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Desert ecosystems are generally considered lifeless habitats characterised by extreme 
environmental conditions, yet they are successfully colonised by various biocrust 
nonvascular communities. A biocrust is not only an important ecosystem engineer and 
a bioindicator of desert ecological restoration but also plays a vital role in linking surficial 
abiotic and biotic factors. Thus, extensive research has been conducted on biocrusts in 
critical dryland zones. However, few studies have been conducted in the vast temperate 
deserts of China prior to the beginning of this century. We reviewed the research on 
biocrusts conducted in China since 2000, which firstly focused on the eco-physiological 
responses of biocrusts to species composition, abiotic stresses, and anthropological 
disturbances. Further, research on the spatial distributions of biocrusts as well as their 
succession at different spatial scales, and relationships with vascular plants and soil 
biomes (especially underlying mechanisms of seed retention, germination, establishment 
and survival of vascular plants during biocrust succession, and creation of suitable niches 
and food webs for soil animals and microorganisms) was analysed. Additionally, studies 
emphasising on the contribution of biocrusts to ecological and hydrological processes in 
deserts as well as their applications in the cultivation and inoculation of nonvascular plants 
for land degradation control and ecological restoration were assessed. Finally, recent 
research on biocrusts was evaluated to propose future emerging research themes and 
new frontiers.

Keywords: temperate desert, biocrust, soil eco-hydrology processes, land degradation control, nonvascular 
plant

INTRODUCTION

The term biological soil crust or biocrust was first used in the 1950s (Belnap, 2003) and 
is characterised by a complex consortium of cyanobacteria, green algae, lichens, mosses, 
and other microorganisms associated with surface soil particles, cemented via mycelia, 
rhizoids, and secretions (West, 1990; Li, 2012). Biocrust is a major land cover type in 
arid and semiarid regions worldwide (Eldridge and Greene, 1994), currently covering 
approximately 12% of Earth’s terrestrial surface (Rodriguez-Caballero et al., 2018). However, 
research in this regard is limited and has been conducted only for a few climatic regions. 
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Studies on biocrusts have been traditionally conducted by 
researchers from a few countries (e.g., the United  States, 
Australia, Israel, Germany, Spain, and Mexico; Belnap and 
Lange, 2003). It is striking that regions identified as being 
some of the most densely covered by biocrusts are also the 
least studied (for example, the large deserts in Asia; Rodriguez-
Caballero et  al., 2018).

Recently, biocrust research has become a global endeavour 
and several research groups in this regard have emerged 
in countries such as China (Li et  al., 2016a). The scientific 
community in China has indicated an increasing interest 
in biocrust research over the last two decades (Figure  1). 
In particular, recent studies have focused on the ecosystem 
multifunctionality of biocrusts (Su et  al., 2020). Specifically, 
most studies have been conducted on the formation, structures, 
community compositions, succession, spatiotemporal 
distributions, and ecohydrological functions of biocrusts at 
different scales; moreover, the application of artificially 
cultivated biocrusts in land degradation control such as 
fixation of dune extension, and biocrust responses to climate 
change and various other disturbances since the late 1990s 
have also been studied (Li et  al., 2012, 2017). This paper 
assessed the progress in biocrust studies conducted in China 
since 2000. Additionally, novel insights and future research 
hotspots were summarised. We  conclude that these studies 
not only compensate for the lack of biocrust studies in 
temperate desert regions but also improve our limited 
quantitative understanding of nutrient cycling, carbon cycling, 
and water balance in drylands, enhance the universality of 
our conclusions on biocrusts, and provide relevant information 
for future ecosystem management and ecological restoration 
in arid and semiarid regions worldwide.

BIOCRUST FORMATION, COMPOSITION, 
SUCCESSIONAL DYNAMICS, AND 
CONTROLLING FACTORS IN 
TEMPERATE DESERTS FROM CHINA

The Formation and Structure of Biocrusts
Chinese temperate deserts are distributed mostly in northwest 
China, roughly on the west of 108°E and the north of 36oN, 
involving Xinjiang, Qinghai, Gansu, Ningxia, and Inner Mongolia 
(Figure  2). The climates vary from extreme arid to arid to 
semi-arid, and from temperate to warm temperate, the annual 
precipitation ranges from 30 to 400 mm from the west to east 
of the country. Phytogeographically, this floristic division belongs 
to the Central Asian sub-region, the Sahara-Gobi floristic 
region (Wu, 2021). Unlike hot and cold deserts, the higher 
species richness of biocrust communities in Chinese temperate 
deserts is characterised by complex patchy distributions of 
cyanobacteria, lichens, and mosses; additionally, these deserts 
are particularly rich in lichens and mosses even at small spatial 
scales (Li, 2012; Li et al., 2017). Scanning electron microscopy 
results have indicated that biocrust keystone component such 
as cyanobacteria, lichens, and mosses via the filaments, fungal 
hyphae, rhizoids, and extracellular polymer secretions bind 
the finer particles of surface soil, thus forming unique biocrust 
structures (Hu et  al., 2002; Zhang, 2005; Zhang et  al., 2006, 
2013, 2014; Gao et  al., 2017a). The vertical distributions of 
cyanobacteria and microalgae in biocrusts have been distinctly 
laminated into inorganic (0–20 μm), algae-dense (20–1,000 μm), 
and algae-sparse (1,000–5,000 μm) layers at the micro-scale 
(Hu et  al., 2013). The primary cementing pattern that sustains 
the biocrust structure changes with the succession of the 

FIGURE 1 | Publications on biocrusts in the last two decades in China by subject search (biological crust, cryptogamic crust, biocrust, microbiotic crust, 
microphytic crust, and microbial crust) and search date (January, 1995 ~ August, 2021; SCI indicates papers published on the international journals, included in 
Science Citation Index; CSCD indicates papers published in Chinese, included in Chinese Science Citation Database. The search report was completed by Lanzhou 
novelty search consulting Center, Chinese Academy of Sciences, www.llas.cas.cn).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://www.llas.cas.cn


Li et al. Biocrust Research in China

Frontiers in Plant Science | www.frontiersin.org 3 November 2021 | Volume 12 | Article 751521

biocrust, thus implying that the cohesive role of extracellular 
polymeric substances in cementing the soil particles is later 
strengthened by cyanobacteria, desert algae filaments, fungal 
hyphae of lichens, and moss rhizoids (Hu and Liu, 2003; 
Zhang et  al., 2007).

The Succession and Species Composition 
of Biocrusts
At the initial stage of biocrust formation, increasing dust 
deposition on topsoil triggers the colonisation and development 
of biocrusts (Li et  al., 2004a, 2010a). Long-term monitoring 
of sand-binding vegetation in the Shapotou region of the 
Tengger Desert has indicated that physical crusts characterised 
by high clay and silt concentrations are formed due to dust 
and silt deposition on the sand surface (Li et  al., 2004a,b). 
Further, dust sinking and precipitation affect the early period 

of sand stabilisation through revegetation. Subsequently, bacteria, 
fungi, actinomycetes, and cyanobacteria colonise the surfaces 
and sub-surfaces of stabilised dunes. In this process, the shifting 
of soil microbial community functional gene structure plays 
key roles in driving the biocrust colonisation and development 
(Liu et  al., 2017; Hu et  al., 2019).

Biocrust is primarily composed of cyanobacteria, green algae, 
diatoms, and euglenoids in the early-successional stages, with 
cyanobacteria being the dominant species (Hu et  al., 2004; Li 
et  al., 2004a). A total of 121, 23, 21, 23, and 56 algal species 
have been identified in the biocrust communities of the 
Gurbantunggut Desert, the Qaidam Basin, the Alxa-Tengger 
Desert, Horqin Sandland, and the Kubuqi Desert, respectively. 
In particular, Microcoleus vaginatus (Vauch.) Gom. was found 
to be  the dominant species (Hong et  al., 1992; Li et  al., 2004a; 
Zhang et  al., 2009a, 2011a, 2016a; Hu et  al., 2013). However, 
only 11 cyanobacteria and algae species were identified in the 
biocrust communities of the Loess Plateau; specifically, the 
commonly occurring M. vaginatus has not been recorded so 
far (Reynaud and Lumpkin, 1988). In contrast to other deserts 
worldwide, the Gurbantunggut Desert exhibits a high diversity 
of cyanobacterial and microalgal morphotypes (Zhang et  al., 
2011a). Additionally, bacteria, fungi, and Archaea significantly 
contribute to biocrust formation during early successional stages 
(Zhao et al., 2020a). The investigation of the microbial functional 
potentials of biogeochemical processes during biocrust 
development indicated that fungi are the key microbial mediators 
in C and N cycling for late successional biocrusts, the bacterial 
community was the major contributor to the P and S cycles 
(Qi et  al., 2021), and microbial functional structure may be  a 
potential indicator of soil restoration and land degradation 
control (Grishkan et  al., 2015; Liu et  al., 2017, 2018; Zhao 
et  al., 2020b).

When lichens are dominated species at the later successional 
stage of biocrust, the following new species such as Bacidia 
heterochroa (Müll. Arg.) Zahlbr, Porina aenea (Wallr.) Zahlbr., 
Buellia alboatra (Hoffm.) Branth, Buellia venusta (Körb.) Lettau 
(I, VI), Endocarpon deserticola sp. nov., Endocarpon unifoliatum 
sp. nov., Fulgensia desertorum (Tomin) Poelt, Rinodina bischoffii 
(Hepp) A. Massal, and Seirophora orientali have been identified 
in the Tengger and Gurbantunggut deserts (Liu, 2012; Yang 
and Wei, 2014; Zhang et  al., 2017). Moreover, Collema tenax 
(Sw.) Ach., Lecidea decipiens (Hedw.) Ach., Xanthoparmelia 
deserborum Hale., and Diploschisttes muscorum (Scop.) R. Sant 
are the dominant species in the stabilised sand dunes (Zhang 
et  al., 2007).

Finally, moss-dominated crusts form on dune surfaces and 
likely improve the fertility and water-holding capacity of topsoil 
(Li et al., 2002, 2003, 2004a, 2007a). In contrast to other deserts 
and sandlands in China, the biocrust communities in Mu Us 
and Horqin sandlands exhibit a relatively higher coverage and 
diversity of mosses (Guo et  al., 2008; Liu et  al., 2017), because 
evident positive correlations between moss diversity and 
precipitation have been found along precipitation gradients (Li 
et  al., 2017). Sixteen moss species have been reported in the 
stabilised sand dunes of the Tengger Desert, with Bryum 
argenteum Hedw. being the dominant species (Li et al., 2010a). 

FIGURE 2 | The main research sites and types of biocrust of Chinese 
deserts and the Loess Plateau.
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The Gurbantunggut Desert indicates a lower moss diversity 
with Bryum argenteum Hedw., Bryum capillare Hedw., Grimmia 
anodon Bruch & Schimp, and Grimmia pulvinate (Hedw.) Sm. 
being the dominant species (Li et  al., 2004b; Zhang et  al., 
2007). Thus, biocrusts in temperate deserts are classified into 
“cyanobacteria and algae dominated, lichen dominated, lichen-
moss dominated, and moss-dominated crusts” (Li et  al., 2003; 
Lan et  al., 2012; Zhang and Zhang, 2014).

The Controlling Factors for Biocrusts 
Distribution
The primary factors determining the spatial distributions of 
biocrusts at different scales have also been elucidated. Surface 
micro-geomorphological features such as small soil mound, 
and the hollow, crest, windward slope as well as leeward slope 
of fixed dune determine the community diversity of biocrusts 
at the micro-scale (Li et al., 2002, 2010a). Micro-geomorphology 
has created various habitats at a small-scale affecting spatial 
distribution of nonvascular plants by reallocating related abiotic 
resources (Li et  al., 2012). Further, the cover and diversity of 
biocrusts are significantly influenced by dust deposition, light, 
soil moisture, and soil nutrients at the small and medium 
scales (Li et  al., 2010a; Zhang et  al., 2015). The accumulation 
of dust deposition on fixed dune surface is one of the prerequisites 
for the colonisation and development of cyanobacteria crust 
in the initial successional stage (Li et  al., 2000). Shade and 
higher surface soil moisture under shrub canopy enhances 
moss covering and species richness at the small scale (Li et al., 
2010a), strong light exposure and stable surface soil with higher 
nutrient content are favourable for lichen development (Guo 
et al., 2008; Li et al., 2017). Finally, precipitation, physiochemical 
properties of topsoil, and distribution of vegetation cover 
primarily determine the spatial distributions of dominant species 
in biocrust communities at the landscape (desert regions of 
northern China, Figure  2), regional (specific desert regions), 
and local (specific sample plots) scales, respectively (Li 
et  al., 2017).

BIOCRUSTS RESPONSE TO ABIOTIC 
STRESSES AND CLIMATE CHANGE

The Response to Abiotic Stresses
Although organisms that form biocrusts can survive in extreme 
environments, they are sensitive to global climate change as 
well as other stresses (Li et  al., 2018), including the physio-
ecological responses of biocrusts to variations factors such as 
precipitation, UV-B radiation, nitrogen, salinity, temperature, 
and light. Biocrusts can maintain physiological activity by 
utilising limited rainwater (1 mm), dew, and snowmelt (Rao 
et  al., 2009; Zhang et  al., 2009b, 2011b; Wu et  al., 2012, 2013; 
Li et  al., 2014a,b; Gao et  al., 2017b; Hui et  al., 2021). Winter 
snowfall can stimulate the nonvascular plants in biocrusts to 
produce higher photosynthetic and respiratory rates (Su et  al., 
2013a; Hui et  al., 2016a; Yin and Zhang, 2016; Zhao et  al., 
2016a). Further, Syntrichia caninervis exhibits an upside-down 

water collection system (Tao and Zhang, 2012; Wu et al., 2014; 
Pan et al., 2016). It is interesting that drought induced dormancy 
(inactive) is another strategy to protect biocrusts from UV-B 
radiation (Hui et  al., 2016b), high temperatures (Lan et  al., 
2014a), and salt stresses (Lan et  al., 2010).

It should be noted that enhanced UV-B radiation significantly 
decreases the photosynthetic activity and growth rate of algae 
and induces cellular oxidation and DNA damage (Wang et  al., 
2008a, 2012; Chen et  al., 2009; Xie et  al., 2009). Specifically, 
UV-B radiation inhibits the net photosynthetic rate of algae 
via indirect (decreased chlorophyll concentration) and direct 
(changed the structure of photosynthetic proteins) mechanisms; 
however, algae can alleviate the detrimental effects of UV-B 
radiation on photosynthesis and DNA by relying on exogenous 
chemicals (ascorbic acid, N-acetylcysteine, and extracellular 
polymers; Wang et  al., 2008a, 2012; Xie et  al., 2009). Similarly, 
increased intensity and exposure of UV-B radiation can 
significantly inhibit the photosynthetic rate of biocrust mosses 
(Wu et  al., 2005; Xue et  al., 2005) and cause cell membrane 
damage, thus resulting in dysregulation of antioxidant enzymes 
(Hui et  al., 2014, 2015). Increased UV-B radiation can also 
damage the cells and chloroplast ultrastructures of mosses (Hui 
et  al., 2013). However, biocrust organisms have developed a 
series of defence mechanisms against UV-B radiation such as 
avoidance, accumulation of UV-B-absorbing compounds, and 
DNA damage repair (Wang et  al., 2010; Chen et  al., 2012, 
2013; Ma et  al., 2012; Hui et  al., 2014). In addition, damage 
by enhanced UV-B radiation on mosses Bryum argenteum and 
Didymodon vinealis might be  alleviated by water deficit (Hui 
et  al., 2018).

Biocrust algae can endure and resist salt stresses (Tang et al., 
2007). Specifically, salt stresses can lead to the synthesis of 
polysaccharides through changes in carbohydrate metabolism 
and exogenous polysaccharides can subsequently increase salt 
tolerance (Chen et  al., 2003, 2006a). Algae can adapt to high 
temperatures and high light intensities, thus promoting the 
synthesis of polysaccharides (Ge et  al., 2014a,b). Further, high 
temperatures accelerate the N-fixing activities of algae and 
lichen crusts, thus facilitating N fixation by biocrusts (Zhang 
et  al., 2012a). Moreover, low temperatures and dark conditions 
allow biocrust recovery, while high light intensities inhibit 
recovery (Lan et  al., 2015). The observation of chlorophyll 
fluorescence and CO2 exchange under a series of 
photosynthetically active radiation (PAR) gradients indicated 
that acclimation to high PAR resulted in a special structure 
and significantly high accumulation of photosynthetic pigments 
in lichen crusts (Wu et  al., 2017).

The Response to Climate Change
Experimental results have indicated that simulated nitrogen 
(N) deposition significantly affected the biomass, carbon and 
N metabolism, osmotic adjustment substances, and antioxidant 
enzyme activities of biocrusts (Zhang et  al., 2016b). Low rates 
of N addition have been shown to exert a positive effect on 
the growth and physiological activity of moss crusts. Contrarily, 
high rates of N addition exert evident negative effects. Specifically, 
positive effects are weakened with increasing N concentrations 
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(e.g., addition of 1 g N m−2 a−1 to algae and lichen crusts); 
further, decreased positive effects were observed in a moss 
crust subjected to 0.3 g N m−2 a−1, thus resulting in negative 
effects (Zhou et  al., 2016; Zhang et  al., 2016b). In particular, 
the addition of inorganic N can significantly alter the diversity 
and community structure of microbes in biocrusts (Wang 
et  al., 2015).

Warming and rainfall reduction can alter the community 
compositions, structures, and characteristics of biocrusts, which 
further affect the sustainable development of desert ecosystems 
(Li et  al., 2016a, 2018). Meanwhile, warming and different 
types of precipitation events in biocrust-dominated desert 
ecosystems impact soil carbon release through changes in the 
magnitude of soil respiration (Guan et  al., 2021). Long-term 
warming and reductions in precipitation influenced the moss-
dominated biocrust via a decrease in moss cover and biomass, 
even causing a decrease in moss species richness, while the 
lichen-dominated biocrusts did not respond to warming and 
drought. Divergent responses of the dominant species in biocrust 
communities could increase probability to partly maintain the 
multifunctionality of biocrusts in arid desert ecosystem (Li 
et  al., 2021a).

BIOCRUSTS SERVE AS ECOSYSTEM 
ENGINEERS

The Contributors to Soil Stability and 
Habitat Improvement
Biocrust can significantly enhance the resistance of soil surfaces 
to wind erosion by increasing the wind friction velocity threshold 
of soils (Wang et  al., 2009a; Bu et  al., 2015a). The viscous 
thalli, slime and tailpieces coupled with filaments of actinomycetes 
and fungi, are responsible for binding together sand particles 
and thus forming tough cortical crusts on sandy surfaces (Li 
et  al., 2004a). Wind erosion rates for sandy soil with 0% crust 
cover was about 46, 21, and 17 times the soil with 90% crust 
cover at wind velocities of 18, 22, 25 m s−1, respectively (Zhang 
et al., 2006). Wind and water erosion rate decrease with biocrust 
development from initial cyanobacteria dominated to the later 
lichen and moss dominated crusts via promoting shallow soil 
aggregate structure, organic matter, water-holding capacity, and 
biocrust thickness, cover, as well as biomass (Li, 2012). Biocrusts 
should be  strongly protected to avoid exacerbating wind and 
water erosion in dryland (Zhao et  al., 2014a; Bu et  al., 2015a). 
Higher cover of moss has an effective ability to control soil 
water erosion in the Loess Plateau, based on a threshold moss 
cover of 35% beyond which water erosion was completely 
prevented (Gao et al., 2020a), because biocrusts inhibited runoff 
erosion through direct physical protection related to biocrust 
cover and biomass and through the indirect modification of 
soil properties (Gao et  al., 2020b), in particular, decreased 
raindrop erosivity (Zhao and Xu, 2013; Zhao et  al., 2014a).

Colonisation and development of biocrusts are important 
indicators of soil ecological health in deserts and sandy lands 
(Li et  al., 2016a). Biocrusts promote topsoil formation on sand 
surfaces and improve the physicochemical and biological 

properties of topsoil (Chen and Li, 2012; Zhao and Xu, 2013; 
Chen and Duan, 2015; Li et  al., 2017; Niu et  al., 2017). A 
comparison of biocrust covered shallow soil indicated that the 
clay content increased from 3.0 to 5.0% during the initial 
successional stage to 8.0–25.0% during the late successional 
stage; moreover, the soil exhibited aggregation (>250 μm; Li 
et  al., 2007b; Chen et  al., 2008; Guo et  al., 2008; Gao et  al., 
2010, 2012, 2017a; Zhang et al., 2014a) and significantly increased 
organic carbon content, total nitrogen, total phosphorus, and 
total potassium (Li et al., 2002, 2013a, 2016b; Gao et al., 2017a). 
Further, biocrusts can promote the accumulation of fine particles 
and nutrient enrichment of topsoil through corrosion of sand 
surface minerals and deposition of wind and water eroded 
substances, thus promoting soil formation and fixing sand dune 
surface (Li et  al., 2013a; Liu et  al., 2016a; Gao et  al., 2017a). 
Additionally, biocrusts have been shown to enhance the activities 
of soil ureases, invertases, catalases, and dehydrogenases (Zhang 
et  al., 2012b; Liu et  al., 2014; Zhou and Zhang, 2014; Hu 
et  al., 2016).

The Roles in C and N Cycling
Biocrusts significantly participate in the carbon and nitrogen 
cycles of desert ecosystems; thus, they are an important source 
of organic carbon and nitrogen in soils (Li, 2012; Su et  al., 
2013b; Wu et  al., 2015; Zhao et  al., 2016b). Carbon release 
from biocrusts increases with increasing total precipitation and 
snowfall via increasing respiration (Hui et  al., 2016a; Zhao 
et  al., 2016a), meanwhile temperature increases significantly 
affect the biocrust carbon budget. A temperature increase of 
2.5°C significantly inhibits the photosynthetic rates of biocrusts 
to consequently increase the carbon release rates (Huang et al., 
2014a; Ouyang and Hu, 2017). Specifically, soil moisture and 
effective wetting time determine the amount of carbon 
sequestration by biocrusts (Li et  al., 2018, 2021a). The carbon 
fixation is higher with high-frequency rainfall, even if the total 
amount of seasonal rainfall was the same (Huang et al., 2014a). 
Compared with cyanobacteria crusts, lichen and moss soil 
crusts had the higher photosynthetic activities (Fv/Fm), and 
about 2.4–7.5-fold higher than the former (Lan et  al., 2017). 
The range of optimal gravimetric water content for early biocrusts 
to fix carbon was 1–3.5%, and 1–5% for the later successional 
biocrusts. The annual carbon fixation was 11.36 g C m−2 yr−1 
for cyanobacteria-algae dominated crusts and 26.75 g C m−2 
yr−1 for lichen-moss dominated crusts. These findings indicate 
the recovery of biocrusts is expected to significantly increase 
carbon input into sandy desert ecosystems (Li et  al., 2012). 
In addition to these biocrust nonvascular plants, in the C 
cycle, bacterial and fungal functional genes in biocrust 
communities were involved in the degradation of labile and 
recalcitrant C, suggesting that bacteria and fungi cooperate in 
C degradation (Zhao et  al., 2020b). However, daily net carbon 
fluxes in the biologically crusted soils and bare land showed 
carbon release at most times and total carbon production 
ranged from 48.8–5.4 g C m−2 yr−1 to 50.9–3.8 g C m−2 yr−1 
(Su et  al., 2013a).

The nitrogen fixation ability of biocrusts ranges between 
2.5 and 62.0 μmol C2H4 m−2 h−1 (Wu et  al., 2009; Su et  al., 
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2011). Among the different biocrusts, algae crusts exhibit the 
highest average nitrogen fixation activity (28.1 μmol C2H4 m−2 
h−1), followed by lichen (24.3 μmol C2H4 m−2 h−1) and moss 
(14.0 μmol C2H4 m−2 h−1) crusts (Wu et  al., 2009; Su et  al., 
2011). The annual nitrogen fixation activity of biocrusts ranges 
between 3.7 and 13.2 mg m−2 a−1 (Wu et  al., 2009; Su et  al., 
2011). Further, the nitrogen mineralisation rates (nitrate nitrogen, 
ammonium nitrogen, and inorganic nitrogen) of moss crusts 
(0.14–0.83 mg kg−1 d−1) are higher than those of algae crusts 
(0.06–0.58 mg kg−1 d−1; Hu et al., 2015). These results provided 
evidence that biocrusts can add nitrogen to desert ecosystems, 
transform nitrogen into soil nutrients, and directly supply N 
to eremophytes (Wu et  al., 2009; Zhao et  al., 2010a; Su et  al., 
2011; Hu et  al., 2014). Nitrogen fixation exhibits a significant 
positive correlation with mineralisation and precipitation, and 
different biocrust types indicate significantly different responses 
to nitrogen increases (Hu et  al., 2014; Liu et  al., 2016b). In 
addition, factors affecting carbon cycles also affect nitrogen 
cycles (Wu et  al., 2009; Su et  al., 2011; Hu et  al., 2015). It 
should be noted that moderate pasturing can promote nitrogen 
fixation by biocrusts (Liu et  al., 2009). It has been explored 
that biocrusts and vegetation patches present a “source-sink” 
relationship for carbon and nitrogen at the desert landscape 
scale (Li et  al., 2008a), suggesting that biocrust patches 
significantly contribute to maintaining and managing the C 
and N levels in vegetation patches (Li et  al., 2013a; Zhao and 
Xu, 2013; Liu et  al., 2016a). These findings implied that the 
conversion of carbon and nitrogen “source-sink” relationships 
can be  mediated through desert ecosystem management (Li 
et  al., 2013a).

Biocrusts Mediated Soil-Water Balance
Biocrusts significantly affect the soil hydrological processes in 
deserts and sandy lands by altering rainfall infiltration, runoff, 
surface evaporation, non-rainfall water collection (dew, fog, 
and water vapor sorption) as well as the moisture of shallow 
and deep soils (Liu et  al., 2006; Zhang et  al., 2008, 2009b; Li 
et  al., 2010b, 2021a,b; Pan et  al., 2010; Xiao et  al., 2010; Bu 
et  al., 2015a; Wang et  al., 2017).

Biocrusts significantly alter the spatiotemporal redistributions 
of rainfall infiltration and soil moisture as well as reduce the 
effective supplementation of rainfall to deep soil (Li et  al., 
2001; Bu et  al., 2015a; Wang et  al., 2017; Xiao et  al., 2019). 
The Gurbantunggut Desert receives precipitation ranging from 
70 to150  mm; further, moss-, lichen-, and algae-dominated 
crusts have been shown to reduce the infiltration rate by 
16.50–36.10, 33.98–46.42, and 35.92–50.39%, respectively, while 
reducing the 1-h accumulated infiltration rate by 16.10, 28.56, 
and 26.56%, respectively (Zhang et al., 2006). The precipitation 
in Tengger Desert ranges from 150 to 200 mm and the infiltration 
intercepted by biocrusts exhibits the following order: moss 
crust > lichen crust > algae crust. The three different biocrusts 
presented no significant differences when the precipitation was 
less than 5 mm or greater than 10 mm (Li et  al., 2010b). The 
biocrusts in Mu Us and Horqin sandy lands (annual 
precipitation = 300–500 mm) reduce both infiltration rates and 
infiltration depths (Bu et  al., 2013, 2015b). Further, biocrusts 

have been shown to reduce infiltration rates in the Loess Plateau 
area (annual precipitation = 450 mm), thus resulting in shallow 
distributions of soil moisture and increased surface runoff (Xiao 
et  al., 2011, 2016; Zhao and Xu, 2013; Zhao et  al., 2014b).

Biocrusts can reduce the occurrence of surface runoff and 
soil erosion by absorbing the energy produced by splashing 
raindrops (Xiao et  al., 2011; Zhao et  al., 2014a). Scanning 
electron microscopy results have indicated that sandy soils 
are sufficiently porous for water flow (Wang et  al., 2017). 
However, mud and clay particles in the crustal layer expand 
upon wetting and consequently inhibit soil moisture infiltration. 
Further, certain cyanobacteria can rapidly expand in response 
to rainfall, thus closing the water flow paths on the soil 
surface. Contrarily, certain well-developed moss-crust surfaces 
are difficult to saturate with water, thus allowing water 
infiltration to deep soil. It has been noted that biocrusts 
with Endocarpon pusillum Hedw. and Collema tenax can 
intercept rainfall infiltration, while those with Psora decipens 
(Hedwig) Hoffm and Toninia sp. are conducive to rainfall 
infiltration due to mesh cracks on the surface (Wei, 2005). 
We  utilised the Limburg soil erosion model (LISEM) to 
conclude that the algae crust-covered leeward slope of a sand 
dune was more likely to generate flow than the moss crust-
covered windward slope of a sand dune (Li et  al., 2001). 
Further, long-term experiments and simulations have indicated 
that the relationship between biocrusts and precipitation 
infiltration primarily depends on biocrust characteristics 
(porosity, thickness, and species composition), topsoil properties 
(initial soil moisture content and texture composition), and 
local precipitation characteristics (raindrop diameter, rainfall 
duration, and rainfall intensity; Li et  al., 2001, 2002).

Biocrusts affect surface evaporation by altering the 
physicochemical properties of soils (Zhang et  al., 2008; Xiao 
et  al., 2010). Specifically, biocrusts promote evaporation by 
reducing the surface reflectance and increasing the water-holding 
capacity of topsoil (Bu et  al., 2013). It has also been reported 
that biocrusts reduce evaporation by closing the soil surface 
(Wang et  al., 2005). Further, the effects of biocrusts on surface 
evaporation are influenced by regional climatic conditions 
(Zhang et  al., 2008), soil moisture status (Liu et  al., 2007), 
microtopography (Li et al., 2010a), and biological characteristics 
of biocrusts (Wang et al., 2017). Additionally, different biocrust 
types and coverage rates exert different effects on surface 
evaporation (Sun et  al., 2008; Xiao et  al., 2010). For instance, 
moss-dominated crusts first promote and then inhibit 
evaporation, thus ensuring that moisture remains in the topsoil 
for a prolonged duration; therefore, moss-crusts, which exhibit 
the highest water-holding capacity, are significant for the 
germination and establishment of therophytes (Li et  al., 2003, 
2004b, 2005; Su et  al., 2007; Zhang et  al., 2008).

Non-rainfall water such as dew is not only a significant 
water resource for non-vascular plants and other tiny organisms 
in biocrusts but also affects the activities of these species (Rao 
et  al., 2009; Li, 2012; Huang et  al., 2014b; Jia et  al., 2014; Liu 
et  al., 2016a; Ouyang and Hu, 2017). Long-term monitoring 
on dew entrapment in the Tengger Desert has indicated that 
the mean daily amount of dew on the surfaces of moss- and 
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algae-crusts is approximately 0.15 mm d−1, with a maximum 
value of ~0.50 mm d−1. The total amount of condensed water 
in shifting sands, physical crusts, and biocrusts accounts for 
15.9, 22.9, and 37.9% of the concurrent precipitation, respectively 
(Pan et  al., 2010). The daily amounts of dew on the surfaces 
of moss-, algae-, and lichen-crusts in the Gurbantunggut Desert 
were 0.14, 0.11, and 0.09 mm d−1, respectively (Zhang et  al., 
2008). However, the mean daily amounts of dew on the surfaces 
of moss- and algae-crusts in the Mu Us Sandy Land were 
0.12 and 0.10 mm d−1, respectively (Sun et  al., 2008). The dew 
amount of the biocrusts was increased by up to 130.5% on 
the loess and 157.1% on the aeolian sand in semiarid regions 
(Li et  al., 2021b). Non-rainfall water forms on biocrusts owing 
to their surface microclimates (Liu et  al., 2007; Zhang et  al., 
2009b), adherence to several microbial organic components 
(Pan et al., 2010), trichome development, and the special water 
collection and transmission systems (grooves and verruca) of 
mucilage secretions (Rao et  al., 2009) and leaf tips (Tao and 
Zhang, 2012). Further, nocturnal absorption of condensation 
can compensate for diurnal moisture losses from soil surfaces, 
which is conducive to the retention of surface moisture by 
biocrusts (Pan et al., 2010; Pan and Wang, 2014). Consequently, 
unlimited reductions in surface moisture are prevented during 
the dry season (Li et  al., 2014c). Biocrusts are associated with 
much greater non-rainfall water deposition capacity, and change 
non-rainfall water distribution along with soil depth, implying 
that they play a critical role in surface soil water balance of 
dryland ecosystems (Li et  al., 2021b,c).

In ecological restoration practice of China such as establishing 
artificial sand-binding vegetation to protect cropland, settlement 
and transportation route from sand burial, the high biocrust 
cover is not conducive to shrub planting in high density on 
sand dunes because biocrusts reduce the moisture of deeper 
soil by reducing infiltration (Li et al., 2004a, 2010b; Xiao et al., 
2016; Xiao and Hu, 2017). However, the redistribution of water 
and nutrients from biocrust patches to plant patches can 
be  crucial in the maintenance of vegetation productivity in 
natural desert landscape (Li et  al., 2008a). Thus, maintaining 
a stable sink-source relationship between biocrust patches and 
plant patches is beneficial to the water balance of desert 
ecosystems (Li et  al., 2009, 2016a). However, global warming 
affects these hydrological roles of biocrusts, for example, reduces 
dew formation, weakens infiltration interception and increases 
evaporation, finally altering the hydrological processes and 
original water balance of desert ecosystems (Li et al., 2018, 2021a).

Effects of Biocrusts on Vascular Plant and 
Soil Biomes
Land surface in arid and semiarid regions is often characterised 
by mosaic patches of biocrusts and vascular plants due to 
limited water availability (Li, 2012). Biocrusts are beneficial 
for the survival and reproduction of vascular plants, since 
they increase N uptake in adjacent vascular plants and promote 
carbon uptake in C3 plants as demonstrated by isotope tracing 
(Zhao et al., 2010b). Cyanobacteria- and moss-crusts significantly 
increase the germination and survival rates of annual plants 

(Su et  al., 2007, 2009). However, other studies have concluded 
that vascular plant seeds are not retained on the smooth moss-
crust surfaces in windy environments, thus indirectly reducing 
the likelihood of seed germination (Li et al., 2005). In addition, 
an increase in vegetation cover and surface litter can 
be  detrimental to biocrusts (Guo et  al., 2008).

Biocrusts also affect the seed germination, settlement, and 
survival of vascular plants by altering soil properties such as 
surface roughness, soil temperature, humidity, and nutrient 
content. Furthermore, biocrusts also affect the water content 
of shallow soils, thus increasing the species richness and biomass 
of herbs with shallow roots and reducing the coverage and 
biomass of woody plants with deep roots to ultimately increase 
the density of C4 plants (Li et  al., 2010b, 2014b). The harsh 
environments of deserts and sand dunes threaten the survival 
of organisms. Biocrusts provide suitable habitats and food 
sources for soil arthropods (Figure  3). An increase in the 
biocrust cover on the sand surface was found to increase insect 
diversity (Li et  al., 2011) and effectively protect an ant nest 
from damage by sand burial (Li et  al., 2011, 2014d; Chen 
and Li, 2012). Further, biocrusts increase soil microbial richness 
and biomass (Liu et  al., 2013; Yang et  al., 2018). It should 
be  noted that bacteria, fungi, and other microorganisms are 
fed upon by herbivorous and carnivorous-omnivorous nematodes 
(Zhi et  al., 2009; Liu et  al., 2011). The nematodes Tylenchidae 
and Bursaphelenchus directly feed on cyanobacteria and may 
also consume mosses and green algae (Zhi et  al., 2009). An 
increase in nematode richness increases the richness of 
omnivorous-carnivorous organisms (Zhang et  al., 2010; Guan 
et  al., 2018). Tenebrionidae insects feed on mosses while 
Microcoryphia feed on lichens (Li et  al., 2008b). These results 
demonstrated that biocrusts not only provide habitats for small 
soil animals but also directly participate in the composition 
of food chains in desert ecosystems.

In addition, small soil organisms such as bacteria on the 
epidermis of soil nematodes can affect biocrusts; specifically, 
certain bacteria can be  excreted through the digestive system 
of nematodes, thus promoting the reproduction and colonisation 
of bacteria and indirectly promoting the colonisation of biocrusts 
(Zhi et al., 2009). Nest construction by ant Formica cunicularia 
Latr. can result in channels in the soil to consequently increase 
soil porosity and weaken rainfall interception by biocrusts  
(Li et  al., 2011; Chen and Li, 2012).

BIOCRUST RESPONSES TO 
DISTURBANCES

Biocrust organisms are sensitive to erosion, sand burial, fire, 
grasing, and trampling due to their short stature and inhabiting 
shallow depths of soils. Wind erosion can cause direct mechanical 
damage to biocrust organisms, accelerate water loss, and inhibit 
photosynthesis, respiratory physiological activity, biomass 
accumulation, growth, and asexual reproduction of the biocrust 
(Jia et  al., 2012). Sand burial is a physical stress which causes 
the mechanical compression of biocrusts (Jia et  al., 2008) and 
reduces the availability of light and moisture (including dew) 
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in crustal habitats (Rao et  al., 2012; Jia et  al., 2014). The 
effects of sand burial on biocrusts vary with the thickness 
and timing of the burial as well as the crust type. Shallow 
sand burial promotes biocrust growth, while thicker sand burial 
reduces PSII photochemical efficiency, chlorophyll a, and 
extracellular polysaccharide content of biocrusts. Long-term 
deep sand burial leads to the death of biocrust cryptogams 
(Wang et  al., 2007). Microcoleus vaginatus Gom. can tolerate 
less than 1 cm of sand burial by growth moving upwards (Rao 
et  al., 2012). Sand burial thicknesses tolerated by mosses and 
lichens are greater than those tolerated by algae (Jia et  al., 
2008). Specifically, moss- and lichen-crust can tolerate burial 
depths ranging between 1 and 4  mm by reducing respiratory 
carbon losses and upward growth (Zhao et  al., 2017). Sand 
burial is also expected to modify the species compositions of 
fungal communities (Grishkan et al., 2015) and the greenhouse 
gas fluxes of biocrust-covered soils (Jia et  al., 2008).

The probability of fire occurrence in the desert regions of 
China is small because fires are controlled and prevented through 
management activities. However, occasional fires can significantly 
alter the compositions of crustal species, increase the coverage 
of cyanobacteria, and reduce the coverage of lichens and mosses 
(Li et  al., 2016a). Additionally, fires can enhance the water 
repellency of moss-crusts (Wu and Liu, 2008) and inhibit the 
nitrogen fixation of Collema tenax (Sw.) Ach.em.Degel (Guo 
et  al., 2016). Trampling has been shown to decrease the species 
richness, coverage, and surface stability of biocrusts (Liu et  al., 
2009; Wang et  al., 2009b). Moreover, it can reduce the soil 

microbial biomass (Yang et  al., 2018). However, the late-
successional crusts have a higher tolerance to trampling 
disturbance compared to early-successional crusts (Wu et  al., 
2020). Further, damage to biocrusts can increase the likelihood 
of invasion by exotic species (Song et  al., 2017a,b), which is 
likely to alter the multifunctionality of desert ecosystems (Li 
et  al., 2013a).

APPLICATIONS FOR LAND 
DEGRADATION CONTROL

The formation and passive restoration of biocrust under natural 
conditions occurs over a period of several decades (Zhao et al., 
2011). The breeding of cyanobacteria, lichen, and moss can 
accelerate the formation of artificial biocrust and is suggested 
as an effective strategy for land degradation control (Xiao et al., 
2015; Zhou et  al., 2020).

Dominant cyanobacteria in biocrust such as Microcoleus 
vaginatus Gom. and Scytonema javanicum Born et Flah have 
been successfully isolated, cultivated, and employed as effective 
bio-materials to fix mobile dunes and prevent grasslands from 
sand burial in the Hobq Desert (Chen et al., 2006b; Wang et al., 
2008b; Lan et al., 2014b). In this regard, physiological characteristics 
of the artificial cyanobacterial crust (Bu et al., 2014), its tolerance 
to stress (Chen et  al., 2013), field soil moisture, temperature, 
light, and nutrient supply (Chen et al., 2006b), and its distribution 
on sand dunes (Li et  al., 2013b) were determined. Specifically, 

FIGURE 3 | Biocrust provided both a novel habitat and food source for soil arthropod [(A) numerous ant nest occurred on biocrust covered dune surface; 
(B) Haslundichilis sp. were feeding on lichen and moss; and (C) moss and lichen were found in Haslundichilis sp. foregut].
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these studies elucidated the appropriate range of light, temperature, 
and nutrient conditions, thus allowing establishment of the factory 
production process and development of the sand surface inoculation 
technology (Li et  al., 2016a; Zhao et  al., 2021).

Three common cyanobacteria (Nostoc sp., Phormidium sp., 
and Scytonema arcangeli Bornet ex Flahault) were isolated from 
a local biocrust in the Tengger Desert and subsequently cultured 
(Li et al., 2016a). Furthermore, the cyanobacteria were inoculated 
in the sands with a sand-fixing agent and a strong water-absorbent 
polymer. The hardness of the dune surface soil was significantly 
enhanced after an inoculation period of 1 year. Further, the 
carbohydrate content, biomass, microbial biomass, soil respiration, 
carbon fixation, and effective quantum yield of the newly formed 
biocrust were 50–100% those of a natural biocrust (developed 
over a duration of 20 years; Park et al., 2017). In addition, asexual 
reproduction of buds, stems, and leaves of certain mosses indicated 
the feasibility of cultivation of artificial moss-crusts (Xu et  al., 
2008; Bu et  al., 2015c, 2018). Further, these results determined 
the optimum cultivation temperatures, humidity levels, nutrient 
solutions, nutrient concentrations, and substrate and field 
inoculation methods for Tortula desertorum Broth. in the 
Gurbantunggut Desert (Xu et al., 2008), Bryum argenteum Hedw. 
in the Tengger Desert and the Mu Us Desert Sandy land (Bu 
et  al., 2015c; Li et  al., 2016a), and Didymodon vinealis (Brid.) 
Zand in the Loess Plateau (Bu et al., 2017). In general, cyanobacteria 
can be  successfully inoculated at a large area, while moss or 
lichen inoculation on large areas still faces many difficulties, 
and further research is needed on how inoculation affects vegetation 
diversity and structure and ecological processes (Zhou et al., 2020).

However, artificial biocrusts can stabilise dunes and prevent 
sand burial by shortening the sand fixation time and improving 
the efficiency of sand fixation. Subsequently, a comprehensive 
approach based on these results has been suggested for land 
degradation control (Figure  4). This approach combines 
traditional revegetation techniques (e.g., establishing straw-
checkboard sand barriers and planting xerophytic shrubs) with 
spraying artificial cyanobacteria or moss fixed solution (Li 
et  al., 2016a), thus restoring land degradation in the arid and 
semiarid regions of China (Zhao et  al., 2019).

CONCLUSION

As can be  seen from the above research progress, biocrust is 
good indicator of desert ecosystem health and sustainable 
development, as well as bio-materials with great potentiality for 
restoration of land degradation since biocrust prevents soil erosion 
and facilitates the establishment of plant and soil biome, as well 
as maintains water balance. Furthermore, biocrusts can rapidly 
cover on sand dunes by inoculating and cultivating related 
nonvascular species and their high tolerate to harsh conditions, 
including exposure to intense UV radiation, drought stress, and 
various biotic and abiotic disturbances. These findings well 
explored biocrust roles in soil ecological, hydrological, landscape, 
and biogeochemical processes, as well as in desert ecosystem 
self-organisation, well supplementing our knowledge gap on 
biocrust in temperate deserts. The research progresses during 
two decades since 2000 were also reflected in research scales, 

FIGURE 4 | Cultivated non-vascular plants were employed to form biocrusts on dune surface provisionally fixed by the sand barrier using straw checkerboard 
[(A) strain isolation and purification; (B) industrial scaled-up cultivation; (C) field spray-inoculation; and (D) cyanobacteria dominated crust after 1 year in the 
southeastern edge of the Tengger Desert].
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namely, evolving from the local to the regional to the landscape 
scale. Additionally, the methods and frameworks have shifted 
from traditional field observations and control experiments to 
the utilisation of molecular biology to explore underlying 
mechanisms, performing large-scale model simulations, and 
conducting multidisciplinary studies. Moreover, the research 
focuses have shifted from understanding the spatiotemporal 
distributions, compositions, structures, and functions of biocrusts 
to elucidating multi-scale ecosystem and landscape level processes 
and response mechanisms undergoing climate change. These 
include understanding the impacts of biocrusts on ecological 
restoration, important ecological processes such as C and N 
cycling in drylands, interaction between soil biomes, and 
maintenance of biodiversity and multifunctionality.

However, understanding on the underlying mutual feedback 
mechanisms of biocrust in ecological, hydrological, and 
biogeochemical processes is limited. Especially, we have limited 
understanding of the effects of global climate change on the 
ecosystem services of biocrusts, such as reducing the risk 
of biological invasions, dust emission of sand-dust storms 
and snowmelt, conserving biodiversity, maintaining water 
balance in global drylands, furthermore, clarifying the 
countermeasures to maintain its ecosystem services, etc. In 
addition, we  still do not know whether the microorganisms 
in the biocrust pose a potential hazard to human health 
after it is broken. A largely ignored, but potentially important 
human exposure route for cyanotoxins in desert environments 
is through the inhalation of desert crusts during dust storms 
and anthropogenic activity. Future work in this field should 
include the characterisation of toxins produced in desert 
regions as well as the presence of toxins in clinical and 
environmental materials.

Finally, the species selection and inoculation techniques of 
artificial biocrust, including using net-work structured 
nanocomposite with high water-retention ability, viscosity, and 
biosafety as novel material for colonisation and development of 
artificial cyanobacteria, lichen, and moss on the sand surface 
in desertified grassland, and employment as a potential biofertilizer 
for soil reclamation, especially in terms of desertified land 
management, as well as other potential valuable bioresource such 
as pharmaceutical, animal feed, food (artificial cultivation of 
Nostoc commune and Nostoc flagelliforme as Chinese traditional 
food material), and fuel production should be the focus of future 
studies, because biocrust microalgae consist of a variety of 
components including carbohydrates, proteins, pigments, and lipids.
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