently.

As EA1 is in a more favorable production environment
for the development of sugarcane, presenting a soil with a
higher and more uniform clay content (clay content ranging
from 630 to 650 g kg−1), PC1 that included variables more
related to soil acidity and the presence of bases in relation
to the CEC helped reduce the environmental effect in genetic
modeling. In contrast, because EA2 is in a more restrictive
production environment, i.e., with sandier soil (160–180 g kg−1

of clay) showing a low water retention capacity, ECa stood
out in the genetic modeling, as sugarcane responds intensely to
variations of this nature.

For Xu (2016), novel tools (such as those presented in this
study) that aim to adjust spatial variability can be efficiently
incorporated into other areas of plant breeding, e.g., prediction
models in genomic selection and genotype x environment
interaction studies. This same author proposed the concept of
“envirotyping” as a third “typing” technology complemented by
genotyping and phenotyping. In the future, the “envirotyping”
concept will need to focus on experimental plots and individual
plants with the development of high-performance and precision
envirotyping platforms to integrate genotypic, phenotypic and
environmental information, so that a high-quality breeding
system can be established with high efficiency and accuracy
(Crossa et al., 2021).

CONCLUSION

1. The use of a high-density soil sampling procedure and
ECa data for modeling the spatial variability during the
statistical analysis was efficient and provided the best
scenario for breeding programs.
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2. Using principal components based on high-density soil
sampling data allowed us to identify a part of the
total variability in the data for EA1. Therefore, principal
components can be efficient indexes for incorporation as
covariates in genetic-statistical models because they reduce
the experimental error (CVe).

3. ECa sensors can be highly recommended to adjust the
spatial dependence present in the early stages of sugarcane
breeding programs, mainly for those in sandy soil regions,
as observed for EA2. In addition, this type of geotechnology
can be widely employed in agronomic experimentation and
the various areas of study that focus on plant breeding,
e.g., experimentation, genomic selection, and genotype x
environment interaction studies.
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