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Drought is one of the significant abiotic stresses threatening crop production worldwide. 
Soybean is a major legume crop with immense economic significance, but its production 
is highly dependent on optimum rainfall or abundant irrigation. Also, in dry periods, it may 
require supplemental irrigation for drought-susceptible soybean varieties. The effects of 
drought stress on soybean including osmotic adjustments, growth morphology and yield 
loss have been well studied. In addition, drought-resistant soybean cultivars have been 
investigated for revealing the mechanisms of tolerance and survival. Advanced high-
throughput technologies have yielded remarkable phenotypic and genetic information for 
producing drought-tolerant soybean cultivars, either through molecular breeding or 
transgenic approaches. Further, transcriptomics and functional genomics have led to the 
characterisation of new genes or gene families controlling drought response. Interestingly, 
genetically modified drought-smart soybeans are just beginning to be released for field 
applications cultivation. In this review, we focus on breeding and genetic engineering 
approaches that have successfully led to the development of drought-tolerant soybeans 
for commercial use.
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INTRODUCTION

Soybean, an important legume, is one of the most widely grown food crops in the world due 
to its valuable seed composition. In 2019, the annual global soybean production was estimated 
to be  above 333 million tones (Faostat, 2019). Soybean provides an inexpensive source of 
protein and fats, and natural nitrogen fertilisation for the soil (Foyer et  al., 2016). Interestingly, 
the economic benefits derived from soybean cultivation are not just limited to the food supply; 
it is also an important industrial crop utilised in producing edible oils, wax, paints, dyes and 
fibre (Rezaei et  al., 2002; Raghuvanshi and Bisht, 2010). Also, meat substitutes based on 
soybean are extensively used by vegan and vegetarian consumers (Messina and Messina, 2010; 
Raghuvanshi and Bisht, 2010; Tang, 2017).

Soybean is grown mainly in tropical, subtropical and temperate regions (Fao, 2021). It is 
a water-intensive crop, requiring substantial water to grow and reproduce (Bhardwaj, 1986). 
Consequently, rising global temperatures and changing precipitation patterns pose a significant 
threat to soybean production, especially in under-irrigated or rainfed areas (Jin et  al., 2017; 
Cotrim et  al., 2021). It is known that under dry conditions or drought, soybean yield  
can reduce by more than 50%, causing substantial financial losses to farmers and growers 
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(Wei et  al., 2018). Hence, drought is a significant climatic risk 
that calls for effective mitigation strategies to sustain the supply 
of soybeans worldwide.

Soybean varieties are classified into maturity groups according 
to their response to the photoperiod. Early maturing varieties 
belong to groups 0 to 3, whereas late-maturing varieties fall 
in groups 6 and onwards (Zhang et  al., 2007; Yang et  al., 
2019). Drought impacts soybeans cultivars differently, as some 
cultivars are more susceptible than others (Oya et  al., 2004; 
Maleki et  al., 2013; Du et  al., 2020; Dayoub et  al., 2021). 
Also, the timing of drought stress, whether at the vegetative 
or the reproductive phase, is important in determining yield 
loss. Desclaux et  al. (2000) investigated the drought-induced 
phenotypes of early maturity soybean varieties grown in France. 
They reported that drought stress at vegetative stages led to 
reduced plant height and a decline in seed number in the 
early reproductive stages and reduced seed weight in late 
reproductive stages. The water scarcity between flowering and 
early seed filling stages can affect branches’ vegetative growth, 
resulting in decreased branch seed number and reduced branch 
seed yield (Frederick et  al., 2001). A report on the effect of 
drought on soybeans grown in the semi-arid and semi-humid 
regions of Huaibei regions of China reported a 73–82% decline 
in yield when drought stress was applied at flowering and 
seed filling stages (Wei et  al., 2018). Recently, Du et  al. (2020) 
reported that long-term drought stress in reproductive stages 
decreases biomass allocation to reproductive organs, thereby 
reducing seed weight in soybean. In addition, drought also 
impacts the symbiotic nitrogen-fixing ability of soybeans by 
disturbing nitrogenase activity, which can cause carbon shortage 
and oxygen limitation leading to poor growth and yield (Arrese-
Igor et al., 2011; Collier and Tegeder, 2012; Kunert et al., 2016).

Plants use diverse mechanisms to overcome the adverse 
effects of drought, and the ability of crops to adjust using 
adaptive traits is termed ‘drought tolerance’ (Basu et  al., 2016). 
Decreased stomatal opening associated with reduced 
photosynthesis is a typical drought response observed in plants 
(Liu et  al., 2003; Mak et  al., 2014). Abscisic acid (ABA) plays 
a vital role in reducing water loss under dry conditions 
(Wilkinson and Davies, 2002; Kim, 2014; Wang et  al., 2016). 
Further drought-tolerant soybeans exhibit higher ABA levels 
than drought-susceptible varieties (Mutava et  al., 2015). ABA, 
synthesised in plant roots, is transported to the guard cells 
of leaves, where it induces closure of stomatal openings to 
reduce water loss (Wilkinson and Davies, 2002). Further, there 
is evidence that ABA synthesised in leaf xylem also contributes 
to this process (Malcheska et  al., 2017). However, reduction 
in the stomatal opening leads to reduced CO2 assimilation 
and photosynthesis, affecting growth and development (Cornic 
and Briantais, 1991; Ohashi et  al., 2006; Mutava et  al., 2015; 
Cohen et  al., 2021).

Maintenance of cell turgidity is another essential adjustment 
to survive drought. Under dehydration conditions, cells induce 
biochemical changes by synthesising necessary metabolites called 
osmoprotectants (Silvente et  al., 2012). These include soluble 
and complex sugars, sugar alcohols, organic acids and free 
amino acids (Ashraf and Iram, 2005; Silvente et  al., 2012; 

Kido et  al., 2013). Osmoprotectant accumulation in the cell 
balances the osmotic difference between cell exteriors and the 
cytosol help to retain water and maintain the integrity of the 
cell membrane (Yancey, 2005; Basu et  al., 2016). An increase 
in soluble sugars, such as sucrose and fructose, improves 
homeostasis under stressed conditions. Further, soluble sugars 
are required for enhanced carbohydrate metabolism, signal 
transduction and synthesising enzymes and hormones needed 
to survive under drought (Gupta and Kaur, 2005; Mak et  al., 
2014; Du et  al., 2020). Metabolite profiling of biochemical 
compounds synthesised during drought stress revealed an 
increase in pinitol in the leaves of a drought-susceptible cultivar 
(Silvente et  al., 2012). Pinitol is a common sugar alcohol that 
acts as an osmoprotectant in legumes (Ford, 1984; Streeter 
et  al., 2001; Dumschott et  al., 2019). Further, Silvente et  al. 
(2012) reported increased levels of amino acids, such as proline, 
during drought stress in flowering stages. Proline helps retain 
water by adjusting the intracellular osmotic potential of the 
cells (Heerden van and Krüger, 2002). In addition, reactive 
oxygen species (singlet oxygen) produced in stressed cells can 
cause severe oxidative damage under prolonged drought 
conditions. Alia et  al. (2001) suggested that proline acts as a 
scavenger of singlet oxygen. However, the role of proline in 
quenching singlet oxygen in stressed plants remains debated 
as Signorelli et  al. (2013) demonstrated that proline could not 
quench singlet oxygen in an aqueous buffer. Figure  1A 
summarises the effects of drought on soybean.

On the cellular level, largely overlapping signalling mechanisms 
and phytohormone cross-talks mediate drought response in 
plants (Basu et  al., 2016). With the advent of high-throughput 
sequencing techniques, several genes or gene families have 
been identified and characterised in soybean (Wong et  al., 
2013; Zhang et al., 2020, 2021). Among these, the CUC (NAC; 
Hussain et  al., 2017), MYB (Chen L. et  al., 2021), WRKY 
(Shi et  al., 2018), ABA-responsive element binding (AREB; 
Fuganti-Pagliarini et al., 2017) and dehydration response element-
binding proteins (DREB; Nguyen et  al., 2019) transcription 
factor families are some of the prime regulators that control 
drought response by regulating the synthesis of drought-responsive 
hormones, such as ABA, ethylene and other drought signalling 
compounds including Brassinosteroids (Nguyen et  al., 2019; 
Chen L. et  al., 2021).

Comparative transcriptomics have further elucidated the 
molecular mechanisms underlying drought response in soybean 
(Ha et  al., 2015; Hussain et  al., 2017). For example, Hussain 
et  al. (2017) identified 28 drought-responsive GmNAC genes 
in soybean and reported that only eight GmNAC genes showed 
high expression levels in drought-tolerant soybean variety; with 
drought-sensitive cultivars exhibiting lower expression levels. 
WRKY transcription factors have been highlighted to play vital 
roles in plant abiotic stress tolerance (Ning et  al., 2017; Shi 
et  al., 2018). Shi et  al. (2018) identified a drought-responsive 
soybean WRKY gene, GmWRKY12, whose over-expression in 
a transgenic hairy root assay led to increased proline levels 
under drought stress. Further, Wei et  al. (2019) characterised 
another WRKY gene, GmWRKY54, which mediates drought 
tolerance via ABA and Ca+2 signalling pathways. The 
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FIGURE 1 | (A) A diagram depicting various effects of drought on soybean. Drought induces morphological changes, such as loss in vegetative biomass, 
accompanied by a reduction in pod number, seed number, seed weight and altered biochemical composition of seeds. Further, cells regulate the effect of drought, 
synthesising osmolytes, such as proline and sugar alcohols, to balance the osmotic potential for maintaining cell membrane integrity. Also, in many drought-resistant 
soybean cultivars, roots adjust their architecture in response to water-deficit conditions by changing root length, branching and other phenotypes to absorb more 
soil moisture. Further, severe drought stress leads to ROS accumulation which can cause cell and tissue damage by oxidising biomolecules. (B) An outline of 
strategies to breed drought-smart soybeans.
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over-expression of GmWRKY54 conferred drought tolerance 
in soybean (Wei et  al., 2019). Other recently identified gene 
families participating in soybean drought response are AT-hook 
motif (Wang et  al., 2021b), P-type ATPases (Zhao et  al., 2021), 
CCT family (Mengarelli and Zanor, 2021) and GRAS (Wang 
et  al., 2020). Identifying new drought-responsive genes is vital 
for developing drought-smart soybeans. The term ‘drought-
smart’ refers to soybean cultivars that can adapt to diverse 
types of drought, such as early drought, middle-stage drought, 
later-drought and seasonal drought, by combining different 
mechanisms of drought resistance, such as drought avoidance, 
drought tolerance and drought recovery. Drought avoidance 
is generally achieved by retaining water in plant tissues, either 
by restricting water loss or using water judiciously to support 
different plant functions. However, drought tolerance is achieved 
using adaptive traits, such as biochemical adjustments to maintain 
cell turgidity and minimise photosynthetic damage (Basu et al., 
2016). Further, cultivars with drought avoidance and drought 
tolerance features can recover fast upon rehydration after a 
short-term or seasonal drought (Dong et  al., 2019). Hence, 
smart soybeans are able to produce a stable yield in drought-
prone areas. Traits, such as improved water retention, restricted 
transpiration and stable photosynthesis, are desirable to sustain 
biomass and yield under water-deficit conditions (Wei et  al., 
2019; Kunert and Vorster, 2020; Yang et al., 2020). A combination 
of such traits would make a cultivar suitable for cultivation 
in arid or semi-arid regions (Liu et  al., 2005; Abdel-Haleem 
et  al., 2012; Carter et  al., 2016). Also, as genome sequencing 
of soybean cultivars gains momentum, the new genetic diversity 
resources will aid in developing drought-smart varieties using 
advanced breeding or genetic engineering methods (Fuganti-
Pagliarini et al., 2017; Golicz et al., 2018; Kajiya-Kanegae et al., 
2021). Here, we  review genetic improvement approaches for 
improving drought tolerance in soybean.

BREEDING FOR DROUGHT-SMART 
SOYBEAN

A combination of advanced phenotyping, molecular breeding 
and genetic engineering approaches can be employed to breed 
drought-smart soybeans (Figure  1B). Using conventional 
breeding techniques, pre-selected soybean germplasms (donor 
cultivars) with desired drought-responsive traits can be crossed 
to introduce favourable alleles in the resulting populations. 
However, extensive screening of subsequent generations is 
required to select a line with stable characteristics for continued 
cultivation (Carter et al., 2016). Further, genetic transformation 
offers the possibility of targeted gene expression under 
constitutive or inducible promoters (Ribichich et  al., 2020). 
For example, Arabidopsis thaliana AtMYB44 gene was 
transformed in soybean using Agrobacterium-mediated 
transformation which resulted in improved soybeans with 
better yield under water-deficit conditions in the field (Seo 
et  al., 2012). Improvements in tissue culture regeneration of 
commercial soybean cultivars and optimization of 
Agrobacterium-mediated transformation methods will also 

facilitate engineering soybeans for drought tolerance (Raza 
et al., 2017, 2019). Recently, more precise gene editing technique, 
CRISPR/cas9, has shown promising results in modifying 
soybean’s genome in a targetted manner to obtain more specific 
gene modifications. CRISPR/cas9 has been successfully 
employed to characterise soybean drought-responsive genes 
using knock-down approaches. For example, CRISPR/cas9-
mediated mutagenesis of soybean circadian rhythm genes 
(GmLCLs) generated mutant plants with decreased water loss 
under dehydration stress conditions (Yuan et  al., 2021). 
Interestingly, breeding and genetic transformation methods 
have successfully delivered improved soybeans that have been 
tested in laboratory, glasshouse or field conditions and a few 
of these varieties have also been approved for commercial 
production. In the sections below, we  review recent examples 
of soybeans improved for drought tolerance via breeding or 
transgenic approaches.

Breeding and High-Throughput 
Phenotyping
Molecular breeding approaches for enhancing drought tolerance, 
such as marker-assisted selection, quantitative trait loci (QTL) 
mapping, GWAS and genomic selection, depend upon the 
extent of existing genetic diversity for the desirable traits. High 
genetic diversity of soybean makes it feasible to select cultivars 
with drought tolerance properties (Kajiya-Kanegae et al., 2021). 
Some of the traits to address water deficit are slow canopy 
wilting, water-conserving transpiration response, dense root 
surface area and low stomatal conductance (Kim, 2014; Basu 
et  al., 2016).

Using phenotypic trait selection approaches, a high-yield 
and drought-tolerant cultivar was bred by the US Department 
of Agriculture and North Carolina State University researchers. 
This study involved extensive screening of soybean germplasm 
collected from around the world. Fifteen years of  
rigorous selection led to discovering a slow-wilting landrace 
PI 416937 from Japan and another resistant cultivar from 
Nepal, PI 471938. Continuous breeding efforts led to the 
development of a new drought-tolerant soybean variety 
released as ‘USDA-N8002’ (maturity group VIII) for field 
use (Carter et  al., 2016).

Recently, high-throughput phenotyping of plant populations 
has widened trait identification by reducing the timeline and 
physical labour involved in the manual screening processes 
(Crusiol et  al., 2021; Zhou et  al., 2021). For example, remote 
sensing has shown great potential in analysing the genotypes 
of plants in a non-destructive way. These remote sensing 
mechanisms of phenotyping involve thermal, spectral and 
hyperspectral imaging techniques (Li et  al., 2014). A simple 
example of spectral measurement is the estimation of 
chlorophyll content using the soil plant analysis development 
metre which measures red vs. infra-red light (Yuan et  al., 
2016). Hyperspectral imaging is an advanced imaging method 
used to detect material across the entire electromagnetic 
spectrum. It works on the principle that certain elements 
have unique spectral fingerprints that can be used to identify 
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materials by analysing the image of the scanned object (Crusiol 
et  al., 2021).

Crusiol et  al. (2021) employed a leaf-based hyperspectral 
reflectance method to distinguish soybean genotypes under 
different moisture conditions and at different phenological 
stages. Leaf-based hyperspectral reflectance was collected from 
soybean genotypes growing under different watering conditions 
over multiple cropping seasons. Short-wave infra-red wavelength 
(1300–2,500 nm) was critical in these measurements, as it 
can effectively detect vegetation water status. Principal 
component analysis of spectral datasets of soybean genotypes 
showed 94% variance in the first three components, indicating 
that spectral data could successfully distinguish the 
soybean genotypes.

Multispectral and visible RGB camera imaging was also 
performed by Zhou et  al. (2021) to estimate the yield of 
soybean genotypes under drought stress. They employed the 
unmanned aerial vehicle technique for collecting image data 
to develop a method of yield estimation for large breeding 
populations. Images of 972 breeding lines were captured at 
vegetative (R6), early and late reproductive phases (R1 and 
R6-R8). By assessing the image features related to plant height, 
canopy colour and canopy texture, they built a deep learning 
model which could explain the yield to up to 78%. The yield 
of slow- and fast-wilting plants belonging to three genotypes 
(maturity group  3, 4 and 5) was assessed, and it was found 
that the fast-wilting group produced less average yield (986.5 kg/
ha) as compared to the slow-wilting group (1,395 kg/ha). 
Hence, high-throughput imaging for phenotyping has a 
remarkable potential for assessing large populations to identify 
plants with drought-tolerant traits.

Marker-Assisted Breeding
Marker-assisted breeding is another promising approach for 
developing drought-tolerant soybeans. It relies on identifying 
variations in chromosomal regions, known as QTLs. QTLs 
that make a genotype more robust than others for drought 
tolerance are particularly valuable for breeding. Marker-assisted 
breeding uses DNA markers linked to specific QTLs for selecting 
genotypes with the desired alleles (Zhang et  al., 2015). For 
example, Chen H. et  al. (2021) identified QTLs related to 
primary root length on chromosome 16 of soybean. This QTL 
accounts for 30.25% variation in phenotype and will assist in 
developing of markers for root-length selection, which is an 
important trait for drought tolerance. Dhungana et  al. (2021) 
identified QTLs associated with flooding stress at the V1-V2 
stage of soybean. They analysed a recombinant inbred line 
(RIL) population derived from crossing a drought-susceptible 
(NTS116) and drought-tolerant (Danbaekkong) soybean cultivar. 
Using a composite interval mapping technique, they identified 
10 QTLs related to flood tolerance at the V1-V2 stage of 
soybean. These QTLs can cause up to 30.7% phenotypic variations 
and can be useful for future soybean improvement programmes. 
Table 1 shows a list of major QTLs associated with soybean 
drought response. Further, other QTLs identified with soybean 
drought tolerance can be  found at www.soybase.org, one of 
the prime repositories of soybean genetic resources.

Genetic Engineering
Genetic engineering approaches offer viable opportunities for 
accelerated crop improvement (Khan et  al., 2020; Lohani 
et  al., 2020; Arya et  al., 2021). Genes controlling traits, such 

TABLE 1 | A summary of QTLs identified with soybean drought tolerance.

Trait Number of QTLs QTL name and G. max (Gm) 
chromosome number

Donor line Reference

Slow canopy wilting 2 qSW (Gm06), qSW (Gm10) Magellan PI 567731 Ye et al., 2019
Slow canopy wilting 7 qSW (Gm02), qSW (Gm04), qSW 

(Gm05), qSW (Gm12), qSW (Gm14), 
qSW (Gm17), qSW (Gm19)

PI416937 Benning Abdel-Haleem et al., 2012

Basal root thickness (BRT), 
Lateral root number (LRN), 
Maximum root length (MRL), 
Root fresh weight (RFW), 
Root dry weight (RDW), 
Shoot fresh weight (SFW), 
Shoot dry weight (SDW), and  
Ratio of SFW/SDW

12 qBRT001 (Gm18), qLRN001 (Gm18), 
qMRL001(Gm06), qMRL002 (Gm06), 
qMRL003 (Gm03), qRFW001 (Gm08), 
qRFW002 (Gm08), qRDW001 (Gm08), 
qRDW002 (Gm03), qSFW001 (Gm08), 
qSFW002 (Gm06), qSFW003 (Gm01), 
qSFW004(Gm03), qSDW001 (Gm08), 
qSDW002 (Gm18), qSDW003 (Gm03), 
qSFW/SDW001 (Gm14), SFW/SDW002 
(Gm06), qSFW/SDW003 (Gm13)

Essex  
Forrest

Williams et al., 2012

Canopy wilting 4 QTL-Molecular Linkage Group (MLG) 
A2 (Gm08), QTL-MLG B2 (Gm14), 
QTL-MLG D2 (Gm17), QTL-MLGs F 
(Gm13)

KS4895  
Jackson

Charlson et al., 2009

Drought Susceptibility Index 
in the field (DSI-F) and 
Drought Susceptibility Index 
in the glass house (DSI-G)

10 DSI-F (Gm01), DSI-F (Gm06), DSI-F 
(Gm07), DSI-F (Gm12), DSI-F (Gm16), 
DSI-F (Gm20), DSI-G (Gm05), DSI-G 
(Gm05), DSI-G (Gm17), DSI-G (Gm17)

Kefeng 1  
Nannong1128-2

Du et al., 2009

Water use efficiency (WUE) 1 cr497-1 (Gm16), K375-ln (Gm16), 
B031-ln (Gm18), A089-1(Gm12)

PI416937  
Young

Mian et al., 1996
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as flowering time, disease resistance and lipid profile, have 
been identified and used as targets for soybean improvement 
(Haun et  al., 2014; Arya et  al., 2018; Ngaki et  al., 2021). 
Similarly, high-throughput genome and transcriptome 
sequencing have led to identification of key transcriptional 
regulators of soybean drought response. Among these, the 
DREB (Nguyen et al., 2019; Zhou et al., 2020), AREB (Fuganti-
Pagliarini et al., 2017), NAC (Hussain et al., 2017; Yang et al., 
2020), MYB (Chen L. et  al., 2021) and WRKY (Ning et  al., 
2017; Shi et  al., 2018; Wei et  al., 2019) are the prime 
transcription factor families mediating abiotic stress responses. 
Gain of function and gene-knock-down approaches, such as 
RNAi and CRISPR/cas9, have yielded valuable information 
on how complex gene networks regulate dehydration stress 
physiology in soybean. For example, Yang et  al. (2020) 
characterised GmNAC8 transcription factor as a positive 
regulator of soybean drought stress. NAC transcription factor 
family is primarily involved in plant growth and stress response. 
GmNAC8 was cloned under the control of 35 s promoter for 
gene over-expression, and CRISPR/Cas9 was used to knock 
down GmNAC8. The performance of over-expression and 
knock-down lines was analysed under drought stress by 
withholding water supply for 14 days. Interestingly, GmNAC8 
over-expression lines had significantly high superoxide 
dismutase levels and proline content, which are both indicators 
of drought tolerance in plants. Further, as the water supply 
was restored, the recovery rate of over-expression lines was 
relatively high (up to 96%) compared to WT lines which 
showed only a 40% recovery rate. Interestingly, the GmNAC8 
knock-down lines only had a 5 to 14% recovery rate.

MYB transcription factors regulate the biosynthesis of 
secondary metabolites for stress responses. Recently, Chen H. 
et  al. (2021) characterised GmMYB14, which participates in 
drought tolerance and high-density soybean yield by affecting 
plant architecture through the Brassinosteroid pathway. GmMYB14 
over-expression lines were compact with decreased plant height, 
internodal length, leaf surface area and petiole angle. However, 
the transgenic plant showed an increase in node number on 
the main stem and increased branch number, which contributed 
to enhanced yield under high-density cropping (20 cm intervals) 
conditions. Further, under drought stress, pod number, seed 
number and seed weight per plant were significantly improved 
in soybeans over-expressing GmMYB14 compared to WT. Hence, 
as we  face the challenge of producing more food from our 
limited arable land, plants that can withstand drier conditions 
and generate better yield under high-density cropping have the 
potential of ensuring future food security. Table  2 shows a list 
of genes or gene families recently identified to soybean 
drought response.

Dehydration responsive element binding (DREB) and AREB 
transcription factor family genes are known to mediate drought 
inducible gene expression (Fuganti-Pagliarini et  al., 2017; Zhou 
et  al., 2020). The transgenic soybean lines over-expressing 
transcription factors DREB1A, DREB2A and AREB1 have been 
field tested for the agronomic and physiological performance under-
irrigated and non-irrigated conditions (Fuganti-Pagliarini et  al., 
2017). Improved water use efficiency and leaf area index were 

reported in 35S: AtAREB1FL lines compared to the control lines. 
Also, 35S: AtAREB1FL lines had the highest yield under non-irrigated 
conditions, similar to the yield of 35S: AtAREB1FL lines under-
irrigated conditions. Interestingly, in non-irrigated conditions, the 
oil and protein contents of seeds were not affected by the insertion 
of DREB1A or DREB2A or AREB1 transcription factors.

Recently, soybeans expressing the sunflower (Helianthus 
annus) transcription factor, HaHB4, were approved for 
production by the US Department of Agriculture. HaHB4 is 
a water-deficit responsive sunflower transcription factor whose 
over-expression in Arabidopsis led to improved drought 
tolerance (Manavella et  al., 2008). HaHB4 was cloned under 
constitutive 35S promoter and inducible HaHB4 promoter. 
Soybeans expressing HaHB4 were studied under glasshouse 
and field conditions by Ribichich et  al. (2020). Transgenic 
lines designated as b10H performed best under field trials 
when genotype to environment interaction (G × E) was analysed. 
The b10H soybeans had better yield (seed number) under 
warm and dry conditions, not compensated by a decrease 
in seed weight. Under water-deficit conditions, b10H produced 
43.4% more yield compared to WT (Williams 82). Also, the 
diameter of epicotyls, internode and xylem was wider in 
b10H soybeans as compared to WT plants. Further, b10H 
plants had a significantly high photosynthetic rate (at R5 
and R6 stage) under warm field conditions. Molecular analysis 
showed that transcripts of heat shock proteins homologous 
to Arabidopsis thaliana HSC70-1(At5G02500), HSFB2A 
(At5G62020), Hsp81.4(At5G56000) and HOT5 (At5G43940) 
were differentially regulated in soybeans expressing HaHB4 
(Ribichich et al., 2020). Due to its exceptional field performance, 
the trait HaHB4 has received regulatory approvals in Argentina, 
Brazil, Paraguay and Canada (Businesswire, 2021).

Microbial Inoculants for Drought-smart 
Soybean
Symbiotic rhizobium species associated with soybean root 
nodules benefit plant growth via mediating biological N fixation 
(Jaiswal et  al., 2021). Reduced photosynthesis under drought 
conditions disturbs oxygen balance in nodules triggering 
premature nodule senescence (Arrese-Igor et  al., 2011; Kunert 
et  al., 2016). Symbiotic association of soybean plants with 
arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, 
has been reported to alleviate drought-induced nodule senescence 
(Porcel and Ruiz-Lozano, 2004; Takács et  al., 2018). Further, 
it has been demonstrated that extenuation of premature nodule 
senescence is mediated by the induction of high glutathione 
reductase in soybean roots and nodules. Glutathione reductase 
activity likely exerts its influence by reducing oxidative damage 
to biomolecules (Porcel and Ruiz-Lozano, 2004; Prabha and 
Sharadamma, 2019; Meena et  al., 2021). Hence, arbuscular 
mycorrhizal fungi can play important roles in alleviating the 
impact of drought at root-nodule interfaces in soybeans. Recently, 
co-inoculation of rhizobia and mycorrhizal fungi has shown 
enhanced soybean tolerance to drought stress providing a cost-
effective strategy for improving soybean productivity (Igiehon 
et  al., 2021).
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CONCLUSION

Soybean is a crop of immense economic importance (Johnson 
and Myers, 1995; Messina and Messina, 2010). Vast genetic 
diversity has been reported in soybean germplasm, and the 
increasing availability of soybean genetic resources has instigated 
the development of drought-smart soybeans (Carter et al., 2016; 
Ribichich et  al., 2020; Kajiya-Kanegae et  al., 2021; Chen L. 
et  al., 2021). Modern breeding and advanced biotechnology 
methods have shown promising results, and market-ready 
drought-tolerant soybeans have been released in some parts 
of the world (Carter et al., 2016; Ribichich et al., 2020). However, 
soybean production is still dependent on adequate irrigation 
facilities in many regions, especially in under-developed and 
developing nations (Droppers et  al., 2021; Suriadi et  al., 2021). 
As genetic and non-genetic improvement methods are tested 
on more cultivars, the dependency of soybean production on 

rainfall or heavy irrigation should reduce. With changing 
precipitation patterns and a hotter climate, drought-tolerant 
soybeans will play a significant role in ensuring our future food  
security.
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