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Plants are constantly facing abiotic and biotic stresses. To continue to thrive in their 
environment, they have developed many sophisticated mechanisms to perceive these 
stresses and provide an appropriate response. There are many ways to study these stress 
signals in plant, and among them, protoplasts appear to provide a unique experimental 
system. As plant cells devoid of cell wall, protoplasts allow observations at the individual 
cell level. They also offer a prime access to the plasma membrane and an original view 
on the inside of the cell. In this regard, protoplasts are particularly useful to address 
essential biological questions regarding stress response, such as protein signaling, ion 
fluxes, ROS production, and plasma membrane dynamics. Here, the tools associated 
with protoplasts to comprehend plant stress signaling are overviewed and their potential 
to decipher plant defense mechanisms is discussed.
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INTRODUCTION

As sessile organisms, plants are exposed to myriads of potential stresses that can be  harmful 
to their development. These adverse environmental conditions include both biotic and abiotic 
stresses that increasingly threaten agricultural plant productivity at a worldwide scale. In response, 
plants have developed an array of mechanisms to survive tough environmental conditions 
such as drought, heat, cold, nutrient deficiency, pollutants, pathogens, and herbivore attacks. 
The first crucial step in plant defense is the perception of the stress so that they can respond 
in a rapid and effective manner (Couto and Zipfel, 2016). While the underlying sensing 
mechanisms of abiotic stress are not fully elucidated, mostly due to functional redundancy in 
genes encoding sensor proteins or mutant lethality (Zhu, 2016; Gong et  al., 2020), it is believed 
they are perceived by primary sensory mechanisms (Lamers et  al., 2020). Several putative 
sensors have been ascribed to abiotic stresses perception and are often linked to membrane-
associated proteins of the cells, organelles, or nucleus membrane proteins (Zhu, 2016). These 
sensors will then translate the changing environment into a signaling cascade allowing the 
plant to coordinate an appropriate response for acclimation. Similarly, plants have evolved an 
innate immune system to counteract the deleterious effects of biotic stresses (Jones and Dangl, 
2006; Saijo and Loo, 2020; Zhou and Zhang, 2020). Once the constitutive plant defenses such 
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as the cuticle, the cell wall (CW) and other physical and 
biochemical barriers are overrun, the plant plasma membrane 
(PM) is then at the frontline of stress perception. Through 
cell surface and intracellular protein receptors, the plant is 
capable of sensing multiple molecular stress factors, such as 
MAMPs (microbe-associated molecular patterns), PAMPs 
(pathogen-associated molecular patterns), and DAMPs (damage-
associated molecular patterns), thus initiating a cascade of 
signal transduction leading to a rapid and effective response 
from the plant (Cook et  al., 2015; Couto and Zipfel, 2016). 
Both biotic and abiotic stresses share some early signaling 
events such as the production of reactive oxygen species (ROS) 
by NADPH oxidases, activation of protein kinases, receptors, 
or co-receptors through phosphorylation (Kadota et  al., 2015; 
Yu et  al., 2017; Zipfel and Oldroyd, 2017; Bigeard and Hirt, 
2018), and rapid and transient change of ion fluxes (Jones 
and Dangl, 2006; Bigeard et  al., 2015; Lamers et  al., 2020). 
These fluxes can act on PM potential regulation and activation 
of Ca2+-dependent or K+-dependent enzymes (Jeworutzki et al., 
2010; Bose et  al., 2011; Demidchik, 2014; Wu et  al., 2014b; 
Zipfel and Oldroyd, 2017; Sze and Chanroj, 2018; Yoshioka 
and Moeder, 2020). Then, activation of transcription factors 
(TFs) leads to the production of stress-related hormones such 
as abscisic acid, salicylic acid, jasmonic acid, and ethylene. 
Upon pathogen attacks, positive and negative crosstalks 
(Glazebrook, 2005) between these signaling molecules trigger 
the accumulation of an array of antimicrobial compounds such 
as pathogenesis-related proteins and phytoalexins (Delaunois 
et  al., 2014).

How plants perceive and respond to these stress signals are 
essential biological questions and many of them are now 
investigated through innovative techniques that employ 
protoplasts as proxy for whole tissue, or even for whole plants. 
A protoplast refers to a spherical cell whose CW has been 
removed by digestive enzymes. The first protoplast isolations 
were developed in bacteria (Weibull, 1953) and fungi (Eddy 
and Williamson, 1957; Barbara and Bonner, 1959), before being 
transposed to plants (Cocking, 1960). They are usually obtained 
from enzymatic digestion of leaf and root tissues or even from 
cultured cells of a wide variety of species (Fowke et  al., 1983; 
Yoo et  al., 2007; Lin et  al., 2018; Sangra et  al., 2019; Zhao 
et  al., 2019; Cheng and Nakata, 2020). With transformation 
methods already developed and microscopy techniques fast 
expending, the protoplast system could ultimately be considered 
as convenient screening platform to better target future whole 
plant analyses (Li et  al., 2014). Moreover, freshly isolated 
mesophyll protoplasts are believed to retain the physiological 
properties of whole plants (Yoo et  al., 2007).

Protoplasts have already been described as a useful and 
versatile system to study plant cell reprograming during 
development (Pasternak et al., 2020) and plastid transformation 
(Yu et al., 2020). In this review, we will focus on the different 
approaches and techniques that use protoplasts to study 
plant responses to both biotic and abiotic stresses and 
particularly on transient expression assays (TEA), on the 
use of fluorescence probes and on patch-clamp assays 
(Figure  1 for an overview). We  will also enlighten and 

discuss the advantages and the limitations of protoplasts as 
a proxy for whole tissues or plants.

PROTOPLASTS AS TOOLS IN 
BIOMOLECULAR STUDIES

Protoplasts represent cell populations that are adapted for 
synchronous pharmacological and biochemical treatments and 
efficient genetic transformation (Sheen, 2001; Yoo et  al., 2007; 
Xing and Wang, 2015). As TEAs in protoplasts can provide 
results in less than 36 h (Yoo et  al., 2007), they are a useful 
system to investigate early and transient events in plants during 
stress response at the biomolecular scale. TEAs are performed 
by isolating protoplasts from plant tissues, transfecting them 
in the presence of polyethylene glycol and calcium (Yoo et  al., 
2007; Lin et  al., 2014) or through electroporation (Miao and 
Jiang, 2007) and incubating them for 2–24 h. They have been 
developed in several plant species such as Arabidopsis thaliana 
(Asai et  al., 2002; Boudsocq et  al., 2004, 2010; Bethke et  al., 
2009; Li et  al., 2019), maize (Kovtun et  al., 1998), rice (Takai 
et  al., 2007; Wang et  al., 2014; Liu et  al., 2018), barley (Saur 
et  al., 2019), wheat (Hahn et  al., 2020), strawberry (Gou et  al., 
2020), banana (Wu et  al., 2020b), and rubber tree (Zhang 
et  al., 2016). This system can be  used for high-throughput 
analysis of plant signaling pathways and regulatory mechanisms 
(Figure  1).

Functional Screening of Proteins
Plant signaling involves several large protein families which 
contain many members. For example, in Arabidopsis, mitogen-
activated protein kinase (MAPK), MAPK kinase (MAPKK), 
and MAPKK kinase families contain 20, 10, and 60 members, 
respectively (Bigeard and Hirt, 2018), calcium-dependent protein 
kinase (CDPK) family has 34 members (Boudsocq et al., 2010), 
and TFs families such as MYB TFs, WRKY TFs, and basic 
leucine zipper transcription TFs comprise more than 176, 75, 
and 78 members, respectively (Dubos et al., 2010; Dröge-Laser 
et  al., 2018; Wani et  al., 2021). However, depending on the 
type of stress, the proteins involved in the signaling cascade 
may differ and a better understanding of plant defense 
mechanisms is therefore linked to the identification of its 
signaling components.

By avoiding time-consuming whole plant transformation, 
protoplasts offer a useful system to perform functional genomic 
screen among a group of proteins and determine which of 
them are able to activate defense genes. The screening is 
performed with reporter gene assay comprising a number of 
TEAs equal to the number of proteins or combination of 
proteins tested. In each TEA, protoplasts are transfected with 
2 or 3 vectors simultaneously. One vector expresses the gene 
coding a protein of interest and has therefore a different 
sequence in each TEA. Then, a reporter gene often associated 
with a control gene, both constant between TEAs, can 
be  expressed either in one (Hellens et  al., 2005; Liu et  al., 
2018) or two different vectors (Asai et  al., 2002; 
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Boudsocq et  al., 2010). The reporter gene is under a stress-
inducible promoter that allows the detection of defense gene 
induction, while the control gene is under a constitutive promoter 
and allows the normalization of the reporter gene activity by 
taking into account experimental variation such as differences 
in cell number, in cell viability, and transformation efficiency 
(Kovtun et  al., 1998). The firefly luciferase or the GFP gene 
is commonly used as reporter gene, while the ß-glucuronidase 
(GUS) or the Renilla luciferase gene is often used as control 
gene (Kovtun et  al., 1998; Sheen, 2001; Asai et  al., 2002; Yoo 
et  al., 2007; Wehner et  al., 2011; Thévenin et  al., 2012; Liu 
et  al., 2018). The choice of the stress-inducible promoter 
represents the main limitation of the reporter gene assay as 
it has to be  determined either based on the literature, or by 
detecting gene activation with PCR (Asai et al., 2002; Boudsocq 
et  al., 2010; Chen et  al., 2010). Finally, using the microtiter 
plate-based protoplast transactivation (PTA) system established 
by Wehner et  al. (2011), high-throughput functional genomic 
screening can be performed to rapidly analyze up to 96 proteins.

Using this approach, screening of protein kinase families, 
such as MAPK and CDPK, and TFs has been performed to 
identify the one(s) involved in plant response to a specific 
biotic (Asai et  al., 2002; Boudsocq et  al., 2010; Sheikh et  al., 
2016) or abiotic stress (Chen et  al., 2010; Wehner et  al., 2011). 
When combined with RT-qPCR analysis, TEAs in protoplasts 
can also reveal potential synergic or antagonist effect between 
signaling pathways of signaling proteins (Asai et  al., 2002; 
Boudsocq et al., 2010). Moreover, the use of vectors expressing 
structural variants of the protein of interest could evidence 
structural motifs compulsory for the signaling function of 
proteins (Mueller et al., 2012; Pecher et al., 2014). Such variants 
have provided clues on how allele selection plays a role in 
climate adaptation of some subspecies (Liu et al., 2018). Reporter 
gene assays in Arabidopsis protoplasts have also demonstrated 
the complex regulation between catalytic and regulatory subunit 

of sucrose non-fermenting1-related Kinase1 (SnRK1), involved 
in metabolic stress response and development (Ramon 
et  al., 2019).

Protein Location and Trafficking
Besides the functional role of proteins in gene regulation, TEA 
can also provide information on their subcellular locations 
and dynamics (i.e., their mobility) into the cell when protoplasts 
are expressing both the studied protein fused with a fluorescent 
one, such as YFP, GFP, CFP, or mCherry, and a fluorescent 
marker specific of a cellular compartment. To that end, several 
markers have been developed to mark specifically plant organelles 
(Nelson et  al., 2007; Zhang et  al., 2021), and their diversity 
for the different organelles has been recently reviewed (Zhu 
et  al., 2020). These information may help to elucidate protein 
function (Nelson et  al., 2007), since TFs are expected to 
be  found in the nucleus (Asai et  al., 2002; Sheikh et  al., 2016; 
Moon et  al., 2019), protein receptors in the PM (Li et  al., 
2017; Liu et  al., 2017; Pham et  al., 2020), and proteins with 
a more versatile function can be  found both in the cytosol 
and in cellular organelles (Boudsocq et  al., 2010). Fluorescent-
tagged proteins in protoplasts have also been used to investigate 
the influence of the CW on PM protein dynamics (Daněk 
et  al., 2020), the importance of membrane lipid composition 
in protein cell location (Nagano et  al., 2016), and protein 
trafficking during signaling (Underwood et  al., 2017; Menzel 
et  al., 2019). TEA in protoplasts can also bring additional 
information on protein trafficking with secretion assays to 
identify and study vacuolar sorting receptor (daSilva et  al., 
2005; Shen et  al., 2013) or signal peptide (Denecke et  al., 
1990) involved in the regulation of secretory pathways in plant.

Detection of Protein–Protein Interaction
The study of protein–protein interaction (PPI) through TEAs 
in protoplasts can also bring crucial information to decipher 

FIGURE 1 | Overview of techniques associated with protoplasts to study plant stress perception and response and the information they provide. The biomolecular-
related assays are in purple, fluorescence probes-associated techniques are in orange – see text for further information on the probes, and electrophysiological 
approaches are in blue.
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kinase signaling in plant cells (Pecher et al., 2014; Cheng et al., 
2015; Liu et  al., 2017; Ye et  al., 2019; Li et  al., 2020; Takahashi 
et  al., 2020), the activation and interaction of TFs (Pecher 
et  al., 2014; Liu et  al., 2018; Ye et  al., 2019), or even the 
interaction between immune receptors and co-receptors (Halter 
et  al., 2014; Yeh et  al., 2015; Fliegmann et  al., 2016; Gong 
et  al., 2019; Li et  al., 2019).

The yeast two-hybrid (Y2H) is a widely used high-throughput 
method to detect putative PPI and screen a broad range of 
interactions between proteins (Pecher et  al., 2014; Wang et  al., 
2014; Liu et  al., 2017, 2018; Gong et  al., 2019; Ye et  al., 2019). 
However, the physiology of the yeast cell differs from that of 
the plant cell. To get a system more representative of plant 
cell physiology, a protoplast two-hybrid (P2H) system has been 
developed. This approach studies PPI by transferring the GAL4-
based two-hybrid system into plant protoplasts instead of yeast 
cells (Figure  2A; Ehlert et  al., 2006; Iven et  al., 2010). Hence, 
the P2H system identifies PPI between two proteins by fusing 
one of them with the binding domain (BD) and the second 
protein with the activation domain (AD) of the transcriptional 
activator Gal4. With the use of GAL4-UAS4:GUS reporter 
plasmid, the PPI is detected when a higher GUS activity is 
observed. When studying interaction between leucine zipper 
TFs, this method was able to detect some weak interactions 
not detected in Y2H system, suggesting that P2H studies may 
be more representative of in planta conditions than Y2H (Ehlert 
et  al., 2006; Xing and Wang, 2015). P2H has also been used 
to analyze PPI involved in the regulation of heat shock response 
in Arabidopsis (Hsu et  al., 2010) and in auxin signaling in 
tobacco (Böttner et  al., 2009). Furthermore, in a similar way 
as it was developed for functional genomic screening, a high-
throughput PPI screening can be performed with the combination 
of P2H and a microtiter plate-based system (Wehner et al., 2011).

Nevertheless, since both Y2H and P2H studies are performed 
in the nucleus, they are therefore possibly limited to specific 
classes of proteins such as TFs (Ehlert et  al., 2006) and 
complementary approaches using TEA in protoplasts should 
be  considered to confirm PPI in planta. These additional 
techniques comprise co-immunoprecipitation assays (co-IP; 
Figure 2B; Li et al., 2019; Ye et al., 2019), protein complementation 
assays (PCA), including bimolecular fluorescence 
complementation (BiFC; Pecher et  al., 2014; Liu et  al., 2018; 
Takahashi et  al., 2020; Yang et  al., 2020) and split luciferase 
complementation (SLC; Figure  2C; Cheng et  al., 2015; Gong 
et  al., 2019) and Förster Resonance Energy Transfer (FRET) 
experiments (Figure  2D; Halter et  al., 2014; Fliegmann 
et  al., 2016).

To study PPI with co-IP (Figure  2B), protoplasts are 
transformed with two vectors, each containing one of the 
proteins of interest fused with a different epitope, such as the 
hemagglutinin (HA) tag or the FLAG tag (Cheng et  al., 2015; 
Li et al., 2019). The protoplasts are then lysed, and the proteins 
are immunoprecipitated using one of the two epitopes. The 
resulting extract is then analyzed by western blot to detect 
the second epitope and confirm the PPI. This approach has 
been used in Arabidopsis protoplasts to demonstrate the 
association of the receptor-like kinase (RLK) BAK1 with a 

calcium channel when studying plant cell death (Yu et  al., 
2019). Still in Arabidopsis, it highlighted the negative effect of 
the RLK NIK1, involved in antiviral immunity, on bacterial 
immunity by showing its impact on the formation of the 
complex between FLS2 and its co-receptor BAK1, paramount 
in the sensing of the bacterial PAMP flagellin22 (flg22; Li 
et  al., 2019). Co-IP experiments on protoplasts also evidenced 
the importance of ubiquitination of another RLK, BIK1, for 
plant immune response regulation (Ma et al., 2020). Nevertheless, 
co-IP does not provide spatial nor temporal information on 
PPI. Besides, it is an in vitro approach and the lysis process 
may disrupt weak interaction or induce interaction between 
proteins that would never be brought together under physiological 
conditions (Struk et  al., 2019). Hence, if the PPI studied is 
transient, other in vivo approaches should be  considered such 
as PCA or FRET (Cui et al., 2019; Struk et al., 2019; Takahashi 
et  al., 2020).

In PCA (Figure  2C), one of the studied proteins is fused 
with the amino-terminal part and the other one with the 
carboxy-terminal part of a fluorescent protein, such as YFP 
or mCherry, for BiFC (Pecher et  al., 2014; Cheng et  al., 2015; 
Li et  al., 2020) or a luciferase enzyme, such as the firefly 
luciferase, for SLC (Chen et  al., 2008; Cheng et  al., 2015; 
Gong et  al., 2019). In BiFC, when the two proteins interact, 
the combination of the two parts of the fluorescent protein 
restores the fluorescence enabling the visualization and the 
spatial location of protein complexes. In SLC, the interaction 
of the two proteins restores the luciferase activity which can 
be  detected in the presence of luciferin by the measurement 
of chemiluminescence. Thanks to PCA on protoplasts, 
information on in vivo PPI can be obtained, but both techniques 
have their specificities. With BiFC, the location of both long-
standing and transient PPI can be  observed, while the high 
background signal observed with SLC prevents such observation 
(Fujikawa and Kato, 2007; Cui et  al., 2019). In Arabidopsis, 
BiFC has shown the PM location of the interaction between 
proteins involved in stress response. For instance, it evidenced 
the interplay between the ATP-recognition receptor DORN1 
and the NADPH oxidase RBOHD, involved in ROS production 
and stomatal closure (Chen et  al., 2017). It also showed the 
nitrate-sensing mechanism where transceptor NRT1.1, that acts 
as nitrate transporter and sensor, interacts with the calcium 
channel CNGC15 (Wang et al., 2021). However, the irreversible 
recombination of fluorescent proteins used in BiFC limits its 
ability to study PPI dynamics and SLC offers a better alternative 
in that regard (Kerppola, 2006; Kudla and Bock, 2016; Cui 
et  al., 2019; Struk et  al., 2019). Indeed, the reversibility of 
luciferase recombination allows detection of both the association 
and dissociation of two proteins in less than 1 min following 
treatment (Li et  al., 2011; Wang et  al., 2020b).

Another way to study PPI dynamics and location in vivo 
with protoplasts is the use of FRET. Here, two putative 
interacting partners are fused with a fluorophore (Halter et al., 
2014; Fliegmann et  al., 2016; Rios et  al., 2017; Long et  al., 
2018). One partner is fused with a donor fluorophore, while 
an acceptor fluorophore is fused to the putative interacting 
partner (Figure  2D). The donor fluorophore displays an 
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emission spectrum that overlaps with the excitation spectrum 
of the acceptor fluorophore. When the proteins interact, it 
brings the donor in close proximity to the acceptor allowing 
a transfer of energy from the first fluorophore to the second. 
This leads to a decrease in fluorescence intensity and lifetime 
of the donor concomitant with an increase in fluorescence 
intensity of the acceptor. As FRET is based on a remote 
interaction and not a physical interaction between the tags 
of the proteins of interest, this approach allows the study of 
PPI dynamics with information on protein location. It has, 
for instance, been used in Arabidopsis protoplasts to show 
the early disruption of the interaction between the ethylene 
factor ERF104 and MAPK6 following treatment with flg22 
(Bethke et  al., 2009). The implementation of FRET analysis 
first requires an optimization of the labeling condition. In 

this regard, TEAs in protoplast represent a convenient tool 
to test a large number of FRET pair combinations before 
transposing it to whole plants or tissues (Long et  al., 2018). 
Nevertheless, FRET measurements require a high accumulation 
level of the protein of interest and advanced equipment to 
detect the signal, explaining its limited use in PPI studies 
(Cui et  al., 2019; Struk et  al., 2019).

In summary, TEAs in protoplasts associated with the 
aforementioned techniques provide useful tools to study PPI 
in plant cells. Each technique has its own characteristics and 
limitations hence why a complementary use of several of them 
should be  envisaged to get a reliable and comprehensive view 
of PPI. PPI studies are, however, not restricted to protoplasts, 
and readers interested in PPI analysis in other systems may 
refer to recent reviews (Cui et  al., 2019; Struk et  al., 2019).

A

B

C D

FIGURE 2 | Schematic representation of techniques associated with protoplasts to study protein–protein interaction. (A) In the protoplast two-hybrid (P2H) system, 
the protoplasts are transformed with the GAL4-UAS4:GUS reporter plasmid and the two putative interacting partners are fused to the binding domain (BD) and the 
activation domain (AD) of the transcriptional activator Gal4. An interaction between the partners leads to the transcription of the glucuronidase (GUS) gene and to a 
higher GUS activity. (B) In co-immunoprecipitation (co-IP), the two putative interacting partners are fused to two different epitopes [e.g., hemagglutinin (HA)-tag and 
FLAG-tag]. The proteins are then extracted from protoplast lysate with a co-IP using one of the two tags (here, the HA-tag). If the proteins are interacting, both HA-
tagged and FLAG-tagged proteins are extracted which can be observed with a western blot (WB; upper box). If the proteins do not interact, only the HA-tag is 
detected in the western blot (bottom box). (C) In protein complementation assay (PCA), such as bimolecular fluorescence complementation (BiFC) or split luciferase 
complementation (SLC) assay, two fragments (the carboxy-terminal and the amino-terminal parts) of a reporter protein are fused to two putative interacting partners. 
In BiFC, the fragments come from a fluorescent protein and in SLC, from a luciferase enzyme. The interaction between partners leads to the association between 
the N- and C-ter fragments and restores fluorescence (for BiFC) or luciferase activity detected in the presence of luciferin (for SLC). (D) In Förster Resonance Energy 
Transfer (FRET), each of the two putative interacting partners is fused with one different fluorophore, either a donor or an acceptor. When the partners are 
interacting, the donor can transfer its energy of excitation to the acceptor, inducing a change in fluorescence intensity of the fluorophores and in the fluorescence 
lifetime of the donor.
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Detection of Kinase Activity and Protein 
Phosphorylation
Following the identification of PPI, one could be  interested 
in understanding its consequences, such as the activation of 
kinases or protein phosphorylation. To that end, crude or 
immunoprecipitated protein extracts are collected from lysates 
of protoplasts or plant seedlings having undergone biotic or 
abiotic stress. Compared to experiments in plant seedlings 
which require mutant generation, protoplasts transiently 
expressing the studied protein(s) provide a high-throughput 
system to perform explorations as well as hypothesis-driven 
tests as results can be  obtained in a few days (Yoo et  al., 
2007). For instance, Arabidopsis protoplasts have been used to 
study flg22-induced phosphorylation of the RLK BIK1 (Li et al., 
2019) and investigate the importance of amino acid residue 
for protein phosphorylation in PAMPs-triggered immunity 
(Menzel et  al., 2019) and in cold stress (Ye et  al., 2019). The 
assessment of kinase activation is then performed either by 
the detection of the kinase activity through the phosphorylation 
of kinase substrate or by detecting phosphorylated kinases as 
their activation is linked to their phosphorylation state.

To detect kinase substrate phosphorylation, proteins extracted 
from protoplasts are incubated with the radioactive marker 
γ[32P]ATP and a substrate, which can be  a protein, such as 
a histone of myelin basic (Asai et  al., 2002; Boudsocq et  al., 
2004, 2010; Liu et  al., 2017), a kinase, such as MAPK for 
MAPKK (Asai et  al., 2002; Wang et  al., 2014), or even a lipid 
(Menzel et  al., 2019). Once incubated, the kinase activity is 
determined by measuring the incorporation of the radioactive 
marker into the kinase substrate. To avoid the use of radioisotopes, 
an alternative method to measure the phosphorylation of kinase 
substrate has been developed using a phosphate-binding tag 
(Phos-Tag) assay (see below; Kinoshita et  al., 2006).

Finally, protein phosphorylation can be detected either with 
specific antibody or by observing mobility shift of proteins 
with SDS-PAGE (Pecher et  al., 2014; Li et  al., 2019; Yu et  al., 
2019; Ma et  al., 2020). To perform immunodetection, crude 
protein extract is analyzed by western blot with a primary 
antibody recognizing phosphorylated amino acids (Gong et al., 
2019; Li et  al., 2019) or motifs such as dual phosphorylation 
specific to active MAPKs detected with anti-pERK antibody 
(Cheng et  al., 2015; Zhang et  al., 2016; Gong et  al., 2019). 
For the mobility shift assay, Phos-Tag can be  added into the 
SDS-gel to improve the separation between non-phosphorylated 
and phosphorylated proteins (Kinoshita et al., 2006; Kinoshita-
Kikuta et al., 2007; Bekesová et al., 2015). Thanks to protoplast-
associated Phos-Tag mobility shift assay, the phosphorylation 
of kinases (Bi et  al., 2018; Menzel et  al., 2019), TFs (Ye et  al., 
2019), or other proteins (Liu et  al., 2017) involved in the 
signaling process in biotic and abiotic stress has been detected. 
Hence, while being an alternative to radioisotopes, Phos-Tag 
assays are also a suitable alternative to antibody recognizing 
phosphorylated proteins, which are costly or even not always 
commercially available, to detect protein phosphorylation and 
kinase activation (Bekesová et al., 2015; Kinoshita et al., 2015). 
Finally, to confirm that the mobility shift observed is due to 

phosphorylation, treatment with phosphatase to abrogate the 
mobility shift is often performed (Pecher et al., 2014; Liu et al., 
2017; Bi et  al., 2018; Li et  al., 2019). Additionally, TEA in 
protoplasts can also provide information on the consequence 
of phosphorylation such as the degradation of calcium channels 
(Yu et al., 2019) or TFs that regulate stress-related genes (Sheikh 
et  al., 2016; Liu et  al., 2017).

Complementarity of Biomolecular Assays 
Performed on Protoplasts and Whole Cells
As presented above, many biomolecular assays have been 
developed with protoplasts to decipher plant signaling 
mechanisms in biotic or abiotic stress conditions. All these 
different types of assays offer a useful toolbox to analyze plant 
responses and get new insights to better understand the signaling 
cascade in plants, starting from the perception by a protein 
receptor to the activation of TFs and genes, passing by the 
kinase signaling cascade.

The use of these tools is not restricted to protoplasts, and 
TEA can be  performed directly in plant tissues using particle 
bombardment or Agrobacterium infiltration (Cheng et al., 2015; 
Liu et  al., 2017, 2018; Bi et  al., 2018; Pham et  al., 2020; 
Takahashi et  al., 2020). The latter is used either to transform 
only specific plant tissue or to produce transgenic plant lines 
constitutively expressing the gene of interest (Wu et  al., 2014a; 
Sharma et al., 2018). Nevertheless, all these approaches present 
advantages and limitations. Therefore, TEAs performed in 
protoplasts are complementary to TEAs performed in intact 
plant tissues and constitutive expression in mutant plants 
(Denecke et  al., 2012; Sharma et  al., 2018). Indeed, protoplasts 
are obtained from the digestion of tissues containing a mixture 
of differentiated cell types that can display different locations 
of specific proteins (Faraco et  al., 2011). Even though some 
protocols exist to isolate protoplasts of specific cell types such 
as guard cell (Zhao et  al., 2019), aleurone layer cell (Daneri-
Castro and Roberts, 2016), or from various root tissues 
(Demidchik et  al., 2003), the complementary use of transgenic 
plants is recommended if a tissue-specific behavior of the 
process studied is anticipated (Sharma et  al., 2018). Instead, 
if no tissue-specificity is expected, protoplasts offer a valuable 
model to study physiological processes as it is less time-
consuming to obtain than transgenic plant and can be performed 
in a broad range of plant species, contrary to agroinfiltration 
in leaves that are mainly restricted to the plant host Nicotiana 
benthamiana (Sharma et  al., 2018). Furthermore, in 
agroinfiltration experiments, the moment when the gene transfer 
occurs is not well defined. On the contrary, with protoplasts 
transformation, the moment where the DNA transfer happens 
is well known and gene products can be  detected as early as 
4 h after gene transfer (Denecke et al., 2012). Hence, protoplasts 
are a useful system to perform time-course experiment of gene 
expression (Babu et  al., 2008), which are more difficult to 
carry out in infiltrated cells (Denecke et  al., 2012).

Even though TEA in protoplasts or intact cells can bring 
precious findings, some cautions must be  taken when using 
these tools. The experiment must be carefully designed to avoid 
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overexpression artifacts which can lead to artificial cytosolic 
location, or even aggregation of the protein (Sharma et  al., 
2018). This can be  done by adapting the amount of DNA 
plasmid used for transformation or the incubation time of 
protoplasts for gene expression, usually less than 24 h, to obtain 
low-expressing protoplasts for experimental purpose (Yoo et al., 
2007; Denecke et  al., 2012). Moreover, the enzymatic CW 
digestion performed to isolate protoplasts may stress the cell 
which could alter the expression levels of some genes (Birnbaum 
et  al., 2003; Takai et  al., 2007; Jeworutzki et  al., 2010). As an 
example, in a screen of more than 22,000 Arabidopsis genes, 
356 were found to be  induced at least twice more by the CW 
digestion (Birnbaum et  al., 2003) and some flagellin-inducible 
genes have also shown higher expression following protoplast 
isolation in rice (Takai et  al., 2007). Such induction of genes 
in protoplasts may alter cell responses to stimulus such as the 
activation of ion channels (Jeworutzki et al., 2010). In addition 
to altered gene expression, protoplast isolation can change the 
sensitivity of cell enzymes to its inhibitor, as shown for 
phosphoenolpyruvate carboxylase regarding malate inhibition 
(Petropoulou et  al., 1990). It is therefore important to assess 
that the biological response in protoplasts is not disturbed 
compared to intact plant cells. Gene induction or protein 
accumulation similar to whole plants levels (Asai et  al., 2002; 
Boudsocq et  al., 2004; Underwood et  al., 2017) and the 
verification with fluorescent probes of protoplast integrity are 
possible controls.

THE VERSATILITY OF FLUORESCENT 
PROBES ON PROTOPLASTS

With the advent of cell imaging technologies, fluorescence 
microscopy has been increasingly used for the visual insight 
it provides. While many probes can be  used on plant tissues, 
autofluorescence and probe specificity have turned out to be an 
issue. Some dyes also tend to accumulate within the CW 
microfibrils, tempering with the imaging process (Blachutzik 
et  al., 2012). Fluorescent probes applications on protoplasts 
appear then as particularly useful since they allow observations 
at the single cell level without the issues caused by the presence 
of the CW (Figure  1 for an overview).

Cell Viability and DNA Damages
Fluorochromes are often used to discriminate between living 
and dead protoplasts and to assess their viability and the 
damages they might have suffered. Indeed, protoplast isolation 
procedures and the culture conditions that follow, may induce 
cell stress or damage (Neelakandan and Wang, 2012), which 
should be  avoided if one wants to study the effect of biotic 
and abiotic stresses. One of the most referenced dyes is FDA 
(fluorescein diacetate), which highlights living cells (Bertini 
et  al., 2019; Sangra et  al., 2019; Qiu et  al., 2020) or Evan’s 
blue, which highlights dead ones (Kollárová et al., 2019). Other 
fluorochromes can be  used, such as PI (propidium iodide), 
DAPI (4'6-diamidino-2-phenylindole, dichloride), and 7-AAD 

(7-amino-actinomycin D) that do not cross intact PMs. Issues 
have previously been raised regarding techniques using 
fluorescence microscopy, as the quantification is linked to the 
viewer’s perception of fluorescence (Aoyagi, 2011; Badaró Costa 
et  al., 2018). Thus, new automated measurements, such as 
flow cytometry (FCM; Zhou et al., 2019; González-García et al., 
2020) and Muse cell analyzer, a compact FCM, allowing screening 
and sorting of protoplasts, along with measures on smaller 
volumes have been developed (Badaró Costa et  al., 2018).

DNA damage evaluation is another frequently employed 
marker to assess protoplast viability or the effect of genotoxicity 
of environmental pollutants and abiotic stresses on protoplasts. 
In these procedures, protoplasts are used as a direct source 
of nuclei to perform gel electrophoresis with ethidium bromide 
staining in order to detect DNA laddering (Poot-Poot et  al., 
2016). Identically, single cell gel electrophoresis assay (SCGE), 
also called Comet assay, allows the study of DNA damage on 
protoplasts at the single cell or nuclei level (Kuzminsky et  al., 
2016; Badaró Costa et  al., 2018; Choury et  al., 2018). While 
this technique is amply used on animal cell cultures which 
are easily lysed, the presence of the CW makes it technically 
difficult to transpose on plant tissue or cell culture. Hence, 
nuclei isolation through protoplast formation or mechanical 
destruction of the CW is here preferred (Gichner et  al., 2009; 
Santos et  al., 2015; Choury et  al., 2018). Finally, DAPI, which 
has a high affinity for DNA double strand, has also been used 
to study apoptosis-like cell death and more specifically chromatin 
condensation and DNA fragmentation in Brassica napus leaves 
(Watanabe et  al., 2002).

Cell Wall Dynamics
The CW has a direct role at the frontline of plant defense 
along with other chemical and physical barriers such as waxes, 
hairs, and secondary metabolites (Malinovsky, 2014; Engelsdorf 
et  al., 2018). It also possesses an indirect role in plant defense 
systems, as during a pathogen invasion, cell wall integrity can 
be  modified, parts of the CW can be  broken down and their 
fragments (referenced as DAMPs) can activate plant immune 
responses (Souza et al., 2020). As protoplasts are cells deprived 
of CW, they offer a unique point of view on the complete de 
novo synthesis of the CW by providing an excellent support 
for visualizing its regeneration dynamics and characterizing 
the cellular proteins involved in the process (Yokoyama et  al., 
2016). Although changes in CW composition are often studied 
through biochemical analyses, histochemical staining with 
fluorochromes is increasingly used to bring a visual insight 
on these changes. For instance, calcofluor white is employed 
to preferentially stain cellulose and aniline blue to stain callose 
(Yokoyama et  al., 2016; Kollárová et  al., 2019). Using these 
probes, it has, for instance, been demonstrated that when 
cultivated in stressful conditions, cellulose microfibrils were 
not deposited on the surface of white birch protoplasts and 
only callose deposition could be observed (Tagawa and Kondo, 
2018; Tagawa et  al., 2019). Calcofluor white has also been 
used to study the deleterious effect of cadmium on maize 
protoplast CW regeneration (Kollárová et  al., 2019). Another 
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method also emerged using S4B (Pontamine Fast Scarlet 4 
BS) in combination with spinning disk confocal microscopy 
to stain cellulose patterning on living cells. As calcofluor has 
toxic properties that might injure cells, this method appears 
to be  more suited to real-time imaging of living protoplasts 
(Anderson et al., 2010; Yokoyama et al., 2016; Kuki et al., 2017).

Similarly, CW components and callose deposition are known 
to block the migration of trace metals within cells, such as 
aluminum which binds to calcium pectate in the CW (Lee 
et  al., 2001). Therefore, protoplasts are often combined with 
specific fluorochromes to study the effects and uptake of trace 
metals directly on cells (Krzesłowska, 2011). For instance, 
Leadmium was used to visualize the uptake of cadmium by 
protoplasts and its deleterious effects on CW regeneration of 
wheat (Greger et  al., 2016) and maize (Kollárová et  al., 2019). 
Similarly, morin was used to study aluminum toxicity on coffee 
protoplasts, along with DAPI to monitor its localization into 
their nuclei (Poot-Poot et al., 2016). It was also used to examine 
its toxicity on root protoplasts of transgenic camelina (Park 
et  al., 2017).

Plasma Membrane Dynamics
Along with the CW, the PM also plays a major role in plant 
resistance to both biotic and abiotic stresses. Whether it is by 
regulation of ion exchanges, perception of PAMPs/MAMPs/
DAMPs, or signal transduction, both lipids and proteins of 
the PM are key players in its physiological function (Lim 
et  al., 2017; Mamode Cassim et  al., 2019; Schellenberger et  al., 
2019; Huby et  al., 2020; Saijo and Loo, 2020). Moreover, 
following the CW, the PM is the first point of contact between 
plant cells and pathogens and many proteins involved in plant 
defense are embedded in it. More specifically, the dynamic 
between membrane microdomains, which are highly ordered 
domains rich in sphingolipids and sterols, and the stress-related 
proteins they harbor is crucial for immunity (Gronnier et  al., 
2016, 2018; Nagano et  al., 2016; Mamode Cassim et  al., 2019; 
Huby et  al., 2020).

The absence of CW makes possible the accurate visualization 
of events at the protoplast PM using fluorescent probes. However, 
while a lot of probes exist to study lipid organization and 
dynamics into artificial model membranes which are deprived 
of proteins, they often cannot be  directly applied to living cell 
and protoplast PMs which are far more complex and require 
deep protocol adaptations in terms of concentration and 
incubation time (Klymchenko and Kreder, 2014). Every probe 
will have its specificities and are used by themselves or combined. 
For instance, FM4-64 [N-(3-Triethylammoniumpropyl)-4-(6-(4-
(Diethylamino) Phenyl) Hexatrienyl) Pyridinium Dibromide] 
and LRB-PE (Lissamine Rhodamine B-Phosphoethanolamine) 
have been employed to specifically stain phospholipid enriched 
areas of protoplast PM and BD-SM (Bodipy Sphingomyelin 
FL C12) has been used to stain sphingolipid enriched domains 
(Blachutzik et  al., 2012). FM4-64 and BD-SM were also used 
in combination with FRAP (fluorescence recovery after 
photobleaching) experiments to visualize lipid redistribution. 
The identification of ordered and disordered regions of the 

PM is also possible with the solvatochromic dyes di-4-
ANEPPDHQ and laurdan that show a shift in emission 
wavelength when lipids undergo phase transition from gel to 
fluid state (Blachutzik et  al., 2012; Klymchenko, 2017). Di-4-
ANEPPDHQ has notably been used on protoplasts from rice 
transgenic plants that lack fatty acid hydroxylase 1 and 2 
(FAH1/2), enzymes responsible for the formation of 2-hydroxy 
sphingolipids (2-OH-SL), precursors of glycosylinositol 
phosphorylceramides (GIPC), that are both located at the PM 
in Arabidopsis. They demonstrated that a disordered PM was 
concomitant with a lower amount of 2-OH-SL which gave 
rise to an increased sensibility to rice blast fungus infection 
(Nagano et  al., 2016). Di-4-ANEPPDHQ has also been used 
in Arabidopsis FAH1/2 mutants, to show a lower order of the 
PM compared to the wild type, suggesting an altered PM 
organization when its content in GIPC is low (Lenarčič 
et  al., 2017).

While there are many advantages to use fluorescent probes 
directly on protoplasts, its PM remains an active, dynamic 
structure, which can cause issues. It has been reported that 
some probes could be  internalized in the cytoplasm, such as 
DiIC12 (1,1'-Didodecyl-3,3,3',3'-Tetramethylindocarbocyanine 
Perchlorate) and DiIC18 (1,1'-Dioctadecyl-3,3,3',3'-
Tetramethylindodicarbocyanine-5,5'-Disulfonic Acid), which 
stains phospholipids, leading to a decrease in fluorescence in 
the PM (Blachutzik et  al., 2012). By using calcofluor and di-4-
ANEPPDHQ on tobacco protoplasts, it has been shown that 
the absence of a CW does not affect the organization of 
PM-ordered domains (Grosjean et  al., 2018), suggesting that 
the PM microdomain functions of a protoplast remain highly 
similar to that of an intact tissue. However, in Arabidopsis, 
FRAP analysis proved that the removal of the CW increased 
the overall dynamics and mobility of the PM proteins (Martinière 
et  al., 2012), including proteins involved in response to 
extracellular stimuli flotilin2 proteins (AtFLOT2) and 
hypersensitive induced reaction proteins (AtHIR1; Daněk 
et  al., 2020).

Detection of Early Stress Signaling Events
Fluorescent probes can also be  useful to detect specific early 
stress signaling events like ROS production and ions fluxes. 
For instance, in Arabidopsis, the molecular probe ContPY1 
was used to detect the intracellular accumulation of a ROS, 
hydrogen peroxide (H2O2) in response to the elicitor COS-OGA. 
The comparison between protoplasts and cell suspensions 
evidenced the relative contribution of CW peroxidases and 
membrane dehydrogenases to H2O2 production (Ledoux et  al., 
2014). On maize, the Amplex red reagent, which reacts with 
H2O2 to produce the highly fluorescent resorufin, and the 
rhodamine dye DHR123 (Dihydrorhodamine 123) were used 
to measure ROS in both organelles and protoplasts and link 
their quantities to DNA damage in developing mitochondria 
and plastids (Tripathi et  al., 2020).

Similarly to ROS production, ion fluxes can be easily studied 
with fluorescent probes associated with protoplasts. For instance, 
K+ efflux was monitored with the fluorescent probe PBFI-AM 
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(Potassium-Binding Benzofuran Isophthalate Acetoxymethyl 
ester) and cytosol acidification with the pH-sensitive probe BCECF- 
AM [2',7-Bis-(2-Caboxyethyl)-5-(and-6)-Carboxyfluorescein 
Acetoxymethyl ester] in wheat and rice protoplasts to study 
anoxia-induced events (Yemelyanov et  al., 2020). Furthermore, 
protoplasts loaded with the probe SBFI-AM (Sodium Binding 
Benzofuran Isophthalate Acetoxymethyl ester) were used to 
study salt stress on wheat. They helped to demonstrate that 
the application of a moderate amount of K+ was concomitant 
with a decrease in cytosolic Na+ alleviating its toxic effects 
on cells (Gul et al., 2019). Regarding Ca2+ fluxes, their induction 
has been monitored in elicited protoplasts expressing the 
genetically encoded reporter system aequorin, a bioluminescent 
protein (Maintz et  al., 2014). This technique can, however, 
be  lengthy, especially for slow growing plants such as fruit 
trees since it requires plant transformation (Qiu et  al., 2020). 
So small dyes like fluo-8/AM, fluo-4/AM (fluo-8/4 
acetoxymethylester) and rhod-2/AM (rhod-2 acetoxymethylester) 
can be  preferred. These molecules are flexible, rapid, and 
non-cytotoxic. They have been used for calcium imaging on 
protoplasts of “Fuji” apples (Qiu et  al., 2020). Fluo-4/AM has 
also been used with FCM and confocal microscopy on rice 
protoplasts to evaluate ceramide-induced programmed cell death 
(Zhang et  al., 2020). While there are many advantages to 
fluorescent probes to study ion fluxes in protoplasts, there are 
still some limitations such as the commercial availability of 
probe sensitive to anions.

PROTOPLASTS AND PATCH-CLAMP 
ELECTROPHYSIOLOGY

Complementary to fluorescent probes, plant ion fluxes can 
be  studied using patch-clamp electrophysiology that measures 
ion currents flowing through a membrane (Demidchik et  al., 
2006; Elzenga, 2012). This technique is a powerful tool to 
identify and characterize ion channel and non-channel proteins, 
such as H+-ATPases, present in biological membranes (Demidchik 
et  al., 2006; Elzenga, 2012; Hamilton et  al., 2015). To measure 
the ionic current with patch clamp, a high resistance contact, 
the so-called gigaOhm seal, has to be  performed between a 
glass micropipette and a patch of a membrane containing the 
ion transporter of interest (Demidchik et  al., 2006; Elzenga, 
2012). The access to a CW-deprived plant cell is particularly 
important to measure PM ionic current (Elzenga, 2012). Hence, 
protoplasts are the model of choice to perform patch-clamp 
electrophysiology on plant.

Four patch-clamp configurations exist, and readers interested 
in this technique may refer to previous reviews for more details 
on their specificities (Demidchik et  al., 2006; Elzenga, 2012). 
This technique has provided important insights in the 
understanding of anion channels involved in immunity (Zheng 
et  al., 2018; Chan et  al., 2020) and ABA signaling during 
osmotic stress (Takahashi et  al., 2020). It also contributed to 
a better comprehension of mechanoperception in plant (Nakagawa 
et al., 2007; Haswell et al., 2008), potassium and calcium fluxes 
involved in salt stress (Fuchs et  al., 2005; Liya et  al., 2012). 

It also helped to elucidate calcium fluxes involved in H2O2 
perception (Demidchik et al., 2007; Tian et al., 2019; Wu et al., 
2020a), in extracellular ATP perception (Demidchik et  al., 
2009), in cold stress (Carpaneto et  al., 2007), and in stomatal 
immunity (Yekondi et  al., 2018).

Patch-clamp electrophysiology is the gold standard technique 
to study ion channels and fluxes even though the process to 
isolate the cell and remove its CW can be considered a limitation 
(Demidchik et  al., 2006; Hamilton et  al., 2015). However, 
combination of patch clamp with other electrophysiological or 
physiological techniques using intact plants such as 
microelectrode ion flux estimation or the use of fluorescent 
probes can be  considered to improve the robustness of the 
results (Demidchik et  al., 2006; Hamilton et  al., 2015; 
Demidchik, 2018).

CHALLENGES AND FUTURE 
PERSPECTIVES

The current and upcoming rise of pests, diseases, and changes 
of agricultural practices caused by environmental perturbations 
will put an increasing pressure on agricultural productivity. 
This will require specific tools allowing fast, high throughput, 
or even automated systems, to provide reliable and efficient 
solutions for crop and genetic engineering.

With the advent of quick and reliable transformation and 
microscopy methods, protoplasts arise as useful and powerful 
tools for a wide range of stress-related studies (Figure  1). 
We  have argued in this review that the use of protoplasts 
could turn out to be  both an advantage and a limitation 
(Figure 3). While it has been previously stated that protoplasts 
maintain a similar physiological cellular activity to whole plants 
(Sheen, 2001; Wang et  al., 2020a; Shaw et  al., 2021), they 
ultimately serve as proxy to whole plants studies, implying 
that complementary experiments are often necessary to connect 
the phenomena observed on protoplasts to plants. Nonetheless, 
the single cell level allows for specific, rapid, and high-throughput 
analysis along with time-course experiments. In addition, even 
though protoplasts isolation and maintenance require specific 
conditions that can eventually cause stress, these techniques 
are improving for a wide range of species or organs (Sangra 
et  al., 2019; Shan et  al., 2019; Davis et  al., 2020). Furthermore, 
their formation is still deemed necessary to bypass time-
consuming plant culture and whole plant transformation, 
especially for recalcitrant species or plants with a long 
reproductive cycle (Du and Bao, 2005). Moreover, somatic 
hybridization mediated by protoplast fusion has been employed 
to circumvent sexual incompatibility encountered in plant 
breeding (Watanabe et  al., 2002; Du and Bao, 2005).

Protoplasts possess multiple assets for the upcoming challenges 
in plant biology. Many technologies employing them are being 
developed, and these techniques could ultimately facilitate plant 
stress-related studies. For instance, protoplasts have been 
employed to assess the efficiency of CRISPR-associated protein 
9 (Cas9) mutagenesis, bypassing or preceding stable 
transformation which can be  time-consuming (Lin et al., 2018; 
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Hahn et  al., 2020; Guyon-Debast et  al., 2021; Nicolia et  al., 
2021). Another example is the adaptation of efficient and 
low-cost microfluidic techniques to perform spatiotemporal 
studies of plant protoplasts physiology during their development 
(Sakai et  al., 2019) and to apprehend the electrical resistance 
of CW-regenerated protoplasts (Chen, 2020). Similarly, the 
usefulness of protoplasts for high-throughput RNA sequencing 
has also been put forward due to its many advantages over 
traditional RNA-seq. Indeed, protoplasts being single cells, they 
can give spatiotemporal information on gene dynamic expression 
in heterogeneous tissues (Li et  al., 2021).

Protoplasts also provide a facilitated access to the plant 
PM, and pioneering studies have proven their crucial role in 
growing biotechnologies such as nanoparticles. These particles 
have the ability to passively penetrate the PM, but their use 
in plants is limited due to the presence of the CW (Torney 
et  al., 2007; Liu et  al., 2009; Lew et  al., 2018). As they are 
believed to have the potential to overcome current limitations 
in plant genetic transformation, their effect on plants and their 
PMs are increasingly studied (Lew et  al., 2018). With their 
easily accessible PM, protoplasts can therefore help understand 
the fundamental interactions between nanoparticles and plants, 
as such knowledge is of paramount importance for nanoenabled 
agriculture. Protoplasts have, for instance, been used to determine 
the impact of nanopesticides or nanofertilizers, on plant 
photosynthesis (Wang et al., 2020a). Likewise, protoplast cultures 
have been used to study gold nanoparticles uptake by plants 
as their use in industrial areas leads to their release into the 
environment, which can cause an invisible danger to the 
ecosystem (Milewska-Hendel et  al., 2019). Furthermore, 
nanoparticles have been previously used to deliver drugs, 

imaging agents, and DNA for genetic transformation into 
protoplasts (Torney et  al., 2007).

Concomitantly, protoplasts could be valuable plant PM models 
to study the perception of bioactive molecules such as elicitors 
by plant cells. Indeed, they could link data obtained by biophysics 
studies on biomimetic PM models containing representative 
lipids (Deleu et  al., 2014) with the ones provided by biological 
assays on living plant cells or tissues with complex dynamic 
PM and CW. Protoplasts-associated technologies and techniques 
should help improve our fundamental knowledge on plant 
perception and response to (a)biotic stresses and hence ultimately 
contribute to develop reliable and efficient solutions for agriculture.
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FIGURE 3 | Summary of the advantages and limitations of working with protoplasts to study plant stress perception and response comparatively to whole plants.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Gilliard et al. Protoplasts to Investigate Plant Stress

Frontiers in Plant Science | www.frontiersin.org 11 October 2021 | Volume 12 | Article 749581

REFERENCES

Anderson, C. T., Carroll, A., Akhmetova, L., and Somerville, C. (2010). Real-
time imaging of cellulose reorientation during cell wall expansion in Arabidopsis 
roots. Plant Physiol. 152, 787–796. doi: 10.1104/pp.109.150128

Aoyagi, H. (2011). Application of plant protoplasts for the production of useful 
metabolites. Biochem. Eng. J. 56, 1–8. doi: 10.1016/j.bej.2010.05.004

Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W.-L., Gomez-Gomez, L., 
et al. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. 
Nature 415, 977–983. doi: 10.1038/415977a

Babu, M., Griffiths, J. S., Huang, T. S., and Wang, A. (2008). Altered gene 
expression changes in Arabidopsis leaf tissues and protoplasts in response 
to plum pox virus infection. BMC Genomics 9:325. doi: 10.1186/1471-2164-9-325

Badaró Costa, N. L., Carvalho, C. R., and Clarindo, W. R. (2018). Improved 
procedures to assess plant protoplast viability: evidencing cytological and 
genomic damage. Cytologia 83, 397–405. doi: 10.1508/cytologia.83.397

Barbara, J. B., and Bonner, D. M. (1959). Protoplasts from Neurospora crassa. 
J. Bacteriol. 78, 550–556. doi: 10.1128/jb.78.4.550-556.1959

Bekesová, S., Komis, G., Krenek, P., Vyplelovà, P., Ovecka, M., Luptovciak, I., 
et al. (2015). Monitoring protein phosphorylation by acrylamide pendant 
Phos-tag in various plants. Front. Plant Sci. 6:336. doi: 10.3389/fpls.2015.00336

Bertini, E., Tornielli, G. B., Pezzotti, M., and Zenoni, S. (2019). Regeneration 
of plants from embryogenic callus-derived protoplasts of Garganega and 
Sangiovese grapevine (Vitis vinifera L.) cultivars. Plant Cell Tissue Organ 
Cult. 138, 239–246. doi: 10.1007/s11240-019-01619-1

Bethke, G., Unthan, T., Uhrig, J. F., Pöschl, Y., Gust, A. A., Scheel, D., 
et al. (2009). Flg22 regulates the release of an ethylene response factor 
substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. 
Proc. Natl. Acad. Sci. U. S. A. 106, 8067–8072. doi: 10.1073/pnas. 
0810206106

Bi, G., Zhou, Z., Wang, W., Li, L., Rao, S., Wu, Y., et al. (2018). Receptor-like 
cytoplasmic kinases directly link diverse pattern recognition receptors to 
the activation of mitogen-activated protein kinase cascades in Arabidopsis. 
Plant Cell 30, 1543–1561. doi: 10.1105/tpc.17.00981

Bigeard, J., Colcombet, J., and Hirt, H. (2015). Signaling mechanisms in pattern-
triggered immunity (PTI). Mol. Plant 8, 521–539. doi: 10.1016/j.
molp.2014.12.022

Bigeard, J., and Hirt, H. (2018). Nuclear signaling of plant MAPKs. Front. 
Plant Sci. 9:469. doi: 10.3389/fpls.2018.00469

Birnbaum, K., Shasha, D. E., Wang, J. Y., Jung, J. W., Lambert, G. M., 
Galbraith, D. W., et al. (2003). A gene expression map of the Arabidopsis 
root. Science 302, 1956–1960. doi: 10.1126/science.1090022

Blachutzik, J. O., Demir, F., Kreuzer, I., Hedrich, R., and Harms, G. S. (2012). 
Methods of staining and visualization of sphingolipid enriched and non-
enriched plasma membrane regions of Arabidopsis thaliana with fluorescent 
dyes and lipid analogues. Plant Methods 8:28. doi: 10.1186/1746-4811-8-28

Bose, J., Pottosin, I. I., Shabala, S. S., Palmgren, M. G., and Shabala, S. (2011). 
Calcium efflux systems in stress signaling and adaptation in plants. Front. 
Plant Sci. 2:85. doi: 10.3389/fpls.2011.00085

Böttner, S., Iven, T., Carsjens, C. S., and Dröge-Laser, W. (2009). Nuclear 
accumulation of the ankyrin repeat protein ANK1 enhances the auxin-
mediated transcription accomplished by the bZIP transcription factors BZI-1 
and BZI-2. Plant J. 58, 914–926. doi: 10.1111/j.1365-313X.2009.03829.x

Boudsocq, M., Barbier-Brygoo, H., and Laurière, C. (2004). Identification of 
nine sucrose nonfermenting 1-related protein kinases 2 activated by 
hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 279, 
41758–41766. doi: 10.1074/jbc.M405259200

Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., 
et al. (2010). Differential innate immune signalling via Ca2+ sensor protein 
kinases. Nature 464, 418–422. doi: 10.1038/nature08794

Carpaneto, A., Ivashikina, N., Levchenko, V., Krol, E., Jeworutzki, E., Zhu, J. K., 
et al. (2007). Cold transiently activates calcium-permeable channels in 
Arabidopsis mesophyll cells. Plant Physiol. 143, 487–494. doi: 10.1104/
pp.106.090928

Chan, C., Panzeri, D., Okuma, E., Tõldsepp, K., Wang, Y. Y., Louh, G. Y., 
et al. (2020). Stress induced factor 2 regulates Arabidopsis stomatal immunity 
through phosphorylation of the anion channel SLAC1. Plant Cell 32, 2216–2236. 
doi: 10.1105/tpc.19.00578

Chen, L. (2020). An impedance-coupled microfluidic device for single-cell 
analysis of primary cell wall regeneration. Biosens. Bioelectron. 165:112374. 
doi: 10.1016/j.bios.2020.112374

Chen, D., Cao, Y., Li, H., Kim, D., Ahsan, N., Thelen, J., et al. (2017). Extracellular 
ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal 
aperture. Nat. Commun. 8:2265. doi: 10.1038/s41467-017-02340-3

Chen, H., Lai, Z., Shi, J., Xiao, Y., Chen, Z., and Xu, X. (2010). Roles of 
Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant 
responses to abscisic acid and abiotic stress. BMC Plant Biol. 10:281. doi: 
10.1186/1471-2229-10-281

Chen, H., Zou, Y., Shang, Y., Lin, H., Wang, Y., Cai, R., et al. (2008). Firefly 
luciferase complementation imaging assay for protein-protein interactions 
in plants. Plant Physiol. 146, 368–376. doi: 10.1104/pp.107.111740

Cheng, Z., Li, J. F., Niu, Y., Zhang, X. C., Woody, O. Z., Xiong, Y., et al. 
(2015). Pathogen-secreted proteases activate a novel plant immune pathway. 
Nature 521, 213–216. doi: 10.1038/nature14243

Cheng, N., and Nakata, P. A. (2020). Development of a rapid and efficient 
protoplast isolation and transfection method for chickpea (Cicer arietinum). 
MethodsX 7:101025. doi: 10.1016/j.mex.2020.101025

Choury, Z., Meschini, R., Dell’Orso, A., Fardusi, M. J., Mugnozza, G. S., and 
Kuzminsky, E. (2018). Optimized conditions for the isolation of mesophyll 
protoplasts along the growing season from Arbutus unedo and their use in 
single cell gel electrophoresis. Plant Cell Tissue Organ Cult. 132, 535–543. 
doi: 10.1007/s11240-017-1349-6

Cocking, E. C. (1960). A method for the isolation of plant protoplasts and 
vacuoles. Nature 187, 962–963. doi: 10.1038/187962a0

Cook, D. E., Mesarich, C. H., and Thomma, B. P. H. J. (2015). Understanding 
plant immunity as a surveillance system to detect invasion. Annu. Rev. 
Phytopathol. 53, 541–563. doi: 10.1146/annurev-phyto-080614-120114

Couto, D., and Zipfel, C. (2016). Regulation of pattern recognition receptor 
signalling in plants. Nat. Rev. Immunol. 16, 537–552. doi: 10.1038/nri.2016.77

Cui, Y., Zhang, X., Yu, M., Zhu, Y., Xing, J., and Lin, J. (2019). Techniques 
for detecting protein-protein interactions in living cells: principles, limitations, 
and recent progress. Sci. China Life Sci. 62, 619–632. doi: 10.1007/
s11427-018-9500-7

Daněk, M., Angelini, J., Malínská, K., Andrejch, J., Amlerová, Z., Kocourková, D., 
et al. (2020). Cell wall contributes to the stability of plasma membrane 
nanodomain organization of Arabidopsis thaliana FLOTILLIN2 and 
HYPERSENSITIVE INDUCED REACTION1 proteins. Plant J. 101, 619–636. 
doi: 10.1111/tpj.14566

Daneri-Castro, S. N., and Roberts, T. H. (2016). Isolation of viable protoplasts 
from the aleurone layers of commercial barley malting varieties. J. Inst. 
Brew. 122, 693–699. doi: 10.1002/jib.365

daSilva, L. L. P., Taylor, J. P., Hadlington, J. L., Hanton, S. L., Snowden, C. J., 
Fox, S. J., et al. (2005). Receptor salvage from the prevacuolar compartment 
is essential for efficient vacuolar protein targeting. Plant Cell 17, 132–148. 
doi: 10.1105/tpc.104.026351

Davis, H. R., Maddison, A. L., Phillips, D. W., and Jones, H. D. (2020). “Genetic 
transformation of protoplasts isolated from leaves of Lolium temulentum 
and Lolium perenne,” in Cereal Genomics Methods in Molecular Biology. ed. 
L. M. Vaschetto (New York, NY: Springer US), 199–205. 

Delaunois, B., Farace, G., Jeandet, P., Clément, C., Baillieul, F., Dorey, S., et al. 
(2014). Elicitors as alternative strategy to pesticides in grapevine? Current 
knowledge on their mode of action from controlled conditions to vineyard. 
Environ. Sci. Pollut. Res. 21, 4837–4846. doi: 10.1007/s11356-013-1841-4

Deleu, M., Crowet, J.-M., Nasir, M. N., and Lins, L. (2014). Complementary 
biophysical tools to investigate lipid specificity in the interaction between 
bioactive molecules and the plasma membrane: a review. Biochim. Biophys. 
Acta 1838, 3171–3190. doi: 10.1016/j.bbamem.2014.08.023

Demidchik, V. (2014). Mechanisms and physiological roles of K+ efflux from 
root cells. J. Plant Physiol. 171, 696–707. doi: 10.1016/j.jplph.2014.01.015

Demidchik, V. (2018). ROS-activated ion channels in plants: biophysical 
characteristics, physiological functions and molecular nature. Int. J. Mol. 
Sci. 19:1263. doi: 10.3390/ijms19041263

Demidchik, V., Shabala, S. N., Coutts, K. B., Tester, M. A., and Davies, J. M. 
(2003). Free oxygen radicals regulate plasma membrane Ca2+- and K+-
permeable channels in plant root cells. J. Cell Sci. 116, 81–88. doi: 10.1242/
jcs.00201

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1104/pp.109.150128
https://doi.org/10.1016/j.bej.2010.05.004
https://doi.org/10.1038/415977a
https://doi.org/10.1186/1471-2164-9-325
https://doi.org/10.1508/cytologia.83.397
https://doi.org/10.1128/jb.78.4.550-556.1959
https://doi.org/10.3389/fpls.2015.00336
https://doi.org/10.1007/s11240-019-01619-1
https://doi.org/10.1073/pnas.0810206106
https://doi.org/10.1073/pnas.0810206106
https://doi.org/10.1105/tpc.17.00981
https://doi.org/10.1016/j.molp.2014.12.022
https://doi.org/10.1016/j.molp.2014.12.022
https://doi.org/10.3389/fpls.2018.00469
https://doi.org/10.1126/science.1090022
https://doi.org/10.1186/1746-4811-8-28
https://doi.org/10.3389/fpls.2011.00085
https://doi.org/10.1111/j.1365-313X.2009.03829.x
https://doi.org/10.1074/jbc.M405259200
https://doi.org/10.1038/nature08794
https://doi.org/10.1104/pp.106.090928
https://doi.org/10.1104/pp.106.090928
https://doi.org/10.1105/tpc.19.00578
https://doi.org/10.1016/j.bios.2020.112374
https://doi.org/10.1038/s41467-017-02340-3
https://doi.org/10.1186/1471-2229-10-281
https://doi.org/10.1104/pp.107.111740
https://doi.org/10.1038/nature14243
https://doi.org/10.1016/j.mex.2020.101025
https://doi.org/10.1007/s11240-017-1349-6
https://doi.org/10.1038/187962a0
https://doi.org/10.1146/annurev-phyto-080614-120114
https://doi.org/10.1038/nri.2016.77
https://doi.org/10.1007/s11427-018-9500-7
https://doi.org/10.1007/s11427-018-9500-7
https://doi.org/10.1111/tpj.14566
https://doi.org/10.1002/jib.365
https://doi.org/10.1105/tpc.104.026351
https://doi.org/10.1007/s11356-013-1841-4
https://doi.org/10.1016/j.bbamem.2014.08.023
https://doi.org/10.1016/j.jplph.2014.01.015
https://doi.org/10.3390/ijms19041263
https://doi.org/10.1242/jcs.00201
https://doi.org/10.1242/jcs.00201


Gilliard et al. Protoplasts to Investigate Plant Stress

Frontiers in Plant Science | www.frontiersin.org 12 October 2021 | Volume 12 | Article 749581

Demidchik, V., Shabala, S. N., and Davies, J. M. (2007). Spatial variation in 
H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma 
membrane Ca2+ channels. Plant J. 49, 377–386. doi: 10.1111/j.1365-313X. 
2006.02971.x

Demidchik, V., Shang, Z., Shin, R., Thompson, E., Rubio, L., Laohavisit, A., 
et al. (2009). Plant extracellular ATP signalling by plasma membrane NADPH 
oxidase and Ca2+ channels. Plant J. 58, 903–913. doi: 10.1111/j.1365-313X. 
2009.03830.x

Demidchik, V., Sokolik, A., and Yurin, V. (2006). “Electrophysiological 
characterization of plant cation channels,” in Plant Electrophysiology: Theory 
and Methods. ed. A. G. Volkov (Berlin, Heidelberg: Springer-Verlag), 
173–185. 

Denecke, J., Aniento, F., Frigerio, L., Hawes, C., Hwang, I., Mathur, J., et al. 
(2012). Secretory pathway research: the more experimental systems the better. 
Plant Cell 24, 1316–1326. doi: 10.1105/tpc.112.096362

Denecke, J., Botterman, J., and Deblaere, R. (1990). Protein secretion in plant 
cells can occur via a default pathway. Plant Cell 2, 51–59. doi: 10.1105/
tpc.2.1.51

Dröge-Laser, W., Snoek, B. L., Snel, B., and Weiste, C. (2018). The Arabidopsis 
bZIP transcription factor family – an update. Curr. Opin. Plant Biol. 45, 
36–49. doi: 10.1016/j.pbi.2018.05.001

Du, L., and Bao, M. (2005). Plant regeneration from protoplasts isolated from 
embryogenic suspension cultured cells of Cinnamomum camphora L. Plant 
Cell Rep. 24, 462–467. doi: 10.1007/s00299-005-0969-1

Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L. 
(2010). MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 
573–581. doi: 10.1016/j.tplants.2010.06.005

Eddy, A. A., and Williamson, D. H. (1957). A method of isolating protoplasts 
from yeast. Nature 179, 1252–1253. doi: 10.1038/1791252a0

Ehlert, A., Weltmeier, F., Wang, X., Mayer, C. S., Smeekens, S., Vicente-Carbajosa, J., 
et al. (2006). Two-hybrid protein-protein interaction analysis in Arabidopsis 
protoplasts: establishment of a heterodimerization map of group C and 
group S bZIP transcription factors. Plant J. 46, 890–900. doi: 
10.1111/j.1365-313X.2006.02731.x

Elzenga, J. T. M. (2012). “Patch clamp techniques for plant cells,” in Plant 
Electrophysiology: Methods and Cell Electrophysiology. ed. A. G. Volkov (Berlin 
Heidelberg: Springer-Verlag), 225–243.

Engelsdorf, T., Gigli-Bisceglia, N., Veerabagu, M., McKenna, J. F., Vaahtera, L., 
and Augstein, F. (2018). The plant cell wall integrity maintenance and 
immune signaling systems cooperate to control stress responses in Arabidopsis 
thaliana. Sci. Signal. 11:eaao3070. doi: 10.1126/scisignal.aao3070

Faraco, M., di Sansebastiano, G. P., Spelt, K., Koes, R. E., and Quattrocchio, F. M. 
(2011). One protoplast is not the other! Plant Physiol. 156, 474–478. doi: 
10.1104/pp.111.173708

Fliegmann, J., Jauneau, A., Pichereaux, C., Rosenberg, C., Gasciolli, V., 
Timmers, A. C. J., et al. (2016). LYR3, a high-affinity LCO-binding protein 
of Medicago truncatula, interacts with LYK3, a key symbiotic receptor. FEBS 
Lett. 590, 1477–1487. doi: 10.1002/1873-3468.12191

Fowke, L. C., Rennie, P. J., and Constabel, F. (1983). Organelles associated 
with the plasma membrane of tobacco leaf protoplasts. Plant Cell Rep. 2, 
292–295. doi: 10.1007/BF00270184

Fuchs, I., Stölzle, S., Ivashikina, N., and Hedrich, R. (2005). Rice K+ uptake 
channel OsAKT1 is sensitive to salt stress. Planta 221, 212–221. doi: 10.1007/
s00425-004-1437-9

Fujikawa, Y., and Kato, N. (2007). TECHNICAL ADVANCE: split luciferase 
complementation assay to study protein–protein interactions in Arabidopsis 
protoplasts. Plant J. 52, 185–195. doi: 10.1111/j.1365-313X.2007. 
03214.x

Gichner, T., Znidar, I., Wagner, E. D., and Plewa, M. J. (2009). “Chapter 4. 
The use of higher plants in the comet assay,” in Issues in Toxicology. eds. 
A. Dhawan and D. Anderson (Cambridge: Royal Society of Chemistry), 
98–119.

Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic 
and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227. doi: 
10.1146/annurev.phyto.43.040204.135923

Gong, B. Q., Guo, J., Zhang, N., Yao, X., Wang, H. B., and Li, J. F. (2019). 
Cross-microbial protection via priming a conserved immune co-receptor 
through juxtamembrane phosphorylation in plants. Cell Host Microbe 26, 
810–822. doi: 10.1016/j.chom.2019.10.010

Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G., et al. 
(2020). Plant abiotic stress response and nutrient use efficiency. Sci. China 
Life Sci. 63, 635–674. doi: 10.1007/s11427-020-1683-x

González-García, M. P., Bustillo-Avendaño, E., Sanchez-Corrionero, A., Del 
Pozo, J. C., and Moreno-Risueno, M. A. (2020). Fluorescence-activated cell 
sorting using the D-root device and optimization for scarce and/or non-
accessible root cell populations. Plan. Theory 9:499. doi: 10.3390/plants9040499

Gou, Y.-J., Li, Y.-L., Bi, P.-P., Wang, D.-J., Ma, Y.-Y., Hu, Y., et al. (2020). 
Optimization of the protoplast transient expression system for gene functional 
studies in strawberry (Fragaria vesca). Plant Cell Tissue Organ Cult. 141, 
41–53. doi: 10.1007/s11240-020-01765-x

Greger, M., Kabir, A. H., Landberg, T., Maity, P. J., and Lindberg, S. (2016). 
Silicate reduces cadmium uptake into cells of wheat. Environ. Pollut. 211, 
90–97. doi: 10.1016/j.envpol.2015.12.027

Gronnier, J., Gerbeau-Pissot, P., Germain, V., Mongrand, S., and Simon-Plas, F. 
(2018). Divide and rule: plant plasma membrane organization. Trends Plant 
Sci. 23, 899–917. doi: 10.1016/j.tplants.2018.07.007

Gronnier, J., Germain, V., Gouguet, P., Cacas, J. L., and Mongrand, S. (2016). 
GIPC: Glycosyl inositol phospho ceramides, the major sphingolipids on 
earth. Plant Signal. Behav. 11:e1152438. doi: 10.1080/15592324.2016. 
1152438

Grosjean, K., Der, C., Robert, F., Thomas, D., Mongrand, S., Simon-Plas, F., 
et al. (2018). Interactions between lipids and proteins are critical for 
organization of plasma membrane-ordered domains in tobacco BY-2 cells. 
J. Exp. Bot. 69, 3545–3557. doi: 10.1093/jxb/ery152

Gul, M., Wakeel, A., Steffens, D., and Lindberg, S. (2019). Potassium-induced 
decrease in cytosolic Na+ alleviates deleterious effects of salt stress on wheat 
(Triticum aestivum L.). Plant Biol. 21, 825–831. doi: 10.1111/plb.12999

Guyon-Debast, A., Alboresi, A., Terret, Z., Charlot, F., Berthier, F., Vendrell-Mir, P., 
et al. (2021). A blueprint for gene function analysis through base editing 
in the model plant Physcomitrium (Physcomitrella) patens. New Phytol. 230, 
1258–1272. doi: 10.1111/nph.17171

Hahn, F., Korolev, A., Sanjurjo Loures, L., and Nekrasov, V. (2020). A modular 
cloning toolkit for genome editing in plants. BMC Plant Biol. 20:179. doi: 
10.1186/s12870-020-02388-2

Halter, T., Imkampe, J., Mazzotta, S., Wierzba, M., Postel, S., Bücherl, C., et al. 
(2014). The leucine-rich repeat receptor kinase BIR2 is a negative regulator 
of BAK1  in plant immunity. Curr. Biol. 24, 134–143. doi: 10.1016/j.
cub.2013.11.047

Hamilton, E. S., Schlegel, A. M., and Haswell, E. S. (2015). United in diversity: 
mechanosensitive ion channels in plants. Annu. Rev. Plant Biol. 66, 113–137. 
doi: 10.1146/annurev-arplant-043014-114700

Haswell, E. S., Peyronnet, R., Barbier-Brygoo, H., Meyerowitz, E. M., and 
Frachisse, J.-M. (2008). Two MscS homologs provide mechanosensitive channel 
activities in the Arabidopsis root. Curr. Biol. 18, 730–734. doi: 10.1016/j.
cub.2008.04.039

Hellens, R. P., Allan, A. C., Friel, E. N., Bolitho, K., Grafton, K., Templeton, M. D., 
et al. (2005). Transient expression vectors for functional genomics, quantification 
of promoter activity and RNA silencing in plants. Plant Methods 1:13. doi: 
10.1186/1746-4811-1-13

Hsu, S.-F., Lai, H.-C., and Jinn, T.-L. (2010). Cytosol-localized heat shock 
factor-binding protein, AtHSBP, functions as a negative regulator of heat 
shock response by translocation to the nucleus and is required for seed 
development in Arabidopsis. Plant Physiol. 153, 773–784. doi: 10.1104/
pp.109.151225

Huby, E., Napier, J. A., Baillieul, F., Michaelson, L. V., and Dhondt-Cordelier, S. 
(2020). Sphingolipids: towards an integrated view of metabolism during the 
plant stress response. New Phytol. 225, 659–670. doi: 10.1111/nph.15997

Iven, T., Strathmann, A., Böttner, S., Zwafink, T., Heinekamp, T., Guivarc’h, 
A., et al. (2010). Homo- and heterodimers of tobacco bZIP proteins counteract 
as positive or negative regulators of transcription during pollen development. 
Plant J. 63, 155–166. doi: 10.1111/j.1365-313X.2010.04230.x

Jeworutzki, E., Roelfsema, M. R. G., Anschütz, U., Krol, E., Elzenga, J. T. M., 
Felix, G., et al. (2010). Early signaling through the Arabidopsis pattern 
recognition receptors FLS2 and EFR involves Ca2+-associated opening of 
plasma membrane anion channels. Plant J. 62, 367–378. doi: 10.1111/j.1365- 
313X.2010.04155.x

Jones, J. D. G., and Dangl, J. L. (2006). The plant immune system. Nature 
444, 323–329. doi: 10.1038/nature05286

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1111/j.1365-313X.2006.02971.x
https://doi.org/10.1111/j.1365-313X.2006.02971.x
https://doi.org/10.1111/j.1365-313X.2009.03830.x
https://doi.org/10.1111/j.1365-313X.2009.03830.x
https://doi.org/10.1105/tpc.112.096362
https://doi.org/10.1105/tpc.2.1.51
https://doi.org/10.1105/tpc.2.1.51
https://doi.org/10.1016/j.pbi.2018.05.001
https://doi.org/10.1007/s00299-005-0969-1
https://doi.org/10.1016/j.tplants.2010.06.005
https://doi.org/10.1038/1791252a0
https://doi.org/10.1111/j.1365-313X.2006.02731.x
https://doi.org/10.1126/scisignal.aao3070
https://doi.org/10.1104/pp.111.173708
https://doi.org/10.1002/1873-3468.12191
https://doi.org/10.1007/BF00270184
https://doi.org/10.1007/s00425-004-1437-9
https://doi.org/10.1007/s00425-004-1437-9
https://doi.org/10.1111/j.1365-313X.2007.03214.x
https://doi.org/10.1111/j.1365-313X.2007.03214.x
https://doi.org/10.1146/annurev.phyto.43.040204.135923
https://doi.org/10.1016/j.chom.2019.10.010
https://doi.org/10.1007/s11427-020-1683-x
https://doi.org/10.3390/plants9040499
https://doi.org/10.1007/s11240-020-01765-x
https://doi.org/10.1016/j.envpol.2015.12.027
https://doi.org/10.1016/j.tplants.2018.07.007
https://doi.org/10.1080/15592324.2016.1152438
https://doi.org/10.1080/15592324.2016.1152438
https://doi.org/10.1093/jxb/ery152
https://doi.org/10.1111/plb.12999
https://doi.org/10.1111/nph.17171
https://doi.org/10.1186/s12870-020-02388-2
https://doi.org/10.1016/j.cub.2013.11.047
https://doi.org/10.1016/j.cub.2013.11.047
https://doi.org/10.1146/annurev-arplant-043014-114700
https://doi.org/10.1016/j.cub.2008.04.039
https://doi.org/10.1016/j.cub.2008.04.039
https://doi.org/10.1186/1746-4811-1-13
https://doi.org/10.1104/pp.109.151225
https://doi.org/10.1104/pp.109.151225
https://doi.org/10.1111/nph.15997
https://doi.org/10.1111/j.1365-313X.2010.04230.x
https://doi.org/10.1111/j.1365-313X.2010.04155.x
https://doi.org/10.1111/j.1365-313X.2010.04155.x
https://doi.org/10.1038/nature05286


Gilliard et al. Protoplasts to Investigate Plant Stress

Frontiers in Plant Science | www.frontiersin.org 13 October 2021 | Volume 12 | Article 749581

Kadota, Y., Shirasu, K., and Zipfel, C. (2015). Regulation of the NADPH oxidase 
RBOHD during plant immunity. Plant Cell Physiol. 56, 1472–1480. doi: 
10.1093/pcp/pcv063

Kerppola, T. K. (2006). Design and implementation of bimolecular fluorescence 
complementation (BiFC) assays for the visualization of protein interactions 
in living cells. Nat. Protoc. 1, 1278–1286. doi: 10.1038/nprot.2006.201

Kinoshita, E., Kinoshita-Kikuta, E., and Koike, T. (2015). Advances in Phos-
tag-based methodologies for separation and detection of the phosphoproteome. 
Biochim. Biophys. Acta 1854, 601–608. doi: 10.1016/j.bbapap.2014.10.004

Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K., and Koike, T. (2006). Phosphate-
binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. 
Proteomics 5, 749–757. doi: 10.1074/mcp.T500024-MCP200

Kinoshita-Kikuta, E., Aoki, Y., Kinoshita, E., and Koike, T. (2007). Label-free 
kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. 
Mol. Cell. Proteomics 6, 356–366. doi: 10.1074/mcp.T600044-MCP200

Klymchenko, A. S. (2017). Solvatochromic and fluorogenic dyes as environment-
sensitive probes: design and biological applications. Acc. Chem. Res. 50, 
366–375. doi: 10.1021/acs.accounts.6b00517

Klymchenko, A. S., and Kreder, R. (2014). Fluorescent probes for lipid rafts: 
from model membranes to living cells. Chem. Biol. 21, 97–113. doi: 10.1016/j.
chembiol.2013.11.009

Kollárová, K., Kusá, Z., Vatehová-Vivodová, Z., and Lišková, D. (2019). The 
response of maize protoplasts to cadmium stress mitigated by silicon. 
Ecotoxicol. Environ. Saf. 170, 488–494. doi: 10.1016/j.ecoenv.2018.12.016

Kovtun, Y., Chiu, W. L., Zeng, W., and Sheen, J. (1998). Suppression of auxin 
signal transduction by a MAPK cascade in higher plants. Nature 395, 716–720. 
doi: 10.1038/27240

Krzesłowska, M. (2011). The cell wall in plant cell response to trace metals: 
polysaccharide remodeling and its role in defense strategy. Acta Physiol. 
Plant. 33, 35–51. doi: 10.1007/s11738-010-0581-z

Kudla, J., and Bock, R. (2016). Lighting the way to protein-protein interactions: 
recommendations on best practices for bimolecular fluorescence 
complementation analyses. Plant Cell 28, 1002–1008. doi: 10.1105/tpc.16.00043

Kuki, H., Higaki, T., Yokoyama, R., Kuroha, T., Shinohara, N., Hasezawa, S., 
et al. (2017). Quantitative confocal imaging method for analyzing cellulose 
dynamics during cell wall regeneration in Arabidopsis mesophyll protoplasts. 
Plant Direct 1:e00021. doi: 10.1002/pld3.21

Kuzminsky, E., Meschini, R., Terzoli, S., Pavani, L., Silvestri, C., Choury, Z., 
et al. (2016). Isolation of mesophyll protoplasts from mediterranean woody 
plants for the study of DNA integrity under abiotic stress. Front. Plant Sci. 
7:1168. doi: 10.3389/fpls.2016.01168

Lamers, J., van der Meer, T., and Testerink, C. (2020). How plants sense and 
respond to stressful environments. Plant Physiol. 182, 1624–1635. doi: 10.1104/
pp.19.01464

Ledoux, Q., Van Cutsem, P., Markό, I. E., and Veys, P. (2014). Specific localization 
and measurement of hydrogen peroxide in Arabidopsis thaliana cell suspensions 
and protoplasts elicited by COS-OGA. Plant Signal. Behav. 9:e28824. doi: 
10.4161/psb.28824

Lee, Y.-S., Mitiku, G., and Endress, A. G. (2001). Short-term effects of Al3+ 
on the osmotic behavior of red beet (Beta vulgaris L.) protoplasts. Plant 
Soil 228, 223–232. doi: 10.1023/A:1004886115326

Lenarčič, T., Albert, I., Böhm, H., Hodnik, V., Pirc, K., Zavec, A. B., et al. 
(2017). Eudicot plant-specific sphingolipids determine host selectivity of 
microbial NLP cytolysins. Science 358, 1431–1434. doi: 10.1126/science.
aan6874

Lew, T. T. S., Wong, M. H., Kwak, S., Sinclair, R., Koman, V. B., and Strano, M. S. 
(2018). Rational design principles for the transport and subcellular distribution 
of nanomaterials into plant protoplasts. Small 14:1802086. doi: 10.1002/
smll.201802086

Li, Z., Ao, Y., Feng, D., Liu, J., Wang, J., Wang, H. B., et al. (2017). OsRLCK 
57, OsRLCK107 and OsRLCK118 positively regulate chitin- and PGN-induced 
immunity in rice. Rice 10:6. doi: 10.1186/s12284-017-0145-6

Li, J.-F., Bush, J., Xiong, Y., Li, L., and McCormack, M. (2011). Large-scale 
protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by 
split firefly luciferase complementation. PLoS One 6:e27364. doi: 10.1371/
journal.pone.0027364

Li, H., Dai, X., Huang, X., Xu, M., Wang, Q., Yan, X., et al. (2021). Single-cell 
RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. 
J. Integr. Plant Biol. doi: 10.1111/jipb.13159

Li, B., Ferreira, M. A., Huang, M., Camargos, L. F., Yu, X., Teixeira, R. M., 
et al. (2019). The receptor-like kinase NIK1 targets FLS2/BAK1 immune 
complex and inversely modulates antiviral and antibacterial immunity. Nat. 
Commun. 10:4996. doi: 10.1038/s41467-019-12847-6

Li, M., Sun, X., Di, D., Zhang, A., Qing, L., Zhou, T., et al. (2020). Maize 
AKINβγ proteins interact with P8 of rice black streaked dwarf virus and 
inhibit viral infection. Viruses 12:1387. doi: 10.3390/v12121387

Li, J. F., Zhang, D., and Sheen, J. (2014). Epitope-tagged protein-based artificial 
miRNA screens for optimized gene silencing in plants. Nat. Protoc. 9, 
939–949. doi: 10.1038/nprot.2014.061

Lim, G. H., Singhal, R., Kachroo, A., and Kachroo, P. (2017). Fatty acid- and 
lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 55, 505–536. 
doi: 10.1146/annurev-phyto-080516-035406

Lin, H. Y., Chen, J. C., and Fang, S. C. (2018). A protoplast transient expression 
system to enable molecular, cellular, and functional studies in phalaenopsis 
orchids. Front. Plant Sci. 9:843. doi: 10.3389/fpls.2018.00843

Lin, Y.-C., Li, W., Chen, H., Li, Q., Sun, Y.-H., Shi, R., et al. (2014). A simple 
improved-throughput xylem protoplast system for studying wood formation. 
Nat. Protoc. 9, 2194–2205. doi: 10.1038/nprot.2014.147

Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., et al. (2009). Carbon 
nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 
1007–1010. doi: 10.1021/nl803083u

Liu, Z., Jia, Y., Ding, Y., Shi, Y., Li, Z., Guo, Y., et al. (2017). Plasma membrane 
CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear 
import to fine-tune CBF signaling during cold response. Mol. Cell 66, 117.
e5–128.e5. doi: 10.1016/j.molcel.2017.02.016

Liu, C., Ou, S., Mao, B., Tang, J., Wang, W., Wang, H., et al. (2018). Early 
selection of bZIP73 facilitated adaptation of japonica rice to cold climates. 
Nat. Commun. 9:3302. doi: 10.1038/s41467-018-05753-w

Liya, M., Huan, Z., Lirong, S., Yiheng, J., Guozeng, Z., Chen, M., et al. (2012). 
NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation 
of Na+/K+ homeostasis in Arabidopsis under salt stress. J. Exp. Bot. 63, 
305–317. doi: 10.1093/jxb/err280

Long, Y., Stahl, Y., Weidtkamp-Peters, S., Smet, W., Du, Y., Gadella, T. W. J. 
J., et al. (2018). Optimizing FRET-FLIM labeling conditions to detect nuclear 
protein interactions at native expression levels in living Arabidopsis roots. 
Front. Plant Sci. 9:639. doi: 10.3389/fpls.2018.00639

Ma, X., Claus, L. A. N., Leslie, M. E., Tao, K., Wu, Z., Liu, J., et al. (2020). 
Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature 
581, 199–203. doi: 10.1038/s41586-020-2210-3

Maintz, J., Cavdar, M., Tamborski, J., Kwaaitaal, M., Huisman, R., Meesters, C., 
et al. (2014). Comparative analysis of MAMP-induced calcium influx in 
Arabidopsis seedlings and protoplasts. Plant Cell Physiol. 55, 1813–1825. 
doi: 10.1093/pcp/pcu112

Malinovsky, F. G. (2014). The role of the cell wall in plant immunity. Front. 
Plant Sci. 5:178. doi: 10.3389/fpls.2014.00178

Mamode Cassim, A., Gouguet, P., Gronnier, J., Laurent, N., Germain, V., 
Grison, M., et al. (2019). Plant lipids: key players of plasma membrane 
organization and function. Prog. Lipid Res. 73, 1–27. doi: 10.1016/j.
plipres.2018.11.002

Martinière, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., 
Luu, D. T., et al. (2012). Cell wall constrains lateral diffusion of plant 
plasma-membrane proteins. Proc. Natl. Acad. Sci. U. S. A. 109, 12805–12810. 
doi: 10.1073/pnas.1202040109

Menzel, W., Stenzel, I., Helbig, L., Krishnamoorthy, P., Neumann, S., 
Eschen-Lippold, L., et al. (2019). A PAMP-triggered MAPK cascade inhibits 
phosphatidylinositol 4,5-bisphosphate production by PIP5K6  in Arabidopsis 
thaliana. New Phytol. 224, 833–847. doi: 10.1111/nph.16069

Miao, Y., and Jiang, L. (2007). Transient expression of fluorescent fusion proteins 
in protoplasts of suspension cultured cells. Nat. Protoc. 2, 2348–2353. doi: 
10.1038/nprot.2007.360

Milewska-Hendel, A., Zubko, M., Stróż, D., and Kurczyńska, E. (2019). Effect 
of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots 
development and their movement into the root cells and protoplasts. Int. 
J. Mol. Sci. 20:1650. doi: 10.3390/ijms20071650

Moon, S.-J., Min, M. K., Kim, J.-A., Kim, D. Y., Yoon, I. S., Kwon, T. R., 
et al. (2019). Ectopic expression of OsDREB1G, a member of the OsDREB1 
subfamily, confers cold stress tolerance in rice. Front. Plant Sci. 10:297. doi: 
10.3389/fpls.2019.00297

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1093/pcp/pcv063
https://doi.org/10.1038/nprot.2006.201
https://doi.org/10.1016/j.bbapap.2014.10.004
https://doi.org/10.1074/mcp.T500024-MCP200
https://doi.org/10.1074/mcp.T600044-MCP200
https://doi.org/10.1021/acs.accounts.6b00517
https://doi.org/10.1016/j.chembiol.2013.11.009
https://doi.org/10.1016/j.chembiol.2013.11.009
https://doi.org/10.1016/j.ecoenv.2018.12.016
https://doi.org/10.1038/27240
https://doi.org/10.1007/s11738-010-0581-z
https://doi.org/10.1105/tpc.16.00043
https://doi.org/10.1002/pld3.21
https://doi.org/10.3389/fpls.2016.01168
https://doi.org/10.1104/pp.19.01464
https://doi.org/10.1104/pp.19.01464
https://doi.org/10.4161/psb.28824
https://doi.org/10.1023/A:1004886115326
https://doi.org/10.1126/science.aan6874
https://doi.org/10.1126/science.aan6874
https://doi.org/10.1002/smll.201802086
https://doi.org/10.1002/smll.201802086
https://doi.org/10.1186/s12284-017-0145-6
https://doi.org/10.1371/journal.pone.0027364
https://doi.org/10.1371/journal.pone.0027364
https://doi.org/10.1111/jipb.13159
https://doi.org/10.1038/s41467-019-12847-6
https://doi.org/10.3390/v12121387
https://doi.org/10.1038/nprot.2014.061
https://doi.org/10.1146/annurev-phyto-080516-035406
https://doi.org/10.3389/fpls.2018.00843
https://doi.org/10.1038/nprot.2014.147
https://doi.org/10.1021/nl803083u
https://doi.org/10.1016/j.molcel.2017.02.016
https://doi.org/10.1038/s41467-018-05753-w
https://doi.org/10.1093/jxb/err280
https://doi.org/10.3389/fpls.2018.00639
https://doi.org/10.1038/s41586-020-2210-3
https://doi.org/10.1093/pcp/pcu112
https://doi.org/10.3389/fpls.2014.00178
https://doi.org/10.1016/j.plipres.2018.11.002
https://doi.org/10.1016/j.plipres.2018.11.002
https://doi.org/10.1073/pnas.1202040109
https://doi.org/10.1111/nph.16069
https://doi.org/10.1038/nprot.2007.360
https://doi.org/10.3390/ijms20071650
https://doi.org/10.3389/fpls.2019.00297


Gilliard et al. Protoplasts to Investigate Plant Stress

Frontiers in Plant Science | www.frontiersin.org 14 October 2021 | Volume 12 | Article 749581

Mueller, K., Bittel, P., Chinchill, D., Jehle, A. K., Albert, M., Boller, T., et al. 
(2012). Chimeric FLS2 receptors reveal the basis for differential flagellin 
perception in Arabidopsis and tomato. Plant Cell 24, 2213–2224. doi: 10.1105/
tpc.112.096073

Nagano, M., Ishikawa, T., Fujiwara, M., Fukao, Y., Kawano, Y., Kawai-Yamada, M., 
et al. (2016). Plasma membrane microdomains are essential for Rac1-
RbohB/H-mediated immunity in rice. Plant Cell 28, 1966–1983. doi: 10.1105/
tpc.16.00201

Nakagawa, Y., Katagiri, T., Shinozaki, K., Qi, Z., Tatsumi, H., Furuichi, T., 
et al. (2007). Arabidopsis plasma membrane protein crucial for Ca2+ influx 
and touch sensing in roots. Proc. Natl. Acad. Sci. U. S. A. 104, 3639–3944. 
doi: 10.1073/pnas.0607703104

Neelakandan, A. K., and Wang, K. (2012). Recent progress in the understanding 
of tissue culture-induced genome level changes in plants and potential 
applications. Plant Cell Rep. 31, 597–620. doi: 10.1007/s00299-011-1202-z

Nelson, B. K., Cai, X., and Nebenführ, A. (2007). A multicolored set of in  vivo 
organelle markers for co-localization studies in Arabidopsis and other plants. 
Plant J. 51, 1126–1136. doi: 10.1111/j.1365-313X.2007.03212.x

Nicolia, A., Fält, A.-S., Hofvander, P., and Handersson, M. (2021). “Protoplast-
based method for genome editing in tetraploid potato,” in Crop Breeding: 
Genetic Improvement Methods in Molecular Biology. ed. Tripodi (New York, 
NY: Springer US), 177–186.

Park, W., Kim, H.-S., Park, T.-W., Lee, Y.-H., and Ahn, S.-J. (2017). Functional 
characterization of plasma membrane-localized organic acid transporter 
(CsALMT1) involved in aluminum tolerance in Camelina sativa L. Plant 
Biotechnol. Rep. 11, 181–192. doi: 10.1007/s11816-017-0441-z

Pasternak, T., Lystvan, K., Betekhtin, A., and Hasterok, R. (2020). From single 
cell to plants: mesophyll protoplasts as a versatile system for investigating 
plant cell reprogramming. Int. J. Mol. Sci. 21:4195. doi: 10.3390/ijms21124195

Pecher, P., Eschen-Lippold, L., Herklotz, S., Kuhle, K., Naumann, K., Bethke, G., 
et al. (2014). The Arabidopsis thaliana mitogen-activated protein kinases 
MPK3 and MPK6 target a subclass of ‘VQ-motif ’-containing proteins to 
regulate immune responses. New Phytol. 203, 592–606. doi: 10.1111/nph.12817

Petropoulou, Y., Manetas, Y., and Gavalas, N. A. (1990). Intact mesophyll 
protoplasts from Zea mays as a source of phosphoenolpyruvate carboxylase 
unaffected by extraction: advantages and limitations. Physiol. Plant. 80, 
605–611. doi: 10.1111/j.1399-3054.1990.tb05685.x

Pham, A. Q., Cho, S.-H., Nguyen, C. T., and Stacey, G. (2020). Arabidopsis 
lectin receptor kinase P2K2 is a second plant receptor for extracellular ATP 
and contributes to innate immunity. Plant Physiol. 183, 1364–1375. doi: 
10.1104/pp.19.01265

Poot-Poot, W., Rodas-Junco, B. A., Muñoz-Sánchez, J. A., and 
Hernández-Sotomayor, S. M. T. (2016). Protoplasts: a friendly tool to study 
aluminum toxicity and coffee cell viability. Springerplus 5:1452. doi: 10.1186/
s40064-016-3140-2

Qiu, L., Wang, Y., and Qu, H. (2020). Loading calcium fluorescent probes into 
protoplasts to detect calcium in the flesh tissue cells of Malus domestica. 
Hortic. Res. 7:91. doi: 10.1038/s41438-020-0315-3

Ramon, M., Dang, T. V. T., Broeckx, T., Hulsmans, S., Crepin, N., Sheen, J., 
et al. (2019). Default activation and nuclear translocation of the plant cellular 
energy sensor snrk1 regulate metabolic stress responses and development. 
Plant Cell 31, 1614–1632. doi: 10.1105/tpc.18.00500

Rios, A. F., Radoeva, T., De Rybel, B., Weijers, D., and Borst, J. W. (2017). 
“FRET-FLIM for visualizing and quantifying protein interactions in live 
plant cells,” in Plant Hormones: Methods and Protocols. Methods in Molecular 
Biology. Vol. 1497. eds. J. Kleine-Vehn and M. Sauer (New York, NY: Springer), 
135–146.

Saijo, Y., and Loo, E. P. (2020). Plant immunity in signal integration between biotic 
and abiotic stress responses. New Phytol. 225, 87–104. doi: 10.1111/nph.15989

Sakai, K., Charlot, F., Le Saux, T., Bonhomme, S., Nogué, F., Palauqui, J.-C., 
et al. (2019). Design of a comprehensive microfluidic and microscopic toolbox 
for the ultra-wide spatio-temporal study of plant protoplasts development 
and physiology. Plant Methods 15:79. doi: 10.1186/s13007-019-0459-z

Sangra, A., Shahin, L., and Dhir, S. K. (2019). Optimization of isolation and 
culture of protoplasts in alfalfa (Medicago sativa) cultivar Regen-SY. Am. J. 
Plant Sci. 10, 1206–1219. doi: 10.4236/ajps.2019.107086

Santos, C. L. V., Pourrut, B., and Ferreira de Oliveira, J. M. P. (2015). The 
use of comet assay in plant toxicology: recent advances. Front. Genet. 6:216. 
doi: 10.3389/fgene.2015.00216

Saur, I. M. L., Bauer, S., Lu, X., and Schulze-Lefert, P. (2019). A cell death 
assay in barley and wheat protoplasts for identification and validation of 
matching pathogen AVR effector and plant NLR immune receptors. Plant 
Methods 15:118. doi: 10.1186/s13007-019-0502-0

Schellenberger, R., Touchard, M., Clément, C., Baillieul, F., Cordelier, S., 
Crouzet, J., et al. (2019). Apoplastic invasion patterns triggering plant 
immunity: plasma membrane sensing at the frontline. Mol. Plant Pathol. 
20, 1602–1616. doi: 10.1111/mpp.12857

Shan, X., Li, Y., Zhou, L., Tong, L., Wei, C., Qiu, L., et al. (2019). Efficient 
isolation of protoplasts from freesia callus and its application in transient 
expression assays. Plant Cell Tissue Organ Cult. 138, 529–541. doi: 10.1007/
s11240-019-01649-9

Sharma, M., Bennewitz, B., and Klösgen, R. B. (2018). Dual or not dual? – 
comparative analysis of fluorescence microscopy-based approaches to study 
organelle targeting specificity of nuclear-encoded plant proteins. Front. Plant 
Sci. 9:1350. doi: 10.3389/fpls.2018.01350

Shaw, R., Tian, X., and Xu, J. (2021). Single-cell transcriptome analysis in 
plants: advances and challenges. Mol. Plant 14, 115–126. doi: 10.1016/j.
molp.2020.10.012

Sheen, J. (2001). Signal transduction in maize and Arabidopsis mesophyll 
protoplasts. Plant Physiol. 127, 1466–1475. doi: 10.1104/pp.010820

Sheikh, A. H., Eschen-Lippold, L., Pecher, P., Hoehenwarter, W., Sinha, A. K., 
Scheel, D., et al. (2016). Regulation of WRKY46 transcription factor function 
by mitogen-activated protein kinases in Arabidopsis thaliana. Front. Plant 
Sci. 7:61. doi: 10.3389/fpls.2016.00061

Shen, J., Suen, P. K., Wang, X., Lin, Y., Lo, S. W., Rojo, E., et al. (2013). An 
in vivo expression system for the identification of cargo proteins of vacuolar 
sorting receptors in Arabidopsis culture cells. Plant J. 75, 1003–1017. doi: 
10.1111/tpj.12257

Souza, C. d. A., Li, S., Lin, A. Z., Boutrot, F., Grossmann, G., Zipfel, C., et al. 
(2020). Cellulose-derived oligomers act as damage-associated molecular 
patterns and trigger defense-like responses. Plant Physiol. 173, 2383–2398. 
doi: 10.1104/pp.16.01680

Struk, S., Jacobs, A., Martín-Fontecha, E. S., Gevaert, K., Cubas, P., and 
Goormachtig, S. (2019). Exploring the protein–protein interaction landscape 
in plants. Plant Cell Environ. 42, 387–409. doi: 10.1111/pce.13433

Sze, H., and Chanroj, S. (2018). Plant endomembrane dynamics: studies of 
K+/H+ antiporters provide insights on the effects of pH and ion homeostasis. 
Plant Physiol. 177, 875–895. doi: 10.1104/pp.18.00142

Tagawa, S., and Kondo, T. (2018). Secretion of a callose hollow fiber from 
herbaceous plant protoplasts induced by inhibition of cell wall formation. 
J. Wood Sci. 64, 467–476. doi: 10.1007/s10086-018-1726-8

Tagawa, S., Yamagishi, Y., Watanabe, U., Funada, R., and Kondo, T. (2019). 
Dynamics of structural polysaccharides deposition on the plasma-membrane 
surface of plant protoplasts during cell wall regeneration. J. Wood Sci. 65:47. 
doi: 10.1186/s10086-019-1826-0

Takahashi, Y., Zhang, J., Hsu, P. K., Ceciliato, P. H. O., Zhang, L., Dubeaux, G., 
et al. (2020). MAP3Kinase-dependent SnRK2-kinase activation is required 
for abscisic acid signal transduction and rapid osmotic stress response. Nat. 
Commun. 11:12. doi: 10.1038/s41467-019-13875-y

Takai, R., Kaneda, T., Isogai, A., Takayama, S., and Che, F. S. (2007). A new 
method of defense response analysis using a transient expression system 
in rice protoplasts. Biosci. Biotechnol. Biochem. 71, 590–593. doi: 10.1271/
bbb.60526

Thévenin, J., Dubos, C., Xu, W., Gourrierec, J. L., Kelemen, Z., Charlot, F., 
et al. (2012). A new system for fast and quantitative analysis of heterologous 
gene expression in plants. New Phytol. 193, 504–512. doi: 
10.1111/j.1469-8137.2011.03936.x

Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D., et al. (2019). 
A calmodulin-gated calcium channel links pathogen patterns to plant immunity. 
Nature 572, 131–135. doi: 10.1038/s41586-019-1413-y

Torney, F., Trewyn, B. G., Lin, V. S.-Y., and Wang, K. (2007). Mesoporous 
silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 
2, 295–300. doi: 10.1038/nnano.2007.108

Tripathi, D., Nam, A., Oldenburg, D. J., and Bendich, A. J. (2020). Reactive 
oxygen species, antioxidant agents, and DNA damage in developing maize 
mitochondria and plastids. Front. Plant Sci. 11:596. doi: 10.3389/fpls.2020.00596

Underwood, W., Ryan, A., and Somerville, S. C. (2017). An Arabidopsis lipid 
flippase is required for timely recruitment of defenses to the host–pathogen 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1105/tpc.112.096073
https://doi.org/10.1105/tpc.112.096073
https://doi.org/10.1105/tpc.16.00201
https://doi.org/10.1105/tpc.16.00201
https://doi.org/10.1073/pnas.0607703104
https://doi.org/10.1007/s00299-011-1202-z
https://doi.org/10.1111/j.1365-313X.2007.03212.x
https://doi.org/10.1007/s11816-017-0441-z
https://doi.org/10.3390/ijms21124195
https://doi.org/10.1111/nph.12817
https://doi.org/10.1111/j.1399-3054.1990.tb05685.x
https://doi.org/10.1104/pp.19.01265
https://doi.org/10.1186/s40064-016-3140-2
https://doi.org/10.1186/s40064-016-3140-2
https://doi.org/10.1038/s41438-020-0315-3
https://doi.org/10.1105/tpc.18.00500
https://doi.org/10.1111/nph.15989
https://doi.org/10.1186/s13007-019-0459-z
https://doi.org/10.4236/ajps.2019.107086
https://doi.org/10.3389/fgene.2015.00216
https://doi.org/10.1186/s13007-019-0502-0
https://doi.org/10.1111/mpp.12857
https://doi.org/10.1007/s11240-019-01649-9
https://doi.org/10.1007/s11240-019-01649-9
https://doi.org/10.3389/fpls.2018.01350
https://doi.org/10.1016/j.molp.2020.10.012
https://doi.org/10.1016/j.molp.2020.10.012
https://doi.org/10.1104/pp.010820
https://doi.org/10.3389/fpls.2016.00061
https://doi.org/10.1111/tpj.12257
https://doi.org/10.1104/pp.16.01680
https://doi.org/10.1111/pce.13433
https://doi.org/10.1104/pp.18.00142
https://doi.org/10.1007/s10086-018-1726-8
https://doi.org/10.1186/s10086-019-1826-0
https://doi.org/10.1038/s41467-019-13875-y
https://doi.org/10.1271/bbb.60526
https://doi.org/10.1271/bbb.60526
https://doi.org/10.1111/j.1469-8137.2011.03936.x
https://doi.org/10.1038/s41586-019-1413-y
https://doi.org/10.1038/nnano.2007.108
https://doi.org/10.3389/fpls.2020.00596


Gilliard et al. Protoplasts to Investigate Plant Stress

Frontiers in Plant Science | www.frontiersin.org 15 October 2021 | Volume 12 | Article 749581

interface at the plant cell surface. Mol. Plant 10, 805–820. doi: 10.1016/j.
molp.2017.04.003

Wang, X., Feng, C., Tian, L., Hou, C., Tian, W., Hu, B., et al. (2021). A 
transceptor–channel complex couples nitrate sensing to calcium signaling 
in Arabidopsis. Mol. Plant 14, 774–786. doi: 10.1016/j.molp.2021.02.005

Wang, A., Jin, Q., Xu, X., Miao, A., White, J. C., Gardea-Torresdey, J. L., et al. 
(2020a). High-throughput screening for engineered nanoparticles that enhance 
photosynthesis using mesophyll protoplasts. J. Agric. Food Chem. 68, 3382–3389. 
doi: 10.1021/acs.jafc.9b06429

Wang, F., Jing, W., and Zhang, W. (2014). The mitogen-activated protein kinase 
cascade MKK1-MPK4 mediates salt signaling in rice. Plant Sci. 227, 181–189. 
doi: 10.1016/j.plantsci.2014.08.007

Wang, F.-Z., Zhang, N., Guo, Y.-J., Gong, B.-Q., and Li, J.-F. (2020b). Split 
Nano luciferase complementation for probing protein-protein interactions 
in plant cells. J. Integr. Plant Biol. 62, 1065–1079. doi: 10.1111/jipb.12891

Wani, S. H., Anand, S., Singh, B., Bohra, A., and Joshi, R. (2021). WRKY 
transcription factors and plant defense responses: latest discoveries and future 
prospects. Plant Cell Rep. 40, 1071–1085. doi: 10.1007/s00299-021-02691-8

Watanabe, M., Setoguchi, D., Uehara, K., Ohtsuka, W., and Watanabe, Y. (2002). 
Apoptosis-like cell death of Brassica napus leaf protoplasts. New Phytol. 
156, 417–426. doi: 10.1046/j.1469-8137.2000.00536.x

Wehner, N., Hartmann, L., Ehlert, A., Böttner, S., Oñate-Sánchez, L., and 
Dröge-Laser, W. (2011). High-throughput protoplast transactivation (PTA) 
system for the analysis of Arabidopsis transcription factor function. Plant 
J. 68, 560–569. doi: 10.1111/j.1365-313X.2011.04704.x

Weibull, C. (1953). The isolation of protoplasts from bacillus megaterium by 
controlled treatment with lysozyme. J. Bacteriol. 66, 688–695. doi: 10.1128/
jb.66.6.688-695.1953

Wu, F., Chi, Y., Jiang, Z., Xu, Y., Xie, L., Huang, F., et al. (2020a). Hydrogen 
peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 
578, 577–581. doi: 10.1038/s41586-020-2032-3

Wu, H. Y., Liu, K. H., Wang, Y. C., Wu, J. F., Chiu, W. L., Chen, C. Y., et al. 
(2014a). AGROBEST: an efficient agrobacterium-mediated transient expression 
method for versatile gene function analyses in Arabidopsis seedlings. Plant 
Methods 10:19. doi: 10.1186/1746-4811-10-19

Wu, S., Shan, L., and He, P. (2014b). Microbial signature-triggered plant defense 
responses and early signaling mechanisms. Plant Sci. 228, 118–126. doi: 
10.1016/j.plantsci.2014.03.001

Wu, S., Zhu, H., Liu, J., Yang, Q., Shao, X., Bi, F., et al. (2020b). Establishment 
of a PEG-mediated protoplast transformation system based on DNA and 
CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biol. 
20:425. doi: 10.1186/s12870-020-02609-8

Xing, T., and Wang, X. (2015). Protoplasts in plant signaling analysis: moving 
forward in the omics era. Botany 93, 325–332. doi: 10.1139/cjb-2014-0219

Yang, J., Liu, S., Ji, L., Tang, X., Zhu, Y., and Xie, G. (2020). Identification of 
novel OsCML16 target proteins and differential expression analysis under 
abiotic stresses in rice. J. Plant Physiol. 249:153165. doi: 10.1016/j.
jplph.2020.153165

Ye, K., Li, H., Ding, Y., Shi, Y., Song, C., Gong, Z., et al. (2019). 
BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of 
transcription factor ICE1  in response to cold stress in Arabidopsis. Plant 
Cell 31, 2682–2696. doi: 10.1105/tpc.19.00058

Yeh, Y.-H., Chang, Y.-H., Huang, P.-Y., Huang, J.-B., and Zimmerli, L. (2015). 
Enhanced Arabidopsis pattern-triggered immunity by overexpression of 
cysteine-rich receptor-like kinases. Front. Plant Sci. 6:322. doi: 10.3389/
fpls.2015.00322

Yekondi, S., Liang, F.-C., Okuma, E., Radziejwoski, A., Mai, H.-W., Swain, S., 
et al. (2018). Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-
VII.1  in controlling stomatal immunity and jasmonate-mediated stomatal 
closure. New Phytol. 218, 253–268. doi: 10.1111/nph.14953

Yemelyanov, V. V., Chirkova, T. V., Shishova, M. F., and Lindberg, S. M. (2020). 
Potassium efflux and cytosol acidification as primary anoxia-induced events 
in wheat and rice seedlings. Plan. Theory 9:1216. doi: 10.3390/plants9091216

Yokoyama, R., Kuki, H., Kuroha, T., and Nishitani, K. (2016). Arabidopsis 
regenerating protoplast: a powerful model system for combining the proteomics 

of cellwall proteins and the visualization of cell wall dynamics. Proteomes 
4:34. doi: 10.3390/proteomes4040034

Yoo, S. D., Cho, Y. H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: 
a versatile cell system for transient gene expression analysis. Nat. Protoc. 
2, 1565–1572. doi: 10.1038/nprot.2007.199

Yoshioka, K., and Moeder, W. (2020). Calcium channel helps shut the door 
on intruders. Nature 585, 507–508. doi: 10.1038/d41586-020-02504-0

Yu, X., Feng, B., He, P., and Shan, L. (2017). From chaos to harmony: responses 
and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 
55, 109–137. doi: 10.1146/annurev-phyto-080516-035649

Yu, X., Xu, G., Li, B., de Souza Vespoli, L., Liu, H., Moeder, W., et al. (2019). 
The receptor kinases BAK1/SERK4 regulate Ca2+ channel-mediated cellular 
homeostasis for cell death containment. Curr. Biol. 29, 3778.e8–3790.e8. 
doi: 10.1016/j.cub.2019.09.018

Yu, Y., Yu, P.-C., Chang, W.-J., Yu, K., and Lin, C.-S. (2020). Plastid transformation: 
how does it work? Can it be  applied to crops? What can it offer? Int. J. 
Mol. Sci. 21:4854. doi: 10.3390/ijms21144854

Zhang, M., Hu, S., Yi, F., Gao, Y., Zhu, D., Wang, Y., et al. (2021). Organelle 
visualization with multicolored fluorescent markers in bamboo. Front. Plant 
Sci. 12:552. doi: 10.3389/fpls.2021.658836

Zhang, Q.-F., Li, J., Bi, F.-C., Liu, Z., Chang, Z.-Y., Wang, L.-Y., et al. (2020). 
Ceramide-induced cell death depends on calcium and caspase-like activity 
in rice. Front. Plant Sci. 11:145. doi: 10.3389/fpls.2020.00145

Zhang, X., Wang, L., He, C., and Luo, H. (2016). An efficient transient mesophyll 
protoplast system for investigation of the innate immunity responses in the 
rubber tree (Hevea brasiliensis). Plant Cell Tissue Organ Cult. 126, 281–290. 
doi: 10.1007/s11240-016-0997-2

Zhao, C., Randall, D., Holford, P., Haigh, A. M., and Chen, Z. H. (2019). 
Isolation of high purity guard cell protoplasts of Arabidopsis thaliana for 
omics research. Plant Growth Regul. 89, 37–47. doi: 10.1007/s10725-019- 
00520-3

Zheng, X., Kang, S., Jing, Y., Ren, Z., Li, L., Zhou, J. M., et al. (2018). Danger-
associated peptides close stomata by OST1-independent activation of anion 
channels in guard cells. Plant Cell 30, 1132–1146. doi: 10.1105/tpc.17.00701

Zhou, Q., Jiang, Z., Li, Y., Zhang, T., Zhu, H., Zhao, F., et al. (2019). Mesophyll 
protoplast isolation technique and flow cytometry analysis of ancient Platycladus 
orientalis (Cupressaceae). Turk. J. Agric. For. 43, 275–287. doi: 10.3906/
tar-1805-62

Zhou, J., and Zhang, Y. (2020). Plant immunity: danger perception and signaling. 
Cell 181, 978–989. doi: 10.1016/j.cell.2020.04.028

Zhu, J. (2016). Review abiotic stress signaling and responses in plants. Cell 
167, 313–324. doi: 10.1016/j.cell.2016.08.029

Zhu, D., Zhang, M., Gao, C., and Shen, J. (2020). Protein trafficking in plant 
cells: tools and markers. Sci. China Life Sci. 63, 343–363. doi: 10.1007/
s11427-019-9598-3

Zipfel, C., and Oldroyd, G. E. D. (2017). Plant signalling in symbiosis and 
immunity. Nature 543, 328–336. doi: 10.1038/nature22009

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2021 Gilliard, Huby, Cordelier, Ongena, Dhondt-Cordelier and Deleu. 
This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) and the copyright owner(s) are credited 
and that the original publication in this journal is cited, in accordance with accepted 
academic practice. No use, distribution or reproduction is permitted which does 
not comply with these terms.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1016/j.molp.2017.04.003
https://doi.org/10.1016/j.molp.2017.04.003
https://doi.org/10.1016/j.molp.2021.02.005
https://doi.org/10.1021/acs.jafc.9b06429
https://doi.org/10.1016/j.plantsci.2014.08.007
https://doi.org/10.1111/jipb.12891
https://doi.org/10.1007/s00299-021-02691-8
https://doi.org/10.1046/j.1469-8137.2000.00536.x
https://doi.org/10.1111/j.1365-313X.2011.04704.x
https://doi.org/10.1128/jb.66.6.688-695.1953
https://doi.org/10.1128/jb.66.6.688-695.1953
https://doi.org/10.1038/s41586-020-2032-3
https://doi.org/10.1186/1746-4811-10-19
https://doi.org/10.1016/j.plantsci.2014.03.001
https://doi.org/10.1186/s12870-020-02609-8
https://doi.org/10.1139/cjb-2014-0219
https://doi.org/10.1016/j.jplph.2020.153165
https://doi.org/10.1016/j.jplph.2020.153165
https://doi.org/10.1105/tpc.19.00058
https://doi.org/10.3389/fpls.2015.00322
https://doi.org/10.3389/fpls.2015.00322
https://doi.org/10.1111/nph.14953
https://doi.org/10.3390/plants9091216
https://doi.org/10.3390/proteomes4040034
https://doi.org/10.1038/nprot.2007.199
https://doi.org/10.1038/d41586-020-02504-0
https://doi.org/10.1146/annurev-phyto-080516-035649
https://doi.org/10.1016/j.cub.2019.09.018
https://doi.org/10.3390/ijms21144854
https://doi.org/10.3389/fpls.2021.658836
https://doi.org/10.3389/fpls.2020.00145
https://doi.org/10.1007/s11240-016-0997-2
https://doi.org/10.1007/s10725-019-00520-3
https://doi.org/10.1007/s10725-019-00520-3
https://doi.org/10.1105/tpc.17.00701
https://doi.org/10.3906/tar-1805-62
https://doi.org/10.3906/tar-1805-62
https://doi.org/10.1016/j.cell.2020.04.028
https://doi.org/10.1016/j.cell.2016.08.029
https://doi.org/10.1007/s11427-019-9598-3
https://doi.org/10.1007/s11427-019-9598-3
https://doi.org/10.1038/nature22009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response
	Introduction
	Protoplasts as Tools in Biomolecular Studies
	Functional Screening of Proteins
	Protein Location and Trafficking
	Detection of Protein–Protein Interaction
	Detection of Kinase Activity and Protein Phosphorylation
	Complementarity of Biomolecular Assays Performed on Protoplasts and Whole Cells

	The Versatility of Fluorescent Probes on Protoplasts
	Cell Viability and DNA Damages
	Cell Wall Dynamics
	Plasma Membrane Dynamics
	Detection of Early Stress Signaling Events

	Protoplasts and Patch-Clamp Electrophysiology
	Challenges and Future Perspectives
	Author Contributions

	References

