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The study of phenotypes that reveal mechanisms of adaptation to drought and heat
stress is crucial for the development of climate resilient crops in the face of climate
uncertainty. The leaf metabolome effectively summarizes stress-driven perturbations of
the plant physiological status and represents an intermediate phenotype that bridges
the plant genome and phenome. The objective of this study was to analyze the effect
of water deficit and heat stress on the leaf metabolome of 22 genetically diverse
accessions of upland cotton grown in the Arizona low desert over two consecutive
years. Results revealed that membrane lipid remodeling was the main leaf mechanism
of adaptation to drought. The magnitude of metabolic adaptations to drought, which
had an impact on fiber traits, was found to be quantitatively and qualitatively associated
with different stress severity levels during the two years of the field trial. Leaf-level
hyperspectral reflectance data were also used to predict the leaf metabolite profiles
of the cotton accessions. Multivariate statistical models using hyperspectral data
accurately estimated (R2 > 0.7 in ∼34% of the metabolites) and predicted (Q2 > 0.5
in 15–25% of the metabolites) many leaf metabolites. Predicted values of metabolites
could efficiently discriminate stressed and non-stressed samples and reveal which
regions of the reflectance spectrum were the most informative for predictions. Combined
together, these findings suggest that hyperspectral sensors can be used for the
rapid, non-destructive estimation of leaf metabolites, which can summarize the plant
physiological status.
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INTRODUCTION

Drought and heat are two major abiotic stresses that often occur
in the field simultaneously and whose effects negatively impact
crop growth and productivity (Mittler, 2006; Suzuki et al., 2014).
In the last decades, the frequency of drought and heat stress
events has increased as a result of global climate change posing
a threat to present and future crop production (Zscheischler
et al., 2018; Alizadeh et al., 2020). In the face of these challenges,
the ability to identify key mechanisms of adaptation to heat
and drought stress is pivotal for improving plant resiliency and
maintaining crop productivity.

Upland cotton (Gossypium hirsutum L.) is a crop of primary
importance in Arizona, with ∼50,000 ha planted in 2020
and an annual production value of $110 million for both
fiber and seeds (USDA, 2021). The primary cotton production
system in the Arizona low desert uses surface irrigation to
supplement limited precipitation. When cotton is grown in
semi-arid environments, well above the thermal optimum of
30/22◦C day/night temperature (Burke and Wanjura, 2010),
water availability is also associated with heat stress avoidance
through transpiration-driven leaf cooling that, on very hot days,
can reach 10◦C relative to ambient atmospheric temperatures
(Burke and Upchurch, 1989; Carmo-Silva et al., 2012). In this
context, the ongoing drought in the Colorado River basin, the
main source of irrigation water for Arizona growers, and the
projected increase in temperature due to global climate change
are estimated to cause ∼40 and ∼50% reduction in cotton
yield by mid- and late-century, respectively (Ayankojo et al.,
2020; Thorp et al., 2020). For these reasons, is necessary the
development of new cotton accessions more adapted to heat
and drought stress.

The plant metabolome represents the summation of
numerous metabolic pathways modulated by intracellular and
intercellular regulatory processes, and it incorporates the effect
of genetic (i.e., pleiotropy and epistasis) and environmental
factors, as well as their interactions (Keurentjes, 2009; Herrmann
and Schauer, 2013). Mechanisms of plant adaptation to heat
and drought conditions involve morphological, physiological,
and molecular responses that ultimately lead to metabolic
changes (Fahad et al., 2017; Zandalinas et al., 2018). Under
stressful conditions, the reprogramming of plant metabolism
is characterized by a trade-off between growth and survival
during which the activity of essential metabolic pathways
needs to be maintained while adapting to the new prevailing
environmental conditions (Obata and Fernie, 2012; Claeys and
Inzé, 2013). Drought and heat stress-induced metabolic changes
have been extensively studied in many plant species and include,
among others, an overall accumulation of amino acids and sugars
associated with reduced growth, an increase in compatible solutes
with protective functions (e.g., betaines, trehalose, raffinose, and
proline), and membrane lipid remodeling (Krasensky and Jonak,
2012; Obata and Fernie, 2012; Liu et al., 2019). A number of
studies have specifically investigated the combined effect of heat
and drought stress on the metabolite profile of plants (Rizhsky
et al., 2004; Obata et al., 2015; Templer et al., 2017). These
studies highlighted that the combination of the two stresses

induced only a few additional specific responses while most of
the metabolic changes were caused by the sum of the individual
stress responses, with drought having the strongest effect.
Because of their strong relationship with plant physiological
status, metabolites are regarded as functional intermediate
phenotypes more closely linked to complex plant traits (e.g.,
drought tolerance) than, for example, gene transcripts (Fiehn,
2002; Luo, 2015). For these reasons, multivariate analysis of
plant metabolism has shown a great potential for the prediction
of complex phenotypic traits and selected metabolites have
been considered as promising targets for crop improvement
(Razzaq et al., 2019; Melandri et al., 2020; Fernandez et al.,
2021). Despite their potential, a main limitation to the use of
metabolites in breeding depends on the time and costs required
for their extraction and quantification. A possible solution
to this problem is offered by the technological developments
in field-based, high-throughput plant phenotyping, which
has enabled rapid and low-cost measurements of many plant
phenotypes across time and space (Pauli et al., 2016b; Araus et al.,
2018). Particularly, several studies have demonstrated that the
collection of hyperspectral proximal sensing data (with spectral
range of 350–2500 nm) of plant canopies has enabled rapid and
non-destructive estimation (by multivariate statistical modeling)
of leaf chemical properties including photosynthetic pigments as
well as nitrogen, potassium, phosphorus, and lignin content in
many plant species (Martin et al., 2008; Kokaly et al., 2009; Asner
et al., 2011; Pimstein et al., 2011). More recently, Vergara-Diaz
et al. (2020) were able to predict metabolite values in flag leaves
and ear bracts of durum wheat using hyperspectral reflectance
data collected at leaf and canopy level. In the near future, routine
use of high-throughput hyperspectral sensors for the remote
and non-destructive estimation of plant metabolites is possible,
which could enable biochemical phenotyping of plants in a
time- and cost-efficient manner (Burnett et al., 2021). However,
additional studies are necessary to evaluate the accuracy of the
relationship between hyperspectral data and leaf metabolites in
a larger number of the crop species and to test their robustness
under different environmental conditions.

The goal of this study was to evaluate the relationship between
leaf metabolite profiles and leaf-level spectral reflectance in 22
genetically diverse accessions of upland cotton grown under
well-watered (WW) and water-limited (WL) conditions in the
Arizona low desert over two consecutive years. Specific objectives
were to (1) quantify impacts of heat and drought stress on
the cotton leaf metabolome and (2) evaluate leaf reflectance
spectra for estimating metabolite profiles of stressed and non-
stressed cotton leaves.

MATERIALS AND METHODS

Plant Material, Experimental Design, and
Soil Measurements
A panel of 22 cotton (Gossypium hirsutum L.) accessions
(Supplementary Table 1) were evaluated in the years 2018 and
2019 at the Maricopa Agricultural Center (MAC) in Maricopa,
AZ, United States (33◦04′37′′N, 111◦58′26′′W, elevation 358 m).
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The experimental field site of this study, located in the low desert
of central Arizona, provided optimal meteorological conditions
for studying the response of plants to the effect of heat and
drought stress. The panel consisted of three commercial check
accessions (FiberMax 958, DeltaPine 493, and DeltaPine 393) and
19 accessions from the Gossypium Diversity Reference Set (Percy
et al., 2014). The accessions of the panel were chosen to provide
a representation of the genetic diversity contained within the
entire GDRS collection. The 22 accessions were evaluated under
two irrigation treatments, WL and WW, at a field site with soil
characterized as Casa Grande sandy loam (fine-loamy, mixed,
superactive, and hyperthermic Typic Natrargids). Each year the
accessions were arranged in a randomized incomplete block
design with two replications per irrigation treatment totaling 88
experimental plots. Experimental plots were 4.50 m in length
with a 1.21-m alley at the end and were seeded at a rate
of ∼12 plants per linear meter with an inter-row spacing of
1.02 m. Conventional cotton cultivation practices for the desert
Southwest were employed. Meteorological data were obtained
from an automated Arizona Meteorological Network (AZMET)
weather station1 located on the research facility (Brown, 1989).

The crop was established using a variable-rate, overhead
linear move irrigation system (Lindsay Corporation, Omaha,
Nebraska) with 0.201 L s−1 nozzles (#13.5, Senninger, Clermont,
FL, United States). Once plants had emerged and developed four
true leaves, neutron moisture probe access tubes were placed to a
depth of 2.00 m in the middle of each irrigation treatment area
(comprised of 44 plots) using a tractor-mounted soil sampler
(Model 25-TS, Giddings Machine Company, Windsor, CO,
United States). Measurements of soil water content were collected
on a weekly basis at six depths (10, 30, 50, 70, 90, and 110 cm)
using a field-calibrated neutron moisture probe (Model 503,
Campbell Pacific Nuclear, CPN, Martinez, CA, United States).
The scheduling of the WW irrigation treatment was specified
based on simulations from the CSM-CROPGRO-Cotton model,
following the methodology of Thorp et al. (2017). The model
computed a daily soil water balance crop evapotranspiration
(ETc) based on the FAO-56 dual crop coefficient method
(DeJonge and Thorp, 2017), and cotton growth, stress, and yield
metrics. Irrigation amounts were determined as the smallest
rate that supplied model-predicted cumulative seasonal ETc.
This eliminated predictions of water stress and maintained
root-zone soil water depletion below 45%. Further irrigation
management details were provided by Thorp et al. (2020). The
WL irrigation treatment was initiated when 50% of the plots
were at first flower (on Julian days 201 and 192 in 2018 and
2019, respectively), after which this treatment received half
of the irrigation amount computed for the WW treatment.
Irrigation rates for the WL treatment were applied using the
variable-rate irrigation system to reduce application rates over
the WL treatment area. Scheduling of irrigation was performed
on a weekly basis by incorporating updated daily meteorological
information, including best estimates of future conditions.

At the end of each growing season, 25 bolls were randomly
sampled (on Julian days 290 and 288 in 2018 and 2019,

1http://ag.arizona.edu/azmet/

respectively) from each plot and processed using a laboratory
10-saw gin to collect fiber for the analysis of their quantity
and quality. Lint yield (grams/plot) after gin was measured at
MAC. Fiber quality measurements were made using an Uster
HVI 1000 (High Volume Instrument, Uster, Charlotte, NC,
United States) at Cotton Incorporated (Cary, NC, United States).
The fiber quality traits measured were micronaire (Mic, units
of air permeability), upper-half mean length (UHM, inches),
length uniformity (UI, percent), strength (Str, grams per tex), and
elongation (Elo, percent).

Tissue Sampling
Leaf sample collection occurred on Julian day 239 (at
flowering/boll development stage) in both years and began
at 10:30 in the WW treatment with collection of samples
from the WL treatment beginning at approximately 12:30 and
concluding at approximately 14:30. Leaf tissue samples (two
disks per leaf) were collected from the upper-most expanded
leaf of five randomly selected plants within each plot. The two,
0.64-cm diameter, leaf disks were collected with a leaf punch (J
Tissue Punch, Midco Global, Kirkwood, MO, United States). The
punched leaf tissue was directly sampled into a 2 mL microfuge
tube that was prefilled with 1 mL of reagent-grade methanol
(Sigma Aldrich, St. Louis, MO, United States) and kept on ice.
While in the field, collected samples were stored on ice in coolers.
When sampling was complete, samples were moved inside to a
−80◦C freezer for storage. Samples were then transferred to a
2 mL polypropylene screw top tube (Corning Inc., Corning, NY,
United States) and shipped overnight on dry ice to the Analytical
Resources Core: Bioanalysis and Omics Center at Colorado State
University (Fort Collins, CO, United States).

Hyperspectral Data Collection
Radiometric measurements of cotton leaves were collected within
each experimental plot using a portable field spectroradiometer
(ASD FieldSpec 3, Malvern Panalytical, Inc., Westborough, MA,
United States). Radiometric information was reported in 2151
narrow wavebands from 350 to 2500 nm with bandwidth of
1 nm. The instrument’s 1-m fiber optic cable was fitted with
a contact probe and a leaf clipping device for non-destructive,
in situ radiometric measurements of cotton leaves. The probe
featured a 4.5-W halogen light source and measured leaf radiance
independent of external lighting conditions. Two reflectance
standards (one made of white polytetrafluoroethylene material
and the other made of black painted vinyl) were incorporated
with the leaf clip and were easily interchanged to alternate
between white reference measurements and dark background for
leaf measurements. Spectral measurements of the five leaves per
plot were collected immediately prior to sampling tissue from
those leaves. Ten spectral measurements were collected from
each leaf and averaged by the instrument’s control software; the
averaged spectra were saved to one file per leaf. Five spectral
scans of the white reference panel were collected to characterize
the light provided by the halogen bulb bookending the spectral
measurements for groups of eight plots. Following spectral data
collection, leaf reflectance factors were computed as the ratio
of leaf radiance and the radiance data from the previous white
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reference scan. Reflectance data from the five leaves per plot were
averaged to provide plot-level spectra.

Metabolite Extraction and Quantification
Leaf tissue samples were extracted in 100% methanol using a
biphasic protocol (Matyash et al., 2008). For each sample, the
content of the 2 mL polypropylene tube (leaf discs and methanol)
was transferred to a 22 mL glass vial. The original tubes were
rinsed with methanol that was also transferred to the same
extraction vial, resulting in a 4 mL volume of methanol per
sample. The glass vial was sonicated for 30 min in an ice bath,
followed by 2 h of vigorous mixing at 4◦C. Samples were dried
by removing the solvent under nitrogen gas. The dried samples
were re-suspended by adding 3 mL of ice-cold methanol and
mixing for 10 min at 4◦C. Next, 1 mL of water, and 6 mL of
methyl tert-butyl ether (MTBE) were added to the re-suspended
samples that were sonicated for 30 min and mixed for 2 h at 4◦C.
To induce phase separation, 4 mL of water was added to each
sample. After 30 min of mixing at 4◦C followed by centrifugation
at 2500 × g for 15 min at 4◦C, 400 µL of the upper organic
phase was transferred to a new vial, dried under nitrogen, and re-
suspended in 100 µL of methanol/toluene (1:1, by volume) for
liquid chromatography–mass spectrometry (LC–MS) analysis.
A 200 µL aliquot of the lower aqueous phase was dried under
nitrogen and stored at −80◦C until gas chromatography–mass
spectrometry (GC–MS) analysis. Quality control (QC) samples
for LC–MS and GC–MS analyses were generated by pooling the
organic and aqueous extracts of each sample, respectively.

To conduct the GC–MS metabolite analysis, dried samples
were re-suspended in 50 µL of pyridine containing 25 mg mL−1

of methoxyamine hydrochloride, incubated at 60◦C for 1 h,
sonicated for 10 min, and incubated for an additional 1 h at 60◦C.
Next, 50 µL of N-methyl-N-trimethylsilyltrifluoroacetamide
with 1% trimethylchlorosilane (MSTFA + 1% TMCS, Thermo
Scientific) was added and samples were incubated at 60◦C
for 45 min, briefly centrifuged, cooled to room temperature,
and 80 µL of the supernatant was transferred to a 150 µL
glass insert in a GC–MS autosampler vial. Metabolites were
detected using a Trace 1310 GC coupled to a Thermo ISQ mass
spectrometer (Thermo Scientific). One microliter of each sample
was injected in a 1:10 split ratio in randomized order. Separation
was achieved using a 30 m TG-5MS column (Thermo Scientific,
0.25 mm i.d., 0.25 µm film thickness) with a 1.2 mL min−1

helium gas flow rate with the following steps: 80◦C for 30 s,
a ramp of 15◦C per min to 330◦C, and an 8 min hold.
Masses between 50 and 650 m/z were scanned at 5 scans per
s after electron impact ionization. QC samples were injected
after every six samples. For each sample, the raw data files
from the mass spectrometer were converted to.cdf format,
and a matrix of molecular features as defined by retention
time and mass (m/z) was generated using XCMS software in
R (Smith et al., 2006) for feature detection and alignment
using the matchedFilter algorithm. Features were grouped
using RAMClustR (Broeckling et al., 2014), with normalization
set to “TIC.” GC–MS spectra were annotated by matching
unknown spectra to the Golm metabolome retention indexed
spectral library (Kopka et al., 2005), using retention times

plotted vs. the Golm retention index to increase confidence
in the spectral match. Searching was accomplished using the
RAMSearch program (Broeckling et al., 2016). Additional GC–
MS matching was performed by searching against the NIST v12
EI spectral database. All data analyses were performed using R
(R Core Team, 2020).

To conduct the LC–MS metabolite analysis, 1 µL of the re-
suspended extract was injected onto a Waters Acquity UPLC
system in randomized order and separated in a Waters Acquity
UPLC CSH Phenyl Hexyl column (1.7 µM, 1.0 mm × 100 mm),
using a gradient from solvent A (Water, 0.1% formic acid) to
solvent B (Acetonitrile, 0.1% formic acid). Injections were made
in 99% A, held at 99% A for 1 min, ramped to 98% B over 12 min,
held at 98% B for 3 min, and then returned to starting conditions
over 0.05 min and allowed to re-equilibrate for 3.95 min, with
a 200 µL min−1 constant flow rate. The column and samples
were held at 65 and 6◦C, respectively. The column eluent was
infused into a Waters Xevo G2 Q-TOF-MS with an electrospray
source in positive mode, scanning 50–2000 m/z at 0.2 s per
scan, alternating between MS (6 V collision energy) and MSE
mode (15–30 V ramp). Calibration was performed using sodium
iodide with 1 ppm mass accuracy. The capillary voltage was
held at 2200 V, source temperature at 150◦C, and nitrogen
desolvation temperature at 350◦C with a flow rate of 800 L h−1.
QC samples were injected after every 6 samples. LC–MS data
were first annotated by searching against an in-house spectra
and retention time database using the RAMSearch program
(Broeckling et al., 2016). RAMClustR (Broeckling et al., 2014) was
used to call the function findMain (Jaeger et al., 2017) from the
R package “interpretMSSpectrum” to infer the molecular weight
of each LC–MS compound and annotate the mass signals. The
complete MS spectrum and a truncated MSE spectrum were
converted to a.mat format for import into MSFinder (Tsugawa
et al., 2016). The MSE spectrum was truncated to only include
masses with values less than the inferred M plus its isotopes,
and the.mat file precursor ion was set to the M + H ion
for the findMain inferred M value. These.mat (file format)
spectra were analyzed to determine the most probable molecular
formula and structure. MSFinder was also used to perform a
spectral search against the MassBank database. All results were
imported into R and a collective annotation was derived with
prioritization of RAMSearch > MSFinder mssearch > MSFinder
structure > MSFinder formula > findMain M. Annotation
confidence was set as described by Sumner et al. (2007). All data
analyses were performed using R (R Core Team, 2020). The signal
intensity of a compound showing multiple ions was calculated
considering the weighted mean (based on mean intensity in
all samples) of all the single ions. Only compounds annotated
with an International Chemical Identifier Key (InChIKey) were
considered for all the further statistical analyses.

Pre-processing of Fiber, Metabolic, and
Spectral Data
The values of each metabolite quantified in 1 year using GC–
MS and LC–MS were rescaled (division) using the estimated
median of the metabolite in that specific year. This preprocessing
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step was necessary to reduce the computational cost of
the error variance prediction using the mixed linear model
described below.

For fiber yield/quality data, metabolites, reflectance spectra,
and vegetation indices (VIs), the Box–Cox power transformation
(Box and Cox, 1964) was performed on raw phenotypic data
(fiber yield/quality, spectra, and VIs) or on median-rescaled
values (metabolites) using a simplistic linear model that included
genotype and treatment as fixed effects to identify the most
appropriate transformation, if required. These transformations
were to correct for non-normality of the error terms and unequal
variances with respect to the individual traits. The procedure
evaluated lambda values ranging from−2 to+2 in increments of
0.5 using the function boxcox in the R package “MASS” (Venables
and Ripley, 2002) followed by applying the optimal convenient
lambda for each individual trait.

To identify and remove statistically significant outliers, a
mixed linear model was fitted for each phenotypic trait within
each year (i.e., years were analyzed individually) using ASReml-
R version 3.0 (Gilmour et al., 2009). The full model (Equation
1) fitted to the phenotypic data that had been processed by the
Box–Cox transformation procedure was:

Yijklm = µ+ genotypei + irgj + genotype× irgij

+rep
(
irg
)

kj + block
(
rep× irg

)
jkl

+ column
(
rep× irg

)
jkm + εijklm (1)

where Yijklm is an individual phenotypic observation; µ is the
experimental grand mean; genotypei is the effect of the i-th
genotype (accession); irgj is the effect of the j-th irrigation
treatment which was either WW or WL; genotype × irgij is the
interaction effect between the i-th genotype and the j-th irrigation
treatment; rep(irg)kj is the effect of the k-th replication nested
within the j-th irrigation treatment; block(rep × irg)jkl is the
effect of the l-th block nested with k-th replication within the
j-th irrigation treatment; column(rep × irg)jkm is the effect of
the m-th plot grid column nested within the k-th replication
within the j-th irrigation treatment; and εijklm is the residual error
term assumed to be independently and identically distributed
according to a normal distribution with mean zero and variance
σ2

ε . The model terms µ, genotypei, irgj, and genotype× irgij were
modeled as fixed effects with all remaining terms being modeled
as random effects. Degrees of freedom were calculated via the
Kenward–Rogers approximation (Kenward and Roger, 1997).
The Studentized deleted residuals (Neter et al., 1996) obtained
from the fitted mixed linear models were examined to detect and
remove significant outliers.

Once outliers for all phenotypic traits were removed, an
iterative mixed linear model fitting procedure was conducted
in ASReml-R version 3.0 using Equation 1 as the full model
(Gilmour et al., 2009). To derive the best fitted model for each
individual trait, likelihood ratio tests were carried out to remove
all random effects that were not significant at the α = 0.05 (Littell
et al., 2006). The final fitted model for each individual trait
was used to generate a best linear unbiased estimator (BLUE)
for each genotype.

For each trait, repeatability (r) was calculated to express
the proportion of variance due to permanent, non-localized
differences (i.e., not due to experimental error) between
genotypes to provide a measure of technical performance. Using
Equation 1, the model was reformulated so that all terms were
modeled as random effects to derive the respective variance
components (Equation 2). The variance component estimates
from the full model were used to estimate r as follows:

r =
σ̂2

g

σ̂2
g +

σ̂2
gi

nirg
+

σ̂2
ε

nplot

(2)

where σ̂2
g is the estimated variance due to the genotypes, σ̂2

gi is
the estimated variance associated with the genotype-by-irrigation
treatment variation, and σ̂2

ε is the residual error variance. The
variable nirg is the harmonic mean of the number of irrigation
treatments in which each genotype was observed and nplot is the
harmonic mean of the number of plots in which genotype was
observed. It should be noted that the denominator of Equation 2
is equivalent to the phenotypic variance, σ̂2

p, of a trait. Standard
errors of the estimated repeatability for each individual trait were
approximated using the delta method (Lynch and Walsh, 1998;
Holland et al., 2010).

For those individual traits which the Box–Cox procedure
indicated a transformation was needed, the inverse of the
convenient lambda used was applied to back-transform the
estimated BLUEs. The back-transformed BLUEs of metabolites
were then rescaled by multiplying their values by the median
value determined in the initial processing steps, and the values
were used for all subsequent statistical analyses. Repeatability
values and fixed effects’ P-values determined by the mixed linear
models for the fiber yield/quality in 2018 and 2019 are reported in
Supplementary Tables 2, 3. The same summary for metabolites
showing a significant (P < 0.05) change due to the effect of the
irrigation treatment in 2018 and 2019 (considered as the starting
dataset in all the following statistical analyses) are reported in
Supplementary Tables 4, 5 and the summary for the VIs in 2018
and 2019 is reported in Supplementary Table 6. The BLUEs of
single accessions in the 2 years of the field experiment for all the
fiber yield/quality data, metabolites, hyperspectral data, and VIs
are provided in Supplementary Data 1.

Statistical Analysis of Metabolite Data
All statistical analyses were performed using R statistical software
(R Core Team, 2020). Imputation of missing metabolite values,
prior to any other statistical test, was performed by the
function knnImputation in the R package “DMwR” (Torgo, 2010).
Principal component analysis (PCA) was conducted to assess
the overall effect of treatment on the leaf metabolic profile of
the accessions. PCA was performed on log10 transformed (to
improve normality), centered (mean subtraction) and scaled
(standard deviation division) metabolite data using the function
prcomp in the R package “stats.” Hierarchical clustering analysis
was conducted to evaluate the effect of stress-induced leaf
metabolic changes across the two years. For this purpose, only
metabolites identified in common between the two years were
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used in the analysis. To overcome the analytical differences in
the quantification of these metabolites over the two years, their
values were median-normalized (Lisec et al., 2011; Lawas et al.,
2019) by multiplying each metabolic value by a correction factor.
This factor was calculated as the median value of the metabolite
across the samples of the two years divided by the median value
of the same metabolite among the samples of the specific year
(2018 or 2019). Median-normalized metabolic values were then
log10 transformed, centered, and scaled before being analyzed by
hierarchical clustering analysis that was performed and visualized
(dendrograms and heatmap) using the function pheatmap in the
R package “pheatmap” (Kolde, 2012) using Pearson correlation
as clustering distance and complete linkage as clustering method.

Stress-induced mean fold change (FC) of each metabolite
was calculated (on non-log-transformed data) dividing the mean
value of the 22 accessions under WL conditions by the same
value under WW conditions. A mean FC threshold (FC <0.5
or >2) was applied to select metabolites with high mean
deviation from non-stressed conditions. Significant differences
in metabolite levels between the group of cotton accessions
grown under WL and WW conditions were further tested by
the non-parametric two-sided Mann–Whitney U-test using the
function wilcox.test in the R package “stats.” Mann–Whitney
U-test’s P-values were corrected for multiple testing according
to Benjamini and Hochberg (1995) with a false discovery rate
(FDR) of 0.05 using the function p.adjust in the R package “stats.”
Volcano plots of metabolites based on stress-induced mean
FC (log2-scaled) and Mann–Whitney U-test’s P-values (−log10-
scaled) were generated using the function EnhancedVolcano in
the R package “EnhancedVolcano” (Blighe et al., 2018).

Vegetation Indices
Vegetation indices that estimate leaf physiological and
water status conditions were calculated based on specific
reflectance wavelengths (Rx). The normalized difference
vegetation index (NDVI) was calculated as in Pauli et al.
(2016a): (R820 − R670)/(R820 + R670). The photochemical
reflectance index (PRI) was calculated as in Gamon et al. (1997):
(R531 − R570)/(R531 + R570). Scaled photochemical reflectance
index (sPRI) was then calculated, to avoid negative values of
PRI, as in Letts et al. (2008): (PRI + 1)/2. The carotenoids
reflectance index (CRI) was calculated as in Gitelson et al. (2002):
(R510)−1/(R550)−1. The ratio between the water index (WI) and
NDVI (WI/NDVI) was calculated as in Penuelas et al. (1997)
and in Penuelas and Inoue (1999): (R900 − R970)/NDVI. The
ratio normalizes WI for structural and color changes detected by
NDVI in the drying leaves thus maximizing the sensitivity of the
index to water content.

Hyperspectral-Based Partial Least
Squares Models for the Estimation and
Prediction of Metabolites
Partial least squares regression (PLSR) modeling was used
to relate the leaf spectral measurements with the metabolite
data. Thorp et al. (2011) provided the details on the PLSR
methodology used herein. Briefly, if Y is an n × 1 vector

of responses (metabolite data) and X is an n-observation by
p-variable matrix of predictors (the set of spectral data with
p wavebands), PLSR aims to decompose X into a set of A
orthogonal scores such that the covariance with corresponding
Y scores is maximized. The X-weight and Y-loading vectors that
result from the decomposition are used to estimate the vector of
regression coefficients, βPLS, such that Y = X βPLS + ε where ε is
an n× 1 vector of error terms.

The R package “pls” (Mevik and Wehrens, 2007) was used for
PLSR in this study. Separate PLSR models were constructed with
each metabolite as a single dependent variable (Y) and the 2151
spectral channels as the independent variables (X). To choose the
appropriate number of factors for each model (A from above),
leave-one-out (LOO) cross validation was used to estimate root
mean squared error (RMSECV) for models fit with zero through
12 factors (linear combinations of the spectral channels), and the
model that resulted the smallest RMSECV was selected for further
analysis and reporting. To evaluate models with independent
data, efforts focused on randomly subdividing the data set into
four groups without replacement. Models were fit with data from
three of the groups (training set of 33 samples), while data from
the fourth group was used for model testing (validation set of 11
samples), and the process was iterated such that each group of
samples was used for model testing one time. Modeling results
from this independent testing methodology (“4-fold CV models”)
were compared to results from fitting the model with the entire
data set (“full dataset models”). The goodness-of-fit (R2) for the
“full dataset models” and the predictability (Q2) for the “4-fold
CV models” were calculated as follows:

R2
= 1 − RSS/TSS

Q2
= 1 − PRESS/TSS

where RSS is the residual error sum of squares, PRESS is
the predictive residual error sum of squares, and TSS the
total sum of squares.

Variable importance selection of metabolite models was
calculated by ranking the spectral wavelengths (from 1 to
2151) based on their absolute regression coefficient, |βPLS|, with
rank 1 for the wavelengths with the highest absolute value.
Mean rank numbers of the wavelengths were calculated across
groups of metabolites belonging to the same class to obtain
metabolic class ranks.

RESULTS

Meteorological Conditions and Stress
Intensity at the Experimental Site
The 2018 and 2019 growing seasons (late April through mid-
October) were characterized by a similar temperature trend;
however, precipitation was greater in 2018 than in 2019 with a
total of 181 and 102 mm, respectively (Figures 1A,B). The same
temperature trend applied to the stress windows (highlighted
in gray in Figures 1A,B) of 2018 (from Julian days 201 to
239) and 2019 (from Julian days 192 to 239), both occurring
during the boll development stage of the crop. The mean high
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FIGURE 1 | (A,B) Daily maximum (red line) temperature, minimum (light blue line) temperature and precipitation (black bars) during the 2018 and 2019 cotton
growing seasons. Smoothed generalized linear models (black lines with gray confidence interval) overlay each temperature curve. (C,D) Soil moisture probe reads at
different soil depths (from 10 to 110 cm) for the water-limited (WL) treatment during July–August 2018 and 2019. In every panel, the stress window during which the
WL irrigation regime was applied is highlighted in gray. PL, date of planting; WD, date of start of the WL irrigation regime; SA, date of leaf sampling; HA, date of
harvest.

temperature of the two stress windows was higher than 40◦C
(40.3 ± 3◦C in 2018; 41.6 ± 2.3◦C in 2019). The 2018 stress
window was characterized by a total precipitation of 69 mm
which was approximately three times higher than in the stress
window of 2019 (24 mm). Additionally, three significant rainfall
events (precipitation > 10 mm) occurred in August during the
2018 stress window, one with more than 10 mm of precipitation
(Julian day 214) and the other two with more than 20 mm
each (Julian days 222 and 224) (Figure 1A). During the 2019
stress window, the only significant rainfall event occurred at
the end of July (Julian day 211) with approximately 10 mm of
precipitation (Figure 1B).

The occurrence of three consecutive significant rainfall events
during the 2018 stress window increased the soil volumetric
water content in the WL plots, as quantified by the soil moisture
probes (Figure 1C). This increase took place in the middle of
the 2018 stress window and involved only the shallow soil layers
(10–50 cm), with increases in volumetric water content (%) to
the same level as of the deep soil layers (70–110 cm) before
decreasing again. Different from 2018, the 2019 stress window
saw the cotton accessions grown in the WL plots subjected to
a more continuous and increasing water deficit stress with the
shallow soil layers always having a lower water content than the
deep ones (Figure 1D).

Effect of Stress on Fiber Yield and
Quality
Water-limited plots displayed a marginally significant (P = 0.05)
mean lint yield reduction compared to WW plots in 2019, but not
in 2018 (Table 1). Despite the marginal level of significance, it is
noteworthy that a difference in lint yield was detected considering
that the trait was calculated based on only 25 randomly collected
bolls per plot (date of harvest, HA, is indicated in Figures 1A,B)
and not on the entire plot yield. Among the fiber quality traits,
Mic, a measurement of fiber fineness and maturity, showed a
highly significant (P < 0.0001) stress-induced mean reduction
in 2019 but not in 2018. Similarly, fiber Str was significantly
(P < 0.001) reduced by the stress treatment in 2019 only.
The only fiber quality trait displaying a significant (P < 0.01)
stress-induced effect in 2018 was UI, even if the reduction was
minimal. Stress-induced UI differences were not observed in
2019 (Table 1).

Analysis of Stress-Induced Leaf
Metabolic Changes
A total of 217 (GC–MS: 18; LC–MS: 199) metabolites out of 307
annotated ones (70.7%) showed a significant treatment effect in
2018. In 2019, 451 (GC–MS: 27; LC–MS: 424) metabolites out of
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TABLE 1 | Fiber traits evaluated under well-watered (WW) and water-limited (WL)
conditions in 2018 and 2019 in the 22 cotton accessions.

Fiber trait Year Treatment Valuea Treatment
effectb

Lint yieldc 2018 WW 37.9 ± 8.3 n.s.

WL 38.0 ± 8.8

2019 WW 41.0 ± 7.8 P = 0.05

WL 39.7 ± 8.2

Micronaire (Mic)d 2018 WW 5.1 ± 0.5 n.s.

WL 5.1 ± 0.6

2019 WW 5.3 ± 0.4 P < 0.0001

WL 4.9 ± 0.4

Upper-half mean
length (UHM)e

2018 WW 1.03 ± 0.12 n.s.

WL 1.02 ± 0.11

2019 WW 1.03 ± 0.07 n.s.

WL 1.02 ± 0.10

Length uniformity
(UI)f

2018 WW 80.9 ± 1.9 P < 0.01

WL 80.7 ± 1.8

2019 WW 80.9 ± 2.1 n.s.

WL 80.8 ± 2.2

Strength (Str)g 2018 WW 28.4 ± 2.9 n.s.

WL 28.1 ± 3.2

2019 WW 28.7 ± 2.3 P < 0.001

WL 27.7 ± 2.1

Elongation (Elo)h 2018 WW 5.9 ± 0.5 n.s.

WL 5.9 ± 0.5

2019 WW 5.4 ± 0.4 n.s.

WL 5.4 ± 0.4

aMean ± SD.
bLevels: n.s., not significant; P = 0.05; P < 0.05; P < 0.01; P < 0.001; P < 0.0001.
cUnit of measurement: grams.
dUnit of measurement: air permeability.
eUnit of measurement: inches.
f Unit of measurement: %.
gUnit of measurement: grams per tex.
hUnit of measurement: %.

the 521 that were annotated (86.6% of the total) were significantly
affected by the treatment.

In both years, PCA (Figure 2) showed that the first
two principal components (PCs) effectively separated the two
irrigation treatments into their own respective clusters. This
separation was more distinct in 2019 when the first two PCs
explained a higher percentage of the sample variation (67.7%)
than in 2018 (58.9%). Particularly, PC1 alone explained more
than 50% of the total variation in both years (54.0 and 62.4% in
2018 and 2019, respectively), and the samples showed a clearer
separation based on treatment for this PC. This suggests that
PC1 represents the leaf metabolic signature of stress in both
years. Different from PC1, PC2 explained a considerably lower
percentage of the total variation (4.9 and 5.3% in 2018 and
2019, respectively) and did not separate the samples based on
the treatment. In both years, the samples largely overlapped
along PC2. Thus, PC2 is likely to represent accession-based leaf
metabolic differences within the clusters of WW and WL samples.
PC1 and PC2 loading values for 2018 and 2019 are provided in
Supplementary Tables 7, 8, respectively. Considering the PCA

loading plots of the first two PCs in both years, metabolites did
not show any clear clustering based on their main metabolic class
(Supplementary Figure 1). Nonetheless, the metabolites with
the highest discriminating power (lowest and highest loadings)
for PC1, the PC associated with stress-induced differences,
mainly belonged to the classes of neutral lipids, polar lipids
and, in 2019 only, terpenoids (Supplementary Tables 7, 8 and
Supplementary Figure 1).

Hierarchical clustering analysis was performed with the
metabolites that were identified in both years and displayed
a significant treatment effect. These 52 metabolites included
∼24% of the 2018 stress-affected metabolic dataset and ∼11%
of the 2019 dataset (Supplementary Tables 4, 5). Hierarchical
clustering analysis of the 2018–2019 samples (Figure 3) showed
that non-stressed (WW) and stressed (WL) samples of the 2 years
formed two main clusters, with only five exceptions (three of
these samples resided outside of the 95% confidence intervals of
the treatment-induced clusters observed in the PCA score plots,
Figure 2). This indicates that samples of the 2 years subjected to
the same treatment (2018–2019 WW or 2018–2019 WL) shared
more similar leaf metabolite levels than samples of the same
year under the two different treatments. The 52 metabolites
grouped in three main clusters (I, II, and III in Figure 3). Cluster
I and III include metabolites with relatively higher values in
WW than in WL samples. Interestingly, cluster I is enriched in
neutral lipids, particularly triacylglycerols (TAGs) while cluster
III has more polar lipids and carbohydrates and conjugates
(Supplementary Tables 4, 5). Cluster II, that includes metabolites
with higher values in WL than in WW samples, is the largest
of the three clusters and enriched in polar lipids, particularly
phosphatidylcholines (PChs), and in amino acids and peptides.
Different from cluster I, the neutral lipids present in cluster
III are diacylglycerols (DAGs) and not TAGs (Supplementary
Tables 4, 5).

To more accurately quantify the effect of abiotic stress on leaf
metabolism of the cotton accessions for each year, a FC analysis
(WL over WW values) was conducted to identify metabolites that
displayed a high mean deviation from non-stressed conditions
(the full list of mean FC and significance values for the
metabolites is provided in Supplementary Tables 4, 5).

In 2018, only 16.2% (6.5% decrease and 9.7% increase) of the
metabolites whose levels were more significantly altered (FDR
corrected P-value < 0.05) by the treatment displayed also a high
mean deviation from non-stressed conditions (Figure 4A). In
2019, the percentage of these metabolites increased to 32.1%
(17.5% decrease and 14.6% increase), approximately two times
higher than in 2018 (Figure 4B). Additionally, the overall
magnitude of these changes was greater in 2019 as indicated by
comparing the mean FC of the group of metabolites showing an
increase in 2019 (3.94 ± 0.28) with the mean FC of the same
group in 2018 (2.56± 0.13).

Next, we analyzed if the metabolites showing a high
mean deviation from non-stressed conditions in 2018 and
2019 belonged to the same metabolic classes or to different
ones. Marked differences were present in the main classes of
metabolites with a strong stress-induced decrease in the two years
(Figures 5A,C, the full list of the metabolites and their classes
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FIGURE 2 | Principal component analysis score plots based on the well-watered (WW, green) and water-limited (WL, brown) values of leaf metabolites for the 22
cotton accessions in 2018 (A) and 2019 (B). The percentage of sample variation explained by the first two principal components (PC1 and PC2) is reported in
brackets. The number of each sample relates to the “Current study number” column in Supplementary Table 1. Ellipses represent the 95% confidence level for the
samples of each treatment.

are provided in Supplementary Tables 4, 5). In 2018, neutral
lipids represented the only abundant (more than two metabolites)
and largest class of metabolites (seven) with a similar number
of TAGs and DAGs (Figure 5A). In 2019, polar lipids were
the largest main class of metabolites (35) showing a stress-
induced decrease with a high number of phosphatidylinositols
(PIs), phosphatidylethanolamines (PEs), phosphatidic acids
(PAs), and a lower number of phosphatidylglycerols (PGs)
and galactolipids. The second and third largest main class of
metabolites showing a stress-induced decrease in 2019 were

terpenoids and neutral lipids, with each class of compounds
containing 11 metabolites. Among the 2019 neutral lipids, the
most numerous subclasses were DAGs and TAGs followed
by monoacylglycerols (MAGs). Among the 2019 terpenoids,
the most numerous subclasses were triterpenoids, followed by
tetraterpenoids and sesquiterpenoids (Figure 5C).

Focusing on the metabolites showing a strong stress-induced
increase (Figures 5B,D), in both years, neutral lipids represented
the largest main metabolic class (10 in 2018 and 31 in 2019)
with a high number of TAGs followed by a lower number of
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FIGURE 3 | Hierarchical clustering and heatmap of the 52 leaf metabolites identified in common among the 2018 and 2019 leaf samples of the 22 cotton
accessions. The scale bar (red to blue) on the left represents normalized intensity of metabolite values. The black and gray bar at the bottom of the heatmap
indicates if a metabolite was identified by GC–MS (black) or LC–MS (gray). The first side bar at the right of the heatmap indicates if a sample was collected in 2018
(pink) or in 2019 (blue). The second side bar at the right of the heatmap indicates if a sample was collected from a well-watered (WW = green) or a water-limited
(WL = brown) field plot. The metabolite numbers at the bottom of the heatmap relates to the “2018–2019 clustering – Met. Number” column in Supplementary
Tables 2, 3. The black lines under the metabolite numbers indicate the three main metabolite clusters (I, II, and III). The sample numbers at the right of the heatmap
relates to the “Current study number” column in Supplementary Table 1.
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FIGURE 4 | Volcano plots showing the stress-induced significant mean fold changes (FC) of cotton leaf metabolites in 2018 (A) and 2019 (B). The horizontal dashed
line represents the FDR-corrected Mann–Whitney U-test’s P-value of 0.05 (P-adj.). The vertical dashed lines represent FC <0.5 or >2. For each metabolite, the
negative log10 of the P-value is plotted against the log2 of the mean FC. Metabolites with a significant FC decrease or increase are colored in blue and red,
respectively (the other metabolites are colored in gray). The total number of metabolites is reported in each plot (under the year) as well as the number of the ones
with P-value < 0.05 (N) or P-value > 0.05 (H). The number and percentage (in brackets) of metabolites with P-value < 0.05 and with a significant FC decrease and
increase is reported in bold font (at top of the plot) together with their mean FC ± SD (below in brackets).

DAGs. Polyprenols were present only in 2019 among the neutral
lipids showing an increase. Similar to neutral lipids, also polar
lipids were the second largest main class among the metabolites
with stress-induced increased values in both years (4 in 2018
and 11 in 2019). Sphingolipids represented the largest subclass
of polar lipids in 2018 and 2019 while PChs, PEs, and PGs were
present in 2019 only. A relatively high number of sugar acids
and derivatives (main class of carbohydrates and conjugates) was
specific to 2018 only while terpenoids, particularly diterpenoids
and sesquiterpenoids, and proline related amino acids were
present in the 2019 only.

Vegetation Indices Associated With Plant
Physiology and Water Status
The values of some widely used VIs (based on specific reflectance
wavelengths), known to be related to the physiological and water
status of plants, are reported in Table 2. The NDVI, a general
indicator of plant health status (Tucker, 1979; Gamon et al., 1995;
Pauli et al., 2016a), was reduced by the stress in both years,
but this reduction was significant (P < 0.0001) in 2019 only.
The sPRI, an indicator of photosynthetic radiation use efficiency
(Gamon et al., 1997; Letts et al., 2008), displayed a significant
(P < 0.05) stress-induced decrease only in 2019 whereas, in
2018, the effect of stress on this index was slightly positive but
not significant. Different from the previous two VIs, the CRI,
a spectral measurements of total carotenoid content (Gitelson
et al., 2002), showed a highly significant (P < 0.0001) stress-
induced reduction in both years. Finally, we considered a spectral
index for the estimation of leaf water content. To this purpose,
we selected the ratio between the WI, an indicator of relative
water content (Penuelas et al., 1997), and NDVI (WI/NDVI). In
both years, WI/NDVI increased under stress (higher values of the

index indicate a lower water content) but the increase was more
significant in 2019 (P < 0.0001) than in 2018 (P < 0.01).

Spectral-Based Models for Metabolite
Estimation and Prediction
In 2018 and 2019, the hyperspectral-based “full dataset models”
for the estimation of leaf metabolites displayed similar results.
Almost all the metabolites (97.2 and 95.6% in 2018 and
2019, respectively) were estimated using one or more linear
combinations (latent variables, LV) of the spectral wavelengths
(Table 3 and Supplementary Tables 9, 10) suggesting a
relationship between chemical composition and reflectance
characteristics of the leaves. The strength of this relationship
is highlighted by the fact that ∼60% of metabolite variation
(mean R2) was explained by the “full dataset models” in both
years. Additionally, the “full dataset models” were able to explain
more than 70% variation (R2 > 0.70) for one third of the
metabolites (Table 3).

Different from the “full dataset models,” the “4-fold CV
models” predicted a lower number (73.3 and 71.2% in 2018
and 2019, respectively) of metabolites (Table 3). Overall, this
reduction occurred because of a decreased number of leaf
samples used for calibration of the submodels with the CV
procedure (33 vs. 44) thereby limiting the model’s ability
to find relationships between leaf spectra and metabolites.
This is noticeable from the submodels that either did not
include any spectral LVs (not allowing prediction) or produced
negative predictability (Q2) values (Supplementary Tables 9, 10).
Nevertheless, it is interesting that metabolites with negative Q2

values or that were not predicted by the “4-fold CV models” were
characterized by lower mean R2 values (0.35 and 0.44 in 2018
and 2019, respectively) in their respective “full dataset models”
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FIGURE 5 | Pie charts showing the main metabolic classes and subclasses of leaf metabolites with the strongest stress-induced mean FC decreases (A,C) or
increases (B,D) in 2018 and 2019. The percentages and number of metabolites (“met.”) of each group (under decrease and increase) are the same as in the volcano
plots in Figure 4 and the full lists of these metabolites are provided in Supplementary Tables 2, 3. The number of metabolites present in the main metabolic
classes are indicated in white. For each main metabolic class, subclasses including two or more metabolites (with the number of metabolites in brackets) are
reported. The name and color of the main metabolic classes are indicated at the bottom of the figure. MAGs, monoacylglycerols; TAGs, triacylglycerols; DAGs,
diacylglycerols; Pas, phosphatidic acids; PChs, phosphatidylcholines; PEs, phosphatidylethanolamines; PGs, phosphatidylglycerols; PIs, phosphatidylinositols.

than the metabolites estimated and predicted with both models
(0.67 in both years). Therefore, almost all the metabolites that
were either poorly or not predicted by the “4-fold CV models”
were the ones that already showed a weak relationship with the
reflectance spectra in the “full dataset models.” As expected, the
mean Q2 of the metabolites predicted by the “4-fold CV models”
was lower (∼40 and ∼34% in 2018 and 2019, respectively) than
the mean R2 of the metabolites estimated by the “full dataset
models” (Table 3). However, the Q2 of the “4-fold CV models” is a
true measure of prediction capabilities of the hyperspectral-based
models, and it is more relevant than the R2 of the “full dataset
models” that represents the maximum metabolite variation that
can be described by the spectral data considering the entire
sample set. In this context, it is noteworthy that the “4-fold
CV models” predicted, with reasonable accuracy (Q2 > 0.50),
25.8% (56) and 15.3% (69) of the metabolites in 2018 and 2019,
respectively (Table 3).

Interestingly, many of the metabolites that were accurately
predicted by the “4-fold CV models” are also in common with
the ones that showed a significant stress-induced high mean
deviation from control in 2018 (∼54% of the metabolites with
high deviation) and in 2019 (∼29% of the metabolites with high

deviation) (Figures 4, 5 and Supplementary Tables 11, 12).
Therefore, the two sets of metabolites predicted with reasonable
accuracy (Q2 > 0.50) in 2018 (56 metabolites) and 2019 (69
metabolites) could potentially separate the leaf samples based
on the treatment. PCA was performed using these metabolites
and showed that the first two PCs separated the cluster of WW
samples from the one of WL samples using both the observed
and the predicted metabolite values, in both years (Figure 6).
Alone, PC1 explained more than 80% of leaf sample variation in
all the four PCA score plots. On PC1, predicted metabolite values
produced a larger overlap between the cluster WW and WL
samples (Figures 6C,D) than observed values (Figures 6A,B).
This larger overlap was determined by the higher variation in
the cluster of WL samples generated by the predicted metabolite
values compared with the same cluster generated by the observed
values. In summary, PCA results demonstrated that the predicted
values of the set of metabolites had only a slightly lower capacity
of discriminating the leaf samples based on the treatment than
the corresponding observed values.

The metabolites accurately predicted (Q2 > 0.50) by
the “4-fold CV models” predominantly belonged to the
classes of neutral lipids, polar lipids, and terpenoids
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TABLE 2 | Reflectance-based vegetation indices calculated under well-watered
(WW) and water-limited (WL) conditions in 2018 and 2019 in the 22
cotton accessions.

Vegetation index Year Treatment Index valuea Treatment effectb

NDVIc 2018 WW 0.837 ± 0.007 n.s.

WL 0.823 ± 0.011

2019 WW 0.823 ± 0.007 P < 0.0001

WL 0.812 ± 0.007

sPRId 2018 WW 0.499 ± 0.003 n.s.

WL 0.501 ± 0.005

2019 WW 0.507 ± 0.004 P < 0.05

WL 0.504 ± 0.006

CRIe 2018 WW 2.367 ± 0.061 P < 0.0001

WL 1.995 ± 0.096

2019 WW 2.378 ± 0.102 P < 0.0001

WL 2.076 ± 0.088

WI/NDVIf 2018 WW 1.235 ± 0.012 P < 0.01

WL 1.259 ± 0.018

2019 WW 1.267 ± 0.011 P < 0.0001

WL 1.285 ± 0.012

aMean ± SD.
bLevels: n.s., not significant; P < 0.05; P < 0.01; P < 0.001; P < 0.0001.
cNDVI, normalized difference vegetation index.
dsPRI, scaled photochemical reflectance index.
eCRI, carotenoid reflectance index.
f WI/NDVI, ratio between water index and NDVI.

TABLE 3 | Summary of hyperspectral-based partial least squares regression
(PLSR) models for estimation (full dataset) and prediction (4-fold CV) of leaf
metabolite values in the 22 cotton accessions under both well-watered and
water-limited conditions in 2018 and 2019.

PLSR model Parameter Year 2018 (217
metabolites)a

Year 2019 (451
metabolites)a

Full dataset
models

Estimated metabolitesb

(nr. – %)
211 (97.2%) 431 (95.6%)

R2 (mean ± SD) 0.59 ± 0.22 0.61 ± 0.20

R2 > 0.70 (nr. – %) 73 (33.6%) 157 (34.8%)

4-Fold CV
models

Predicted metabolitesc

(nr. – %)
159 (73.3%) 321 (71.2%)

Q2 (mean ± SD) 0.40 ± 0.21 0.34 ± 0.17

Q2 > 0.50 (nr. – %) 56 (25.8%) 69 (15.3%)

aMetabolites showing a significant (P < 0.05) change due to the effect of the
irrigation treatment.
bMetabolites estimated by full dataset models using one or more latent variables.
cMetabolites predicted by 4-fold CV models in which all the four submodels
considered one or more variables and with non-negative Q2 values.

(Supplementary Tables 11, 12). We investigated which
regions of the reflectance spectrum were the most informative
for the prediction of these metabolic classes. For this analysis,
we considered the corresponding “full dataset models” of these
metabolites because they maximized the associations between
spectral data and compound variation (Table 3). In each year
and for each class of metabolites (neutral lipids, polar lipids,
and terpenoids), the frequency of the most important (top 10%)
wavelengths selected by the models was analyzed (Figures 6E–
J). Wavelengths in the ultraviolet–visible (UV–VIS) region
(350–750 nm) displayed the highest selection frequencies for
all metabolite classes in both years. The frequencies of spectral

bands of the UV–VIS region varied between metabolic classes
and years. Wavelengths of the near infrared (NIR) region
showed no important association with metabolite variation.
Interestingly, three spectral bands – 1350–1450, 1900–1950,
and 2450–2500 nm – of the short wave infrared (SWIR)
region showed high selection frequency for all three classes of
metabolites in 2019. In 2018, only one (1350–1450 nm) of the
water absorption bands showed high selection frequency in
neutral and polar lipids and, to a lesser extent, in terpenoids.
Specific for 2018 only was the high selection frequency for
wavelengths of the 2200–2300 nm.

DISCUSSION

A major goal of this work was to analyze the leaf metabolic
responses to heat stress and water limitations in a set of
genetically diverse cotton accessions grown in the Arizona low
desert over two consecutive years.

In both years, the mean high temperature of the stress window
was higher than 40◦C indicating the presence of strong heat
stress (Reddy et al., 1997; Zahid et al., 2016). In our study, the
WL treatment was applied during boll development, which is
considered a sensitive growth stage to water deficit in cotton
(de Kock et al., 1990; Radin et al., 1992). Considering that
irrigation was applied with an overhead system and that cotton
roots continue to grow in length until the boll development
stage (Taylor and Klepper, 1974), it can be assumed that the
majority of the root biomass was concentrated in the shallow soil
layers during the stress window. Different from 2018, in the 2019
growing season, the shallow soil layers were exposed to prolonged
drought stress conditions, strong enough to result in a reduction
of fiber yield and quality that was not detected in 2018, when the
stress was lower (intermittent drought). The concurring stress-
induced reduction of fiber yield and quality in 2019 indicates
that the stress intensity in that year strongly altered important
biological processes during fiber development.

Similarly, the leaf metabolic profiles of the 22 cotton accessions
were altered by water limitations in both years but with this
alteration being quantitatively associated with the stronger stress
severity in 2019 than in 2018. While PCA results might have
been partially influenced by the different sampling time of WW
and WL samples (see section “Materials and Methods”), the FC
analyses (WL over WW values of metabolites) clearly indicated
that stress-induced change of leaf metabolism in 2019 was
stronger than in 2018. The analyses of the classes and subclasses
of metabolites with the highest deviation from WW conditions
revealed that in both years, neutral and polar lipids changed,
either increased or decreased, more than other metabolic classes
under the combined effect of water limitation and associated
heat. Lipids are the main constituents of biomembranes, and
membrane lipid remodeling has been described as one of the
main plant adaptations in response to abiotic stresses including
drought and heat stress (Marchin et al., 2017; Niu and Xiang,
2018; Liu et al., 2019).

In the present work, neutral lipids were the metabolic class
with the largest number of metabolites showing a stress-induced
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FIGURE 6 | Principal component analysis score plots of leaf samples of the 22 cotton accessions based on observed (A,B) and accurately (Q2 > 0.50) predicted
(C,D) metabolites (met.) values in 2018 and 2019. The percentage of sample variation explained by the first two principal components (PC1 and PC2) is reported in
brackets. Well-watered (WW) leaf samples are in green; water-limited leaf samples are in brown. Ellipses represent the 95% confidence level for the samples of each
treatment. Histograms of the frequencies of the top 10% wavelengths selected by the hyperspectral-based models for quantifying metabolites belonging to the
classes of neutral lipids (E,F), polar lipids (G,H), and terpenoids (I,J) in the 2 years. The number of metabolites in each class is indicated in brackets next to the class
name (a full list of these metabolites and the regression coefficients of the wavelengths of their specific models is reported in Supplementary Tables 11, 12).
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increase, particularly TAGs and to a lesser extent DAGs, in
both years. In plant vegetative tissues, neutral storage lipids
like TAGs are not usually detectable at significant levels in
absence of stress, but their accumulation under the effect of other
abiotic stresses has been observed in many plant species (Xu and
Shanklin, 2016; Lu et al., 2020), including cotton under drought
stress (Pham Thi et al., 1985). The accumulation of TAGs in
leaves, as lipid droplets in the cytosol or plastoglobules in the
chloroplasts, has been linked to their ability to sequester toxic
lipid intermediates (e.g., free fatty acids and DAGs) that are
generated by membrane remodeling and degradation in response
to environmental stress (Yang and Benning, 2018; Lu et al., 2020).
Another interesting finding of this study was that, in both years,
sphingolipids were particularly numerous among the polar lipids
with a high stress-induced increase. These lipids are known for
their critical role in maintaining the structural integrity of plant
membranes (Gronnier et al., 2018), but they have been also
proposed as signaling molecules involved in the abscisic acid-
mediated closure of stomata under the effect of drought stress
(Ali et al., 2018).

The main classes of metabolites with significant decreases
due to stress were different between 2018 and 2019. In 2018, a
limited number of metabolites showed stress-induced decreases
and most of them were, once again, neutral lipids with a similar
presence of DAGs and TAGs. In plant leaves, DAGs are the
immediate precursors of TAGs and other polar lipids (Xu and
Shanklin, 2016; Lu et al., 2020) and their presence among the
metabolites with a strong stress-induced decrease might indicate
the synthesis of a different set of lipids deriving from the ongoing
membrane remodeling. This hypothesis is supported by the
similar number of DAGs among the neutral lipids showing a
strong decrease also in 2019.

However, in 2019, polar lipids were the class of metabolites
displaying the largest number of strong stress-induced decreases.
Many of these polar lipids belong to the subclasses of
galactolipids, PGs, PChs, PIs, and PAs, which are the main
constituents of the photosynthetic membranes in chloroplasts
(Hölzl and Dörmann, 2019). Chloroplast membrane lipid
remodeling is an important plant response to abiotic stresses that
affects photosynthesis (Niu and Xiang, 2018; Liu et al., 2019).
A marked reduction in galactolipids and PChs was observed
before in drought stressed cotton leaves and it was associated with
sensitivity to the stress (Pham Thi et al., 1985). The reduction
of polar lipids that was observed in 2019 may represent a stress-
induced imbalance in the biosynthesis/degradation of important
components of chloroplast membranes that, in turn, affected
their stability and consequently, leaf photosynthesis. Further
research incorporating measurements of leaf gas exchange and
photosynthetic capacity will be needed to dissect this relationship.

In 2019, the strong increase of two proline related amino
acids, leucylproline and proline betaine, both considered
osmoprotectants (McNeil et al., 1999; Singh et al., 2015; Sharma
et al., 2019) is indicative of leaf dehydration stress. This further
supports the presence of a strong alteration of the physiological
status of the cotton plants during this year which, in turn,
translated into a reduction of fiber yield and quality. Terpenoids
were another class of metabolites that showed stress-induced

changes (increases and decreases) in 2019 only. Terpenoids are a
highly diverse class of volatile compounds with an important role
in mitigating the oxidative stress caused by a variety of abiotic
stresses, including drought and heat (Vickers et al., 2009; Boncan
et al., 2020). The increases and decreases of many terpenoids
suggest a stress-induced change in the leaf volatile emission
profile of the cotton accessions in response to the pro-oxidative
stress conditions and represents a further sign of the severe stress
intensity in 2019.

The second goal of this study was to evaluate the associations
between leaf reflectance spectra and metabolites. The spectrum of
reflected electromagnetic radiation, specifically the wavelengths
between 350 and 2500 nm, carries information on plant status,
structural properties, and biochemical composition (Mulla, 2013;
Araus and Cairns, 2014). These spectral data can be exploited by
calculating VIs, which are mathematical relationships between
selected wavelengths of the spectrum, that are indicative of
general plant status (Jones and Vaughan, 2010). The higher
level of stress in 2019, as compared to 2018, was clearly
demonstrated by the reduction in fiber yield/quality and the
changes of leaf metabolome. The different level of stress
intensity between the two years was also detected by three
spectral indices: NDVI, sPRI, and WI/NDVI. NDVI, a general
measure of crop health (Tucker, 1979; Gamon et al., 1995),
showed a significant reduction in 2019, but not in 2018.
Reduced NDVI values were observed before in cotton plants
exposed to low irrigation regimes in the field and they were
considered signatures of stress because of their correlation
with lint yield reduction (Sharma and Ritchie, 2015; Pauli
et al., 2016a). Similar to NDVI, sPRI, a proxy indicator of
photosynthetic radiation use efficiency detected by changes in
xanthophylls pigments (Gamon et al., 1997; Letts et al., 2008;
Kohzuma and Hikosaka, 2018), displayed a slight significant
reduction in 2019 only. This observation further supports the
hypothesis of reduced photosynthetic activity of the stressed
cotton plants during the 2 year of the field trial as indicated
by the reduction in chloroplast membrane lipid components.
Finally, in 2019, the highly significant difference in stressed
and non-stressed values of WI/NDVI, an indicator of water
content normalized by leaf structural differences (Penuelas et al.,
1997; Penuelas and Inoue, 1999), suggested a stronger leaf
dehydration than in 2018. This finding matches with the increase
of proline-related osmoprotectants in leaves of the stressed plants
observed in 2019 only.

In the last decade, the reflectance spectra of leaves and
plant canopies have proven to be a highly versatile class
of phenotypic data (Maes and Steppe, 2019; Yang et al.,
2020). Multivariate statistical modeling of hyperspectral
reflectance data at leaf or canopy level has been used to
predict photosynthetic parameters (e.g., CO2 assimilation,
stomatal conductance, maximum rate of Rubisco, and PEP
carboxylation) and leaf biochemical and structural properties
(e.g., pigments, nitrogen, sucrose, and specific leaf area) in
many crop species (Ainsworth et al., 2014; Yendrek et al., 2017;
Silva-Perez et al., 2018; Meacham-Hensold et al., 2019, 2020;
Cotrozzi et al., 2020). However, the use of hyperspectral data
for the quantitative estimation of leaf metabolic profiles remains
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rare with only one other study conducted in durum wheat
(Vergara-Diaz et al., 2020).

Our study demonstrates that, in cotton, the overall spectral
signature arising from the leaf biochemical composition can be
used in PLSR analysis for the accurate quantitative estimation
(R2 > 0.70 for one third of total metabolites) and prediction
(Q2 > 0.50 for the ∼15–25% of total metabolites) of a large
number of leaf metabolites. Furthermore, our results demonstrate
that stressed (WL) and non-stressed (WW) cotton leaf samples
can be efficiently discriminated by using their predicted leaf
metabolite profiles, independently from the year and stress
intensity of the field trial. Among the metabolites accurately
predicted (Q2 > 0.50) by the hyperspectral-based model, a
large number belonged to the classes of neutral lipids, polar
lipids, and terpenoids. The analysis of the most important
spectral features contributing to the modeling of these classes
of metabolites revealed that the UV–VIS region of the spectrum
was the most informative for all the classes of metabolites
in both years. This suggests that the UV–VIS region of the
reflectance spectrum has the highest discriminatory power for
the characterization and quantification of metabolites. The same
analysis highlighted that bands of the SWIR region, typically
associated with water absorption (Curran, 1989), were more
important for the prediction of all the three classes of metabolites
in 2019 compared with 2018. This result indirectly confirms the
presence of a strong dehydration stress only in 2019 (already
detected by the increase of proline related amino acids and
by the WI/NDVI index) and reveals how the different water
concentrations in WW and WL leaves were discriminated by
spectral data for the accurate quantification of metabolites. In
2018, another spectral band of the SWIR region, more associated
with the absorption of a broad set of chemical compounds such
as protein, starch, cellulose, and sugars (Curran, 1989), was
always selected by the metabolite models. This may indicate
that, in absence of strong differences in water concentration
between the WW and WL leaves, the spectral signature of major
metabolic compounds was important for quantifying lipids and
terpenoids. Therefore, spectral bands of the SWIR region seem
to provide information on the plant physiological–biochemical
status that is picked by the spectral-based models. However,
given the uncertain relationship between spectra and chemical
properties, it is challenging to elucidate what specific property or
compounds are responsible for explaining metabolic variation as
related to spectral data.

The combination of these findings reinforces the idea that
multivariate analysis of reflectance spectra detected at the
leaf level is a robust methodology for the non-destructive
quantification of leaf metabolites. This technique showed
the necessary capacity for screening a large number of
different genotypes also when grown under the effect of major
environmental stressors with different levels of stress severity.
Future studies should further explore if the hyperspectral
reflectance signal of plot canopies will yield a similar accuracy in
the prediction of metabolites. The structural variability of plant
canopies, reliance on solar illumination, and reduced resolution
due to increasing the distance between hyperspectral sensors
(e.g., assembled on manned or unmanned aerial vehicles) and

plants adds additional layers of complexity (e.g., interaction
between light and leaf inclination and geometry and position
of the sensors) in the analysis of the spectral data (Pauli et al.,
2016b). This will be an additional step for further increasing the
throughput of this technique.
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