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Nitrogen is the most limiting nutrient for turfgrass growth. Instead of pursuing the
maximum yield, most turfgrass managers use nitrogen (N) to maintain a sub-maximal
growth rate. Few tools or soil tests exist to help managers guide N fertilizer decisions.
Turf growth prediction models have the potential to be useful, but the currently existing
turf growth prediction model only takes temperature into account, limiting its accuracy.
This study developed machine-learning-based turf growth models using the random
forest (RF) algorithm to estimate short-term turfgrass clipping yield. To build the RF
model, a large set of variables were extracted as predictors including the 7-day weather,
traffic intensity, soil moisture content, N fertilization rate, and the normalized difference
red edge (NDRE) vegetation index. In this study, the data were collected from two putting
greens where the turfgrass received 0 to 1,800 round/week traffic rates, various irrigation
rates to maintain the soil moisture content between 9 and 29%, and N fertilization rates
of 0 to 17.5 kg ha−1 applied biweekly. The RF model agreed with the actual clipping
yield collected from the experimental results. The temperature and relative humidity were
the most important weather factors. Including NDRE improved the prediction accuracy
of the model. The highest coefficient of determination (R2) of the RF model was 0.64
for the training dataset and was 0.47 for the testing data set upon the evaluation of
the model. This represented a large improvement over the existing growth prediction
model (R2 = 0.01). However, the machine-learning models created were not able to
accurately predict the clipping production at other locations. Individual golf courses
can create customized growth prediction models using clipping volume to eliminate the
deviation caused by temporal and spatial variability. Overall, this study demonstrated the
feasibility of creating machine-learning-based yield prediction models that may be able
to guide N fertilization decisions on golf course putting greens and presumably other
turfgrass areas.

Keywords: turfgrass, nitrogen management, yield prediction, machine learning, random forest

INTRODUCTION

There are 34,011 golf courses in the world, and 45% of them (15,372 golf courses) are in the USA
according to a report in 2016. An average course has about 30 hectares of maintained turf, and
there are over 1,000,000 hectares of maintained turf on the golf courses in the USA. Golf course
turfgrass is usually intensively fertilized, and nitrogen (N) is applied in the greatest quantities out
of all nutrients. Gelernter et al. (2016) estimated that US golf courses use 55,333 mg of N annually.
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These N inputs pose a significant non-point source pollution risk
(Bock and Easton, 2020). Hence, there is a need to optimize N
management on golf courses.

Nitrogen fertilization is one of the most important
management practices that affect many characteristics of golf
course putting greens, including density, color, shoot and root
growth, wear and temperature tolerance, thatch accumulation,
and disease susceptibility (Beard, 1972; Carrow et al., 2002;
Frank and Guertal, 2013). Nitrogen is often the most limiting
nutrient on putting greens and is, therefore, an important driver
of plant growth. Relatively high annual N fertilization rates
result in verdant and aesthetically pleasing playing surfaces.
However, the rapid growth that results in increasing thatch
and soil organic matter content can reduce the function and
aesthetics of putting greens (Meinhold et al., 1973; Murray and
Juska, 1977; Throssell, 1981; Gaussoin et al., 2013). On the other
hand, if the N fertilization is relatively low, it can be hard for
putting greens to recover from ball marks and wear damage
which encourages weed invasion (algae, moss, annual bluegrass,
etc.) (Beard, 1972). Nitrogen management is clearly of great
importance to ensure the quality of putting greens, yet there are
only a few quantitative methods for determining or estimating
the N requirements of putting green turfs. Most turf managers
make N application decisions based on the visual appearance of
the turfgrass, performance, environmental concerns, and budget
(Throssell et al., 2009; Frank and Guertal, 2013), but rarely based
on the turfgrass growth rate and N removal from the clipping
harvest. Therefore, quantitative methods to assess N fertilization
requirements would represent an important advance in the
precision of N management of putting greens.

The N cycle of putting greens on sand root zones can be
simplified. Potential N loss pathways, including denitrification,
volatilization, runoff, and leaching, are typically negligible when
the best management practices are followed (Snyder et al., 1984;
Morton et al., 1988; Gross et al., 1990; Miltner et al., 1996;
Erickson et al., 2001, 2008). This leaves clipping removal as
the primary output of N, and N fertilization as the primary
input. When the clipping removal exceeds the N input, the soil
organic matter will decrease. When the annual N fertilization
exceeds the clipping removal, the soil organic matter will increase.
This very simple conceptual model highlights the importance of
quantifying N removal in clippings. Because the tissue N content
of creeping bentgrass is relatively stable, the annual N removal
can be approximated by the dry matter removed from mowing
(Kussow et al., 2012; Zhou and Soldat, accepted). Therefore, an
accurate grass yield production prediction model could be useful
for estimating the N removal from putting greens.

Generally, two methods are often used for plant yield
prediction: biophysical models and statistical models. Biophysical
models predict plant growth by stimulating plant growth,
nutrient cycling, as well as water and energy balance on
regular time steps. Briefly, a biophysical model simulates plant
growth based on physical and physiological processes. The
DAYCENT and CENTURY models (Bandaranayake et al., 2003;
Qian et al., 2003; Zhang et al., 2013b) are two agroecosystem
models that can be used for monitoring turf productivity, soil
organic matter changes, and environmental impacts caused

by different management practices. Despite their success, two
major limitations still exist in the biophysical models: (1) they
usually make relatively long-term yield predictions. However, for
turfgrass management on a golf course, especially on the greens,
a prediction at a finer scale (daily or weekly) is essential to guide
precision N fertilizer applications; (2) the model calibration is
quite challenging and requires intensive data collection from the
field to field, which is less practical to be widely used by turfgrass
managers. Although biophysical models often fail to represent
short-term turfgrass biomass production, they help provide
management decisions by successfully simulating soil organic
carbon and N dynamic with various management practices
(Bandaranayake et al., 2003; Qian et al., 2003; Chang et al., 2013)
and tracing the fluxes of carbon and N gases (Parton et al., 1998;
Del Grosso et al., 2006, 2008; Zhang et al., 2013a).

On the other hand, statistical models were developed by
establishing empirical relationships between input variables and
ground reference data. The most commonly used turfgrass yield
prediction model, the PACE Turf growth potential (GP) model
was proposed by Gelernter and Stowell (2005). The PACE Turf
GP model uses temperature to estimate the relative growth
potential of both warm-season and cool-season grasses. The
model assumes that 20◦C is optimal for cool-season grass growth.
When the average daily temperature is 20◦C, the growth potential
of cool-season turfgrass is at 100%, as the temperature increases
or decreases from 20◦C, the relative growth potential decreases
until it approaches 0% near 0 and 40◦C. The disadvantage of
the model is that it requires users to make assumptions about
the actual growth rate at 100% relative growth. In addition,
this model fails to consider the factors that influence turfgrass
growth aside from temperature. More complex statistical models
can be constructed using more variables to fit historical data on
plant yields and weather to build empirical predictive algorithms.
The advantage of statistical models over biophysical models is
that statistical models require less extensive information on the
plant characteristics, management practices, soil, and canopy
conditions, and statistical models are easier to calibrate using
existing data (Lobell and Burke, 2010).

Various machine learning models have been developed for
agricultural crop yield prediction including the linear regression
model (Bolton and Friedel, 2013; Ramesh and Vardhan, 2015),
support vector regression (Jaikla et al., 2008; Brdar et al., 2011),
and decision tree (Veenadhari et al., 2011). These approaches
only utilize a single regression model when making predictions,
and some machine learning models are only capable of solving
linear problems or are likely to occur overfitting when the
number of training data is limited (Pal, 2007). Overfitting
can cause the model to have high variance or make a poor
prediction on the testing data. With the increasing demand for
a more accurate yield prediction and guidance for precision
N management, studies have tested machine-learning models
that build on several base learners to avoid overfitting and
increase the prediction accuracy (Zhang and Crawford, 2015).
The ensemble methods, such as bagging and boosting, combine
the predictions of several models and are capable of solving non-
linear problems. These models also largely avoid overfitting and
usually have a higher prediction accuracy (Belgiu and Drăguţ,
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2016). Recently, ensemble models, such as the random forest
(RF) model which is a representative of the bagging ensemble
method, have been developed to predict crop yield in response to
climate variables (Lobell et al., 2007; Tulbure et al., 2012; Fukuda
et al., 2013; Newlands et al., 2014; Zhang et al., 2019), and has
been recognized as an important advancement for agricultural
industries (Everingham et al., 2016; Chlingaryan et al., 2018;
van Klompenburg et al., 2020). Random forest uses a decision
tree as a base learner and generates many decision trees in
parallel. The gradient boosting model is an example of a boosting
ensemble method, which also uses a decision tree as a base
learner, and has been used in agricultural crop yield prediction
(Charoen-Ung and Mittrapiyanuruk, 2018). Compared with RF,
the gradient boosting model builds shallower trees, and these
trees are generated based on the mistake of the previous trees.
Extreme gradient boosting was introduced recently and has
been recognized as an advanced gradient boosting method.
Extreme gradient boosting has been a winning tool for several
machine learning competitions (Phoboo, 2014) due to its high
efficiency and accuracy, and has been tested on agricultural crop
yield prediction (Herrero-Huerta et al., 2020). Agricultural and
turfgrass production systems have many important differences,
and therefore the ability of machine learning techniques to be
useful in turfgrass management needs to be tested to determine
their potential feasibility.

The goal of this study was to build and evaluate several
machine learning models and to predict golf courses putting
green creeping bentgrass yield. If successful, such models
could become decision support tools for N fertilization in golf
course management.

MATERIALS AND METHODS

Study Sites
The clipping yield data used to build the growth model were
obtained from a series of research trials conducted at the
University of Wisconsin-Madison O.J. Noer Turfgrass Research
and Education Facility located in Verona, WI, United States. The
field experiments were conducted on two different sand-based
putting green root zones from 2019 to 2020, both constructed
according to the recommendations of the US Golf Association
(USGA) (US Golf Association [USGA], 2004). The root zone
characteristics are reported in Table 1. The grass on both greens
was “Focus” creeping bentgrass (Agrostis stolonifera), which is
one of the most commonly used cool-season species for golf
course putting greens. The research plots were maintained using
typical practices of putting green maintenance at golf courses
with creeping bentgrass in the northern USA. The plots were
mowed five times a week at the height of 3.2 mm, irrigated daily
to replace evapotranspiration (ET) as estimated by an on-site
weather station (except when irrigation was a treatment), and
fertilized with approximately 100 kg N ha−1yr−1 split into 10
applications of 10 kg N ha−1 as urea (except when N fertilizer
was a treatment). The research areas were topdressed with
approximately 0.6 m3 ha−1 of sand every 3 weeks during the
growing seasons. Hollow tine cultivation was conducted once

TABLE 1 | Soil chemical properties of two putting green root zones used for
creating or evaluating the growth prediction models.

Depth
(cm)

SOMa

(%)
Pb K Ca Mg CECc

(cmol
kg−1)

pH

(mg kg−1)

Research
green 1

0 – 5 1.23 64.2 91.6 1210 295 8 7.5

5 – 10 0.55 17.0 25.5 579 144 4 7.3

Research
green 2

0 – 5 0.67 25.9 40.7 487 133 3 7.7

5 – 10 0.51 24.1 17.2 430 102 3 7.5

aSOM, soil organic matter by loss on ignition (360◦C for 2 h).
bnutrients extracted via Mehlich-3 method (Mehlich, 1984).
cCEC, cation exchange capacity via summation of extracted cations.

at the end of each growing season and the holes were filled
with topdressing sand. Diseases and other pests were controlled
as needed. To examine the feasibility of the machine learning
models for predicting the clipping production of creeping
bentgrass at locations other than the site where the models
were constructed, we evaluated the performance of the models
for the creeping bentgrass yield production at a golf course
within 20 km of Minneapolis, MN, United States; Minneapolis
is approximately 400 km northwest of the research site in
Madison, Wisconsin.

Management Practices Affecting Yield
To develop an accurate estimation of the turfgrass yield with a
machine learning model, it is critical to include the factors that
affect the growth rate of creeping bentgrass, thus, data from a
series of studies was used. The goal of this section is not to present
the results of the individual studies, but rather to utilize the data
from these studies for statistical model development. A brief and
partial description of the experiments from which the data were
obtained follows.

Experiment 1. Creeping Bentgrass Growth Response
to Soil Moisture Content, N Fertilization, and Traffic
The study was conducted in 2019 on the research greens listed in
Table 1 and was designed to explore the combined effects of N
fertilizer, walking traffic, and soil moisture content on creeping
bentgrass growth. The experimental design was a randomized
split-plot (1.2 m by 2.4 m) design with soil moisture level as the
main plots (3.6 m by 2.4 m) and the sub-plots received three
different traffic intensities. The N fertilizer rates were applied
as 0 and 5 kg N ha−1 biweekly. The soil moisture contents
were maintained at 9–15, 17–22, and 25–29% as measured by
time-domain reflectometry with 7.6 cm rods (FieldScout TDR
350, Spectrum Technologies, Aurora, IL, United States). These
soil moisture contents were selected to represent low, mid-
range, and excessive water content for the sand-based putting
green. The soil moisture was measured before each clipping
collection event, with three measurements averaged to represent
the moisture in each plot. If the soil moisture was below the
assigned level, irrigation was then applied by hand watering to
meet the requirement. Three traffic intensities (control, medium,

Frontiers in Plant Science | www.frontiersin.org 3 November 2021 | Volume 12 | Article 749854

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-749854 January 19, 2022 Time: 13:39 # 4

Zhou and Soldat Creeping Bentgrass Yield Prediction

and high) were given based on an observational trial conducted
by Hathaway and Nikolai (2005) at the Forest Akers West Golf
Course on the 13th green around the hole in East Lansing,
MI, United States. Then, traffic was applied by five researchers
by walking on the plots wearing golf shoes at a speed of 95
steps/min between 1,300 and 1,500 h from Monday through
Friday until the treatments reached the assigned weekly traffic
intensity requirement. The high traffic intensity plot received
around 760 steps/week which represented 1,400 rounds/week, the
medium traffic intensity plot received about 380 steps/week that
represented 700 rounds/week, and the control plot that did not
receive traffic treatment.

Experiment 2. Creeping Bentgrass Growth Response
to a Wider Range of N Fertilization
The study was conducted in 2019 and 2020 on the two research
greens listed in Table 1 to monitor the creeping bentgrass growth
when a wide range of N fertilizer was applied. The experiment was
also completed with a randomized design with three replications
each, and each plot measured 1.2 × 2.4 m. The N fertilization
rate ranged from 0 to 17.5 kg N ha−1 biweekly using urea as
the N source. All the plots received a traffic intensity of 1,000
rounds/week and obtained regular disease control and irrigation
management as described above.

Clipping Data and Feature Selection
To build a machine-learning-based creeping bentgrass yield
prediction model, one of the essential elements is to have a
database of the historical clipping records from the field. We
collected the creeping bentgrass clippings from the two research
greens from 2019 to 2020 (Experiment 1 and 2). The clippings
from each research plot were collected approximately every
other day between 900 and 1,200 h (weather permitting) by
mowing a 1.9 m pass down the center of each plot using a 0.54-
m wide walking greens mower (Toro Co., Bloomington, MN,
United States). Before the clipping collection, 0.27 m wide alleys
were mowed at the top and bottom of each plot perpendicular
to the collection pass. This was done to reduce the variability
associated with starting and stopping the mower. The effective
clipping collection area for each plot was 1 m2. The clippings were
brushed from the mower bucket into paper bags, which were then
placed in an oven set to 50◦C for at least 48 h. Sand and other
debris were removed from the dried clipping samples using the
water method as described by Kreuser et al. (2011). Then, the dry
clipping mass was weighed and recorded.

The soil moisture content and normalized difference red
edge (NDRE) for each plot were recorded before the clippings
were collected. Vegetative indexes such as NDRE and the
normalized difference vegetation index (NDVI) started to be
widely researched and studies have shown its high correlation
with turfgrass quality (Fitz–Rodríguez and Choi, 2002; Bremer
et al., 2011). Both NDRE and NDVI rely on different wavelengths
of light. NDVI uses near-infrared red light and red light, and
can correlate with the vegetative health status at the top of a
plant canopy, but may not capture the vegetative health when
the canopy has several layers or the leaf area index of the canopy
is high. The turfgrass on putting greens is maintained at a very

high density. NDRE, which is collected by near-infrared light
and a red-edge band (a narrow wavelength between red light
and near-infrared red light), may result in a better indication of
the vegetative index of the dense turf because the red edge (RE)
band penetrates deeper into the turf canopy than the red band of
NDVI. Therefore, in this study, we used NDRE to represent the
turfgrass health status. The NDRE was collected using a handheld
device approximately 1 m above the canopy (Rapid SCAN CS-45,
Holland Scientific Inc., Lincoln, NE, United States).

The variables that were used as inputs when predicting
the yield included the (1) 3-day average soil moisture content
which means the average soil moisture content on the clipping
collection event and the one before; (2) average weekly traffic
intensity; (3) NDRE; (4) root zone of the two putting greens;
(5) cumulative days of turfgrass growth prior to mowing;
and (6) daily weather variables which obtained from nearest
weather station reported on Weather Underground (an open
online real-time weather information repository). These variables
included the daily maximum temperature (Tmax), minimum
temperature (Tmin), average temperature (Tavg), precipitation
(precip), maximum relative humidity (RHmax), minimum
relative humidity (RHmin), average relative humidity (RHavg),
average wind speed (Windavg), and ET which was from the
UW-Extension Ag Weather station. A description of the weather
variables utilized is presented in Table 2.

Selection and Random Forest Yield
Prediction Model
In this study, we tested five machine learning models that
have been used for agricultural crop yield prediction, which
include RF, gradient boosting model, extreme gradient boosting,
decision tree, and support vector regression. After comparing the
model performance, we eventually choose RF (Breiman, 2001).
Random forest uses a decision tree as a base learner and includes
a large set of decision trees, and each tree is independently
trained by a random set of variables (listed in Table 2) and
corresponding data from the training set. The algorithm first
creates a bootstrapped dataset, which requires randomly selected
subsets of samples from the original dataset that have the same
size, and the number of decision trees would be created based
on each subset of data. This step is repeated until the predefined
number of trees is reached. In this study, the number of trees
was set to 100. The yield prediction was calculated by averaging
the predictions of each decision tree. The advantage compared
with a single decision tree is that RF can help avoid overfitting
(Friedman, 2017).

The “Scikit-learn” RF package from Python (Pedregosa et al.,
2011) was used in this study. Considering the availability of
the input data from each golf course varies, we built three RF
models with different intensities of data complexity and number
of features. Three models were created for predicting the creeping
bentgrass clipping production, which included the (1) complete
RF model, which includes all variables (Table 2) input, (2)
simplified RF model, which included all variables except NDRE
and 3-day average soil moisture water content, and (3) weather-
only RF model, which contained all (and only) weather variables.
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TABLE 2 | Variables used in the random forest (RF) models.

RF variables Variables names

Biweekly N rate N rate (kg/ha/2wk)

Daily NDRE NDRE

Three-day average soil moisture content Moist avg (3 days)

Weekly walking traffic Traffic (round/week)

Accumulative days turf grows Days grow

Research green soil Rootzone

Maximum, minimum, and average
temperature/relative humidity on the clipping
collection day

Tmax; RHmax Tmin; RHmin
Tavg; RHmin

Maximum, minimum, and average
temperature/relative humidity of x (1,2,3,4,5,6)
days before the clipping collection day

Tmax (pre x days) Tmin (pre x
days) Tavg (pre x days) RHmax
(pre x days) RHmin (pre x days)
RHavg (pre x days)

Accumulative maximum, minimum, and
average temperature/relative humidity of x
(2,3,4,5,6,7) days

Tmax (x days accu) Tmin (x
days accu) Tavg (x days accu)
RHmax (x days accu) RHmin (x
days accu) RHavg (x days accu)

Accumulative precipitation/evapotranspiration
of x (2,3,4,5,6,7) days

Precip (x days accu) ET (x days
accu)

Accumulative difference between precipitation
and evapotranspiration of x (2.3.4.5.6.7) days

Precip-ET (x days accu)

Average wind speed of x (1,2,3,4,5,6) days
before the clipping collection day

Wind avg (pre x day)

We used the clipping yields collected from 2019 and
2020 (Experiment 1 and 2) to train and validate the model
(n = 2,190) and explored the predictors including daily weather
variables, management practices (soil water content, historical
N application rate, and walking traffic), vegetative index data
(NDRE), and other parameters that could potentially affect the
physiology of the turfgrass (i.e., turfgrass mowing frequency). To
validate the model, we used 90% of the total data (n = 1,897) to
train the model during the training process and the remaining
10% of data (n = 293) was used to evaluate the model
performance. We adopted four-fold cross-validation to test the
performance of the RF model (Figure 1). The dataset was divided
into four subsets, and each time one of the four subsets was used
as a validation set and the remaining three subsets were used as
the training set. This way, every subset was used as a validation
set once and as a training set three times.

The hierarchy of the important variables was also determined
based on the “scikit-learn” package, which was expressed as
a feature importance score. Features with higher scores are
important for model accuracy. The coefficient of determination
(R2) and root mean square error (RMSE) were statistical
parameters used for evaluating the accuracy of the models by
comparing the predicted values and actual values. To understand
the result of the machine learning models, partial dependence
plots (PDPs) were used. The PDPs explain how each important
variable affects the yield predictions by showing how the
target variable partially depends on one or two input variables
(Friedman, 2001); therefore, it also can help to visualize and
understand whether the relationship between a target and a
feature is linear, monotonic, or more complex.

Golf Course Data for Validating the
Model
To test whether the models developed from the research greens
data were useful for predicting the yield on the bentgrass
putting greens from a different location, we gathered historical
clipping records from a golf course in Minneapolis, MN,
United States. The putting greens were sand-based soil and
constructed according to the recommendations of USGA (similar
to our research greens). The clipping yield data were provided
as fresh clipping volume instead of dried-and-cleaned clipping
mass. However, we were able to convert the fresh clipping volume
to dried clipping mass via a linear relationship between the two
(Supplementary Figure 1). Measuring the fresh clipping volume
is less time and labor-intensive than dried clipping mass. The
turfgrass manager from the golf course provided the historical
N application records. The weather data from the golf course
were obtained from Weather Underground. The golf course used
plant growth regulators occasionally, so the clipping data were
categorized depending on the usage of growth regulators at the
time of collection.

RESULTS

Model Performance on the Research
Greens
Table 3 lists the performance of the five machine-learning models
on the turfgrass clipping production. The RF model (R2 = 0.64)
outperformed the single regression models, which included
the decision tree (R2 = 0.36) and support vector regression
(R2 = −0.15), and the boosting ensemble models, which included
the gradient boosting model (R2 = 0.43) and extreme gradient
boosting (R2 = 0.57). Therefore, in the following analysis and
discussion section, we deeply investigated the RF model.

Table 4 lists the three RF model performances on the training
dataset (n = 1,897) collected from 2019 and 2020 at the University
of Wisconsin research station, as well as the PACE Turf GP model
performance. During the study period, the daily clipping yield
spanned two orders of magnitude (0.09 to 4.1 g m−2d−1, with
95% of clipping at the range from 0.4 to 3 g m−2 d−1). The
complete RF model that included the entire suite of variables
(listed in Table 2) had the best performance (columns 3 and 4
in Table 4 and Figure 2A). Regressed against the actual clipping
yield, it had an average R2 of 0.64 with an standard deviation
(SD) of 0.08 and had the lowest RMSE values compared with
the other models created. The simplified RF model was similar
to the previously described complete RF model but with no
proximal sensing data (NDRE) or soil moisture content input.
For the simplified model, the average R2 was 0.57 with an SD
of 0.09 (Table 4 and Figure 2C). The weather-only RF model
only contained weekly weather data inputs and had an average
R2 of 0.46 with an SD of 0.20 (Table 4 and Figure 2E). The model
accuracy decreased with fewer variable inputs.

Table 4 also presented the performance of the RF model
on the validation datasets (n = 293) where the data spanned
from 0.10 to 2.89 g m−2d−1 (columns 5 and 6). The data were
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FIGURE 1 | Flow chart of the four-fold cross-validation.

collected from 2019 and 2020 at the University of Wisconsin
research station. Overall, the complete RF model had the highest
coefficient of determination (0.42) and lowest RMSE of 0.49
(Figure 2B). As the number of input variables decreased in the
simplified RF model and weather-only RF model, the coefficients
of determination also decreased to 0.42 and 0.27, respectively
(Figures 2D,F). We compared our statistical models to the PACE
Turf GP model that uses the daily average temperature only
(Figure 2G). The PACE Turf GP model had the lowest accuracy
(R2 = 0.01), which was unsurprising because that model only uses
a single variable (temperature) to predict the clipping yield.

The RF algorithm identifies the relative influence of the
factors that affect creeping bentgrass clipping production. In the
complete RF model, the top five variables were found to be the (1)
average daily air temperature 3 days prior to clipping collection;
(2) N fertilizer rate; (3) NDRE; (4) average relative humidity
4 days prior to clipping collection; and (5) 3-day average soil
moisture content (Figure 3A). Among the three management
practices we investigated in this study (soil moisture, N fertilizer
rate, and walking traffic), both the N rate and soil moisture
content were found to be more important than traffic in terms
of influencing the creeping bentgrass clipping yield. This is
aligned with our previously reported findings that when the

TABLE 3 | Comparison of the performance of five machine learning models for
training data set (n = 1897).

Machine learning
method

R2 with SD RMSE with
SD

Random forest (RF) 0.64 (0.08) 0.339 (0.06)

Extreme gradient
boosting

0.57 (0.15) 0.366 (0.07)

Gradient boosting
model

0.43 (0.13) 0.422 (0.07)

Decision tree 0.36 (0.17) 0.450 (0.09)

Support vector
regression

−0.15 (0.15) 0.604 (0.08)

Full variable inputs were used when developing models.

traffic intensity was maintained at a realistic intensity (0 to
1,800 rounds/week), the effect on the creeping bentgrass growth
was small (Zhou and Soldat, accepted), but its influence was
much more important than other weather variables like wind
speed. In the simplified RF model, besides N fertilizer rate,
temperature, and relative humidity, the root zone was another
important variable (Figure 3B). Briefly, although the golf course
greens were sand-based soil and constructed based on USGA
recommendations which had very similar soil texture and soil
organic N, soil characteristics such as N mineralization rates
could be very different among root zones, and those could
potentially result in different plant-available N which would
affect the clipping yield. Finally, the key weather variables in
the weather-only RF model agreed with the weather variables

TABLE 4 | Model performance on the training and validation datasets of the
complete RF model, simplified RF model, and weather-only RF model.

Variables input Training
RMSE

Training
R2 with

SD

Evaluation
RMSE

Evaluation
R2

Complete
RF model

N fertilization
Traffic intensity

Categorized root zone
Weather

Days grow
NDRE a

Soil moisture content

0.339
(0.06)

0.64 (0.08) 0.489 0.47

Simplified
RF model

N fertilization
Traffic intensity

Categorized root zone
Weather

Days grow

0.367
(0.06)

0.57 (0.09) 0.515 0.42

Weather-
only RF
model

Weather
Days grow

0.406
(0.09)

0.46 (0.20) 0.567 0.30

PACE Turf
GP model

Temperature N/A 0.01 N/A N/A

aNDRE, normalized difference red edge.
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FIGURE 2 | Scatter plot of the model performances with (A) complete
random forest (RF) model with all variables inputs on the training dataset; (B)
complete RF model with all variables inputs on the validation dataset; (C)
simplified RF model with the historical nitrogen (N) rate record, traffic intensity,
and weather data on the training dataset; (D) simplified RF model with the
historical N rate record, traffic intensity, and weather data on the validation
dataset; (E) simplified RF model with only weather data input on the training
dataset; (F) simplified RF model with only the weather data input on the
validation dataset; (G) PACE Turf GP model.

found to be important in the complete RF model and simplified
RF model. Generally, relative humidity and temperature which
were observed a few days prior to the collection were the most
important weather variables (Figure 3C), demonstrating that
weather has a delayed effect on creeping bentgrass clipping yield.

A decision tree was created to visualize how the most
important factors were used to predict the creeping bentgrass
yield (Figure 4). The first node was split based on one of the most
important variables, maximum relative humidity, 5 days prior
to the clipping collection event (list as RH max (pre 5 days) in
Figure 4) with a threshold of 73%. The average clipping yield
predictions were 2.68 and 1.04 g m−2 d−1 as the maximum
relative humidity was below or above 73%. The decision tree was
further divided based on NDRE, RH avg (listed as pre 4 day in
Figure 4), most avg (listed as 3 days in Figure 4), Tavg (listed
as 5 days accu in Figure 4), and Rhavg (list as 4 days accu in
Figure 4). Overall, this single decision tree presents an example
of how the RF algorithm would use the decision tree as a base
learner to predict creeping bentgrass clipping yield.

PDPs were created for the top five most important variables
among three RF models (complete RF model, simplified
RF model, and weather-only RF model) to understand the
relationship between the most important features and creeping
bentgrass clipping production. Moreover, in this study, the
mowing frequency (or cumulative days that turfgrass grown
between two mowing events) varied and the cumulative growing
days include 1, 2, 3, 4, and 5 days. Therefore, we included
the cumulative turfgrass growing days and expected to find
a relationship between mowing frequency and turf growth.
Nitrogen application rate and soil moisture content were
positively correlated with creeping bentgrass clipping production
(Figures 5A,B). When the soil moisture tripled from 10 to 30%,
the clipping production only increased about 10% (from 1.02
to 1.12 g m−2d−1). It agreed with our previous result that
the influence of soil moisture content on the growth rate of
creeping bentgrass was discernable but small (Zhou and Soldat,
accepted). The NDRE of the plots spanned from 0.14 to 0.41,
and it was also positively correlated with the creeping bentgrass
growth (Figure 5E) especially when the NDRE spanned from
0.28 to 0.41. We found little increase in the clipping yield when
the NDRE was at the range of 0.14 to 0.28. The turf mowed
more frequently had a lower clipping yield than the turf mowed
less frequently (Figure 5D). This could be explained by one
of the assumptions of the mechanism of plant defense that
plants would grow fast to recover from the mowing damage
(Stamp, 2003).

The two important weather variables (temperature and
relative humidity) displayed a more complex relationship with
bentgrass yield. Creeping bentgrass growth peaked when the
temperature on the third day prior to clipping collection was
around 25–27◦C (Figure 5C), significantly higher than the
20◦C assumed by the PACE Turf GP model for cool-season
grasses. As the temperature increased from 10 to 23◦C, the
PDPs showed that there was a small increase in the clipping
production, but a larger increase in the clipping yield when
the temperature increased from 23 to 25◦C. Similarly, there
was a steep increase in clipping production when the relative
humidity was above 75% (Figure 5F). When the relative humidity
was below or above 75%, we found very little impact on
the clipping yield.

RF models that were built based on the data collected from
the University of Wisconsin-Madison research site in 2019 and
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FIGURE 3 | Top important variables for the (A) complete RF model; (B) simplified RF model with N rates, traffic intensities, and weather inputs; (C) weather-only RF
model with all the weather variable inputs.

FIGURE 4 | A decision tree with three depths. The nodes with dark colors have a higher estimated clipping yield.

2020 were used to predict the clipping yield on bentgrass putting
greens from a golf course located in Minnesota, USA. Since
the golf course had accesss to only historical N fertilization
rate and weather, we used the simplified RF model to make
predictions. When converting fresh clipping volume to dried
clipping mass, a conversion of 0.57 was used (Supplementary
Figure 1). The clipping yield overall was similar to the ranges we
found on our plots and also spanned two orders of magnitude
from 0.03 to 2.89 g m−2 d−1, (n = 2190, with 95% of clipping
at the range from 0.3 to 2 g m−2 d−1). The simplified RF

model built based on the data collected from the Wisconsin
research putting greens performed poorly with an R2 of 0.03
(Figure 6B). The PACE Turf GP model also had relatively
low prediction accuracy (R2 = 0.05) on the turfgrass clipping
production (Figure 6C). However, a customized RF model based
on the Minnesota data was constructed using the clipping volume
data collected from the golf course from Minnesota, USA. This
model predicted clipping yield well with an R2 of 0.74 (Figure
6A). While we failed to create a universal statistical bentgrass
yield prediction model, we have demonstrated that it is possible
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FIGURE 5 | The partial dependence of creeping bentgrass clipping production on the N application rate (A); average 3-day soil moisture content (B); the average
temperature on the previous 3 days of clipping collection event (C); accumulative days that turf grew between mowing (D); normalized difference red edge (NDRE)
(E); average relative humidity on the previous 4 days of clipping collection event (F).

FIGURE 6 | Scatter plot with (A) random forest (RF) model performance from the MN golf course that was built with on-site clipping data; (B) RF model built with
clipping data collected from Madison, Wisconsin, USA; (C) PACE Turf GP model.

to build accurate, customized growth models with local clipping
data and readily available input variables like weather data and N
fertilization rate.

DISCUSSION

Accurate turfgrass yield prediction would enable early and
accurate decision-making and allow managers to more
sustainably manage fertilizer resources. This study used

clipping yield data from field experiments, and the results
have shown that the interactions among environmental factors,
various management practices, and clipping yield were rather
complex and had non-linear relations. Three RF models
were created based on the experimental results. Our results
showed that the complete RF model with inputs of weather
variables, NDRE, and management practices (N fertilization
rate, mowing frequency, traffic intensity, and irrigation plan)
could provide a relatively high accuracy turfgrass clipping yield
prediction model.
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In this study, we found that NDRE values were a critical
parameter for creeping bentgrass yield prediction, and it
represented the canopy information related to the density and
vigor of turfgrass. The RF model also listed NDRE as one of
the most important features. If mowers can be equipped with
proximal sensors that can collect NDRE and other vegetation
indexes, it will become easier for managers to improve their own
statistical models that are predictive of yield to more effectively
manage N fertilization.

When evaluating the weather variables, temperature and
relative humidity were all highly associated with the turfgrass
growth rate or clipping production. The correlation between
these weather variables and the creeping bentgrass clippings
was rather complex and weak compared with other variables
it explained the failure of the existing growth rate prediction
model. Solar radiation, an important factor influencing plant
growth, was not included in this study because these data are
not readily available to most turfgrass managers. Overall, the
weather had a delayed effect on creeping bentgrass clipping
yield, demonstrating that weather factors prior to the clipping
collection usually have a greater impact on growth compared with
the impact of weather factors collected on the day of or the day
prior to clipping collection.

The RF model has been used to predict annual or
seasonal agricultural crop yield with high accuracy (Everingham
et al., 2016; Maya Gopal and Bhargavi, 2019; Zhang et al.,
2019). This study also verified that the RF model was
able to provide high prediction accuracy compared with the
other four commonly used machine learning models that
include the decision tree, gradient boosting model, extreme
gradient boosting, and supper vector regression. The RF
model succeeded in the prediction of the short-term turfgrass
clipping yield for both the plot-scale clipping data and
golf course green-scale clipping data. The RF model is also
computationally fast (Ziegler and König, 2014) and simple to
operate. Moreover, the simplified RF model was also tested
to have a relatively high prediction accuracy. This simplified
model could provide valuable clipping yield prediction for
golf courses that do not have access to some of the more
intensive variables tested in this study like NDRE and soil
moisture content.

With the increasing attention on resource use efficiency,
more quantitative methods for guiding N application are
required. Similar to agricultural crop management, yield
prediction is also essential for the decision-making and N
management of turfgrass managers. This study is the first
to predict turfgrass clipping yield with machine-learning
approaches and found that the RF algorithm was the most
useful. For the future precision of N management on golf
courses, it is evident that future improvements such as the
incorporation of sensors could be beneficial. Although our
goal of constructing a universal bentgrass yield prediction
model was not achieved, individual golf courses could build
customized yield prediction models with sound accuracy
by using their own yield measurements. Therefore, for
future research, there is a need to investigate the feasibility
of using machine-learning techniques, specifically the RF

model, in guiding N application decisions compared with
the existing N application strategies under field conditions.
Additionally, a precision fertilization plan requires the
understanding of plant nutrient needs, their response to
different nutrient applications, and the supply of N from
indigenous sources (Dobermann et al., 2003). Future studies
should also seek to quantify soil mineralized N, which will
provide a more complete understanding of soil-turfgrass-
environment interactions and lead to more efficient use of
fertilizer inputs.

CONCLUSION

The machine-learning models were effective for turfgrass yield
prediction. As the first study to develop machine-learning models
to predict turfgrass yield, we concluded that the RF model
resulted in the greatest accuracy to predict creeping bentgrass
clipping yield. Three RF models with different intensities of
data complexity were presented. The results demonstrated
that the model with the greatest number of inputs had the
greatest accuracy and the models with a reduced number of
inputs, particularly those missing soil and vegetation sensed
data, had lower yield prediction accuracy. However, all three
RF models outperformed the current growth prediction model
which used only temperature to estimate turfgrass yield. These
findings suggest that golf course managers will be able to
better estimate turfgrass growth, even with limited access to
input variables. Additionally, our study showed that weather
had a delayed effect on turfgrass growth, and the use of 1-
day weather data would not result in the best yield prediction
as to the inclusion of multi-day weather data. Using an RF
algorithm to build an accurate yield prediction model narrows
the knowledge gap for accurate N application guidance to achieve
site-specific N management. The RF model was successful
in providing an accurate estimation of the clipping yield at
a fine-scale which may assist turfgrass managers to more
effectively allocate resources and modify management practices
site-specifically.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

QZ and DS designed the study and conducted the field
experiments. QZ performed the data analysis, built the prediction
model, and wrote the manuscript. DS provided critical insights,
edited, and revised the manuscript. All authors reviewed the
manuscript and agreed with the submission.

Frontiers in Plant Science | www.frontiersin.org 10 November 2021 | Volume 12 | Article 749854

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-749854 January 19, 2022 Time: 13:39 # 11

Zhou and Soldat Creeping Bentgrass Yield Prediction

FUNDING

This work was partially funded by the United States
Gold Association (Grant #2019-10-680), the Wisconsin golf
Course Superintendents Association, and the Wisconsin
Turfgrass Association.

ACKNOWLEDGMENTS

We thank Nick Bero, Ross Siegenthaler, Rachel Guagliardo,
Mike Katz, Andrew Panhke, Dimi Scweitzer, and Abigail
Chapman for their help with the turfgrass clipping collection
and processing, Zhou Zhang for the guidance in using the

machine learning models, Carol Duffy for the help with
manuscript preparation, Chris Tritabaugh for sharing the golf
course clipping volume data, and United States Golf Association,
Wisconsin Turfgrass Association, and Wisconsin Golf Course
Superintendents Association for providing partial financial
assistance for this project.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
749854/full#supplementary-material

REFERENCES
Bandaranayake, W., Qian, Y. L., Parton, W. J., Ojima, D. S., and Follett, R. F.

(2003). Estimation of soil organic carbon changes in turfgrass systems using
the CENTURY model. Agron. J. 95, 558–563. doi: 10.2134/agronj2003.5580

Beard, J. (1972). Turfgrass: Science and Culture. Cliffs, NJ: Prentice-Hall, Engle-
wood.
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